首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用RAPD技术对吐鲁番地区火焰山及艾丁湖区域分离的15株土壤绿藻(chlorophyta)品系的遗传多样性及其亲缘关系进行探讨。结果表明:从20个随机引物中,筛选出多态性和重复性较好且谱带清晰的引物8个,这8个引物扩增出的DNA片段大多在300~2 000 bp之间,所形成的多态性位点数差距较大,显示该区域土壤绿藻具有较丰富的遗传多样性;15株土壤绿藻扩增共得到74条谱带,71条多态性带,其多态性比率为95.95%;聚类分析显示15株土壤绿藻明显地聚为2大类,与其来源相对应,即隶属于同一亚组或相近亚组的不同种基本归为一类,其种间关系与传统的形态学分类结果相吻合。  相似文献   

2.
目的:应用随机引物扩增多态性DNA技术( random amplified polymorphic DNA , RAPD)对大耳白黑眼兔( white hair black eyes rabbit , WHBE rabbit )、日本大耳白兔( Japanese white rabbit , JW rabbit )和新西兰兔(New Zealand white rabbit, NZW rabbit)3个实验兔品系进行遗传分析。方法选用90只实验兔的皮肤组织样品提取基因组DNA,用60个随机引物对实验兔基因组DNA进行PCR扩增,根据电泳结果筛选出多态性较高的引物进行RAPD-PCR分析,再利用Popgene 3.2统计软件对3个品系的扩增条带进行遗传分析,获得实验数据。结果分析结果表明:(1)60个随机引物中筛选出25个多态性较高的引物,3个品系实验兔共检测到493个扩增片段,长度在100~1800 bp之间,筛选的25个引物中,其中16个引物既可扩增出3个品系共同的DNA条带,也可扩增出WHBE兔特有的特征条带;(2) WHBE兔位点数为234个,其中多态位点数166个,多态位点比为70.94%,JW兔位点数为228个,其中多态位点数122个,多态位点比为53.51%,NZW兔位点数为231个,其中多态位点数94个,多态位点比为40.69%;(3)三个群体的Shannon多样性指数分别为0.3385,0.2222和0.1905;(4) JW兔和NZW兔的遗传相似系数最高,为0.8443,其次为WHBE兔和JW兔的遗传相似系数,为0.8204,WHBE兔和NZW兔的遗传相似系数最低,为0.7862。结论结果表明WHBE兔与JW兔和NZW兔之间有遗传的相似性,也存在着遗传差异,应用RAPD技术可以很好地检测实验兔不同品系之间以及同一品系不同个体之间的亲缘关系。  相似文献   

3.
Twenty-five accessions of mango were examined for random amplified polymorphic DNA (RAPD) genetic markers with 80 10-mer random primers. Of the 80 primers screened, 33 did not amplify, 19 were monomorphic, and 28 gave reproducible, polymorphic DNA amplification patterns. Eleven primers were selected from the 28 for the study. The number of bands generated was primer- and genotype-dependent, and ranged from 1 to 10. No primer gave unique banding patterns for each of the 25 accessions; however, ten different combinations of 2 primer banding patterns produced unique fingerprints for each accession. A maternal half-sib (MHS) family was included among the 25 accessions to see if genetic relationships could be detected. RAPD data were used to generate simple matching coefficients, which were analyzed phenetically and by means of principal coordinate analysis (PCA). The MHS clustered together in both the phenetic and the PCA while the randomly selected accessions were scattered with no apparent pattern. The uses of RAPD analysis for Mangifera germ plasm classification and clonal identification are discussed.  相似文献   

4.
毛木耳种质资源的RAPD分析   总被引:3,自引:0,他引:3  
利用22个随机引物对来源不同的56个木耳菌株进行了RAPD分析。结果表明,所有引物的扩增产物DNA片段均表现出明显的多态性,供试菌株总共扩增出164条多态性片段,占总扩增片段的99%;供试菌株两两间的遗传相似系数变化较大(平均GS值0.2143 ̄0.8764)。采用系统聚类法中的类平均法,对供试的所有菌株两两间相似系数进行聚类,可将它们分为四大类,各大类的类间和类内菌株的遗传变异程度较大,以IV类内各菌株间的最高(平均GS值0.3891),II和III类间的最低(平均GS值0.5887),表明遗传变异也较丰富(总平均GS值0.4918)。将RAPD技术应用于不同菌株间遗传差异的研究,具有反应迅速、不受外界环境条件影响、能从DNA分子水平上揭示菌株间遗传差异等优点,是一种快速准确评估木耳种质资源的有效方法。  相似文献   

5.
无核沙田柚的RAPD研究——无核机理研究(Ⅱ)   总被引:4,自引:1,他引:3  
选用经筛选的20个短序列引物(10nt)和随机抽取的2个随机长序列引物,对激光诱导产生的无核沙田柚(处理组)及未经激处理的有核沙田柚(对照组)进行了RAPD(随机扩增多态性DNA)分析。结果有6个引物扩增出了共20条多态性片段,从而表明在沙田柚的处理组与对照组之间,存在着DNA分子水平上差异,也就量说,已经引起了沙田柚后代基因组的显著变异,且这种诱导所引起的性状改变是可以遗传的。  相似文献   

6.
Random amplified polymorphic DNA (RAPD) analysis was used to evaluate genetic diversity among 13 soil Penicillium strains originating from widely dispersed areas. Twenty one of the 34 synthetic random primers were found to identify polymorphism in amplification products. The results show a high level of diversity of RAPD markers among the strains. All the strains could be identified by their characteristic amplification profile, using selected random primers. This suggests that RAPD analysis is a useful and reliable assay for characterizing the species of Penicillium genus.  相似文献   

7.
Hawthorn ( Crataegus spp.) has a long history as an ornamental and a source of medicine. We report the use of random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers to determine genetic relationships in the genus Crataegus . Twenty-eight accessions, including eight species ( Crataegus pinnatifida , Crataegus bretschneideri , Crataegus maximowiczii , Crataegus kansuensis , Crataegus altaica , Crataegus songarica , Crataegus dahurica and Crataegus sanguinea ) and two botanical varieties ( C. pinnatifida var. major and C. maximowiczii var. ninganensis ) were analysed. Twelve RAPD primers reproducibly and strongly amplified 128 fragments of which 116 were polymorphic; similarly, 13 ISSR primers generated 127 products of which 119 were polymorphic. Dendrograms based on unweighted pair group method with arithmetic average analysis were constructed from both the RAPD and the ISSR data. Similarity coefficient based on RAPD and ISSR markers ranged from 0.22 to 0.98 and 0.23 to 0.98, respectively. The range in similarity coefficient indicated that the genus has a high level of genetic diversity. The Mantel test on the similarity matrices produced by RAPD and ISSR markers gave r  = 0.86, showing high correlation between RAPD and ISSR markers in their ability to detect genetic relationships between Crataegus accessions. RAPD and ISSR appear to be reliable methods for the analysis of genetic relationships among hawthorns.  相似文献   

8.
The randomly amplified polymorphic DNA (RAPD) method was used to investigate the genetic diversity in Xanthomonas cynarae, which causes bacterial bract spot disease of artichoke. This RAPD analysis was also intended to identify molecular markers characteristic of this species, in order to develop PCR-based markers which can be used to detect this pathogenic bacterium in artichoke fields. Among the 340 RAPD primers tested, 40 were selected on their ability to produce reproducible and reliable fingerprints in our genetic background. These 40 primers produced almost similar patterns for the 37 X. cynarae strains studied, different from the fingerprints obtained for other Xanthomonas species and other xanthomonad-like bacteria isolated from artichoke leaves. Therefore, X. cynarae strains form a homogeneous genetic group. However, a little DNA polymorphism within this species was observed and the collection of X. cynarae isolates was divided into two groups (one containing three strains, the second one including all other strains). Out of seven RAPD markers characteristic of X. cynarae that were cloned, four did not hybridize to the genomic DNA of strains belonging to other Xanthomonas species. These four RAPD markers were converted into PCR markers (specific characterized amplified regions [SCARs]); they were sequenced, and a PCR primer pair was designed for each of them. Three derived SCARs are good candidates to develop PCR-based tests to detect X. cynarae in artichoke fields.  相似文献   

9.
Wang S  Yin Y  Liu Y  Xu F 《Current microbiology》2012,65(4):424-431
Pleurotus eryngii (DC. Ex. Fr.) Quél is a rare precious edible fungus which belongs to the family Pleurotaceae. This mushroom has highly nutritional, pharmaceutical, economic and ecological values. In the present study, combined randomly amplified polymorphic DNA (RAPD)/inter-simple sequence repeat (ISSR) was used to assess the genetic diversity of P. eryngii strains cultivated in China. For the RAPD and ISSR analyses, 404 and 392 polymorphic bands were obtained from 32 P. eryngii strains using 28 and 24 selected primers, respectively. A combined RAPD/ISSR dendrogram grouped the 32 strains into five clades with coefficient of 0.770. The comparison of RAPD and ISSR was also elucidated in the present study. The results of our study obtained by combined RAPD/ISSR analysis contributed to a better understanding of the genetic relationships among the P. eryngii strains and provide orientation for the strain improvement of P. eryngii species.  相似文献   

10.
Combined randomly amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) were used to assess the genetic diversity of Pleurotus ostreatus strains cultivated in China. For the RAPD and SRAP analyses, 479 and 282 polymorphic bands were obtained from 20 P. ostreatus strains using 20 and 13 selected primers or primer pairs, respectively. A combined RAPD/SRAP dendrogram grouped the 20 strains into five clades with a coefficient of 0.690. The comparison of RAPD and SRAP was evaluated in the present study. The combined RAPD/SRAP markers provided reliable information regarding the relationships among the P. ostreatus strains.  相似文献   

11.
Six parent and their 12 gamma ray-induced somatic flower colour mutants of garden rose were characterized to discriminate the mutants from their respective parents and understanding the genetic diversity using Random amplification of polymorphic DNA (RAPD) markers. Out of 20 primers screened, 14 primers yielded completely identical fragments patterns. The other 7 primers gave highly polymorphic banding patterns among the radiomutants. All the cultivars were identified by using only 7 primers. Moreover, individual mutants were also distinguished by unique RAPD marker bands. Based on the presence or absence of the 48 polymorphic bands, the genetic variations within and among the 18 cultivars were measured. Genetic distance between all 18 cultivars varied from 0.40 to 0.91, as revealed by Jaccard’s coefficient matrix. A dendrogram was constructed based on the similarity matrix using the Neighbor Joining Tree method showed three main clusters. The present RAPD analysis can be used not only for estimating genetic diversity present in gamma ray-induced mutants but also for correct identification of mutant/new varieties for their legal protection under plant variety rights.  相似文献   

12.
目的使用随机扩增多态DNA标记建立标准化的布氏田鼠封闭群遗传质量控制分子标记库。方法使用高盐沉淀法从鼠尾中提取布氏田鼠基因组DNA。采用40条PRAD引物对布氏田鼠封闭群进行PCR扩增,琼脂糖电泳分离条带,参考标准分子量标记计算条带大小,并使用多态位点数、单态位点数以及多态位点比率评价种群的遗传多样性。结果筛选出8个能获得清晰稳定扩增条带的RAPD标记。这8个RAPD标记检测到的多态位点数存在明显差异。8个引物得到的遗传多态位点的数据之和能揭示种群的遗传结构。结论本实验建立了检测布氏田鼠封闭群遗传结构的RAPD标记。  相似文献   

13.
稗草致病菌——尖角突脐孢菌菌株RAPD指纹图谱的分析   总被引:7,自引:1,他引:7  
陈勇  倪汉文 《微生物学报》2003,43(4):409-416
以我国主要稻区的稗草植株上分离的17株尖角突脐孢菌菌株为试验材料,采用改良的SDS法提取其基因组DNA,并运用优化的RAPD分析体系对其进行了分子标记遗传差异研究。从25个随机引物中筛选出20个扩增效果好的引物,对全部试验材料进行了RAPD扩增,共得到239条有效带,其中多态性带229条(占95.8%)。依据扩增结果建立了17株尖角突脐孢菌基因型的DNA指纹图谱并对其进行了有效区分。根据RAPD分析结果计算了菌株间的遗传距离,分析了它们的遗传差异并进行了聚类分析,结果表明,RAPD分子标记技术是能够用于杂草致病菌资源的鉴定的,并可以进一步应用于特定性状的基因标记研究。  相似文献   

14.
莲藕品种DNA指纹图谱的绘制   总被引:14,自引:0,他引:14  
采用RAPD技术对14个莲藕品种进行遗传多态性分析,用5个Operon引物和80个SBS的RAPD引物进行筛选,从中选出来自SBS的RAPD-C13和RAPD-D15扩增出的8条多态性条带,绘制了14个品种的DNA指纹图谱,在该图谱中每个品种均有各自特异的DNA指纹。  相似文献   

15.
The role of random amplified polymorphic DNA (RAPD) markers in detecting intra-clonal genetic variability in vegetatively propagated UPASI-9 clone of tea (Camellia sinensis) was studied. Twenty five decamer primers were used, of which three did not amplify, three gave single bands and the rest of nineteen primers generated upto twelve bands (an average of 6.3 bands per primer). Twenty one primers exhibiting amplified products gave monomorphic banding patterns. Only one primer (OPE-17) gave a unique extra band of similar size in four plants.  相似文献   

16.
PCR-based random amplified polymorphic DNA (RAPD) markers were employed to assess genetic diversity in 23 chickpea genotypes. Forty of the 100 random primers screened revealed polymorphism among the genotypes. Most of the primers revealed single polymorphic band, and only 14.1 2% of the products were polymorphic. Estimates of genetic similarity based on Jaccard’s coefficient ranged from 0.92 to 0.99, indicating narrow genetic variability among the genotypes based on RAPD markers.The 23 chickpea genotypes formed two major clusters in the dendrogram.The low RAPD polymorphism among chickpea genotypes suggests that more number of polymorphic primers need to be analysed to determine genetic relationships. It was observed that RAPD analysis employing 30 polymorphic primers could provide better estimates of genetic relationships in chickpea.  相似文献   

17.
In this paper we present a method for the generation of randomly amplified polymorphic DNA (RAPD) markers for sweet potato. These were applied to produce genetic fingerprints of six clonal cultivars and to estimate genetic distances between these cultivars. The level of polymorphism within the species was extremely high. From the 36-decamer random primers used, 170 fragments were amplified, of which 132 (77.6%) were polymorphic. Ten primers resulted in no detected amplification. Of the remaining 26 primers for which amplification was achieved, only one did not reveal polymorphism. Six primers used alone enabled the discrimination of all six genotypes. Pattern analysis, which employed both a classification and ordination method, enabled the grouping of cultivars and the identification of primers which gave greatest discrimination among the cultivars.  相似文献   

18.
为探讨国内茯苓人工栽培的主要品种和贵州野生茯苓菌株亲缘关系,利用RAPD技术对供试菌株的基因组DNA进行了分析。从41个随机引物中筛选出17个有效引物,共检测到101个RAPD标记位点,其中39个位点(38.6%)具有多态性,通过PAUP软件进行数据处理,采用最大简约法(MP法)进行聚类分析,并建立系统树。结果表明:不同来源的茯苓菌株亲缘关系非常相近,仅在某些引物的扩增物上存在较小的差异。  相似文献   

19.
利用RAPD分析杜氏藻属(Dunaliella)嗜盐种间遗传多样性   总被引:6,自引:2,他引:6  
李钢  蒋彦 《西北植物学报》2002,22(3):511-515
本研究首次运用随机引物对杜氏藻属(Dunaliella)中6个嗜盐种的基因组DNA进行RAPD分析。筛选获得的6个有效引物共扩增出98个可重复的DNA片段,其中95条带具有多态性,多态性条带的频率为96.9%。根据系统进化树图将杜氏藻属6个种分别归于亲缘关系相对较远的2个类群中,且6个种与它们各自的生态分布联系不紧密。  相似文献   

20.
The RAPD (random amplified polymorphic DNA) fingerprinting method, which utilizes low stringency PCR amplification with single primers of arbitrary sequence to generate strain-specific arrays of anonymous DNA fragments, was calibrated relative to the widely used, protein-based multilocus enzyme electrophoretic (MLEE) typing method. RAPD fingerprinting was carried out on five isolates from each of 15 major groups of Escherichia coli strains that cause diarrheal disease worldwide (75 isolates in all). Each group consisted of isolates that were not distinguishable from one another by MLEE typing using 20 diagnostic enzyme markers. In our RAPD tests, three or more distinct subgroups in each MLEE group were distinguished with each of five primers, and 74 of the 75 isolates were distinguished when data obtained with five primers were combined. Thus, RAPD typing is far more sensitive than MLEE typing for discriminating among related strains of a species. Despite their different sensitivities, the same general relationships among strains were inferred from MLEE and RAPD data. Thus, our results recommend use of the RAPD method for studies of bacterial population genetic structure and evolution, as well as for epidemiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号