首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic wasting disease (CWD), a prion disease of mule deer (Odocoileus hemionus), accelerates mortality and in so doing has the potential to influence population dynamics. Although effects on mule deer survival are clear, how CWD affects recruitment is less certain. We studied how prion infection influenced the number of offspring raised to weaning per adult (≥2 yr old) female mule deer and subsequently the estimated growth rate (λ) of an infected deer herd. Infected and presumably uninfected radio-collared female deer were observed with their fawns in late summer (August-September) during three consecutive years (2006-2008) in the Table Mesa area of Boulder, Colorado, USA. We counted the number of fawns accompanying each female, then used a fully Bayesian model to estimate recruitment by infected and uninfected females and the effect of the disease on λ. On average, infected females weaned 0.95 fawns (95% credible interval=0.56-1.43) whereas uninfected females weaned 1.34 fawns (95% credible interval=1.09-1.61); the probability that uninfected females weaned more fawns than infected females was 0.93). We used estimates of prevalence to weight recruitment and survival parameters in the transition matrix of a three-age, single-sex matrix model and then used the matrix to calculate effects of CWD on λ. When effects of CWD on both survival and recruitment were included, the modeled λ was 0.97 (95% credible interval = 0.82-1.09). Effects of disease on λ were mediated almost entirely by elevated mortality of infected animals. We conclude that although CWD may affect mule deer recruitment, these effects seem to be sufficiently small that they can be omitted in estimating the influences of CWD on population growth rate.  相似文献   

2.
Chronic wasting disease (CWD) is a fatal prion disease in deer and elk. Unique among the prion diseases, it is transmitted among captive and free-ranging animals. To facilitate studies of the biology of CWD prions, we generated five lines of transgenic (Tg) mice expressing prion protein (PrP) from Rocky Mountain elk (Cervus elaphus nelsoni), denoted Tg(ElkPrP), and two lines of Tg mice expressing PrP common to white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus), denoted Tg(DePrP). None of the Tg(ElkPrP) or Tg(DePrP) mice exhibited spontaneous neurologic dysfunction at more than 600 days of age. Brain samples from CWD-positive elk, white-tailed deer, and mule deer produced disease in Tg(ElkPrP) mice between 180 and 200 days after inoculation and in Tg(DePrP) mice between 300 and 400 days. One of eight cervid brain inocula transmitted disease to Tg(MoPrP)4053 mice overexpressing wild-type mouse PrP-A in approximately 540 days. Neuropathologic analysis revealed abundant PrP amyloid plaques in the brains of ill mice. Brain homogenates from symptomatic Tg(ElkPrP) mice produced disease in 120 to 190 days in Tg(ElkPrP) mice. In contrast to the Tg(ElkPrP) and Tg(DePrP) mice, Tg mice overexpressing human, bovine, or ovine PrP did not develop prion disease after inoculation with CWD prions from among nine different isolates after >500 days. These findings suggest that CWD prions from elk, mule deer, and white-tailed deer can be readily transmitted among these three cervid species.  相似文献   

3.
Prion diseases are transmissible spongiform encephalopathies (TSEs) characterized by fatal, progressive neurologic diseases with prolonged incubation periods and an accumulation of infectious misfolded prion proteins. Antemortem diagnosis is often difficult due to a long asymptomatic incubation period, differences in the pathogenesis of different prions, and the presence of very low levels of infectious prion in easily accessible samples. Chronic wasting disease (CWD) is a TSE affecting both wild and captive populations of cervids, including mule deer, white-tailed deer, elk, moose, muntjac, and most recently, wild reindeer. This study represents a well-controlled evaluation of a newly developed real-time quaking-induced conversion (RT-QuIC) assay as a potential CWD diagnostic screening test using rectal biopsy sections from a depopulated elk herd. We evaluated 69 blinded samples of recto-anal mucosa-associated lymphoid tissue (RAMALT) obtained from USDA Veterinary Services. The results were later un-blinded and statistically compared to immunohistochemical (IHC) results from the USDA National Veterinary Services Laboratories (NVSL) for RAMALT, obex, and medial retropharyngeal lymph node (MRPLN). Comparison of RAMALT RT-QuIC assay results with the IHC results of RAMALT revealed 92% relative sensitivity (95% confidence limits: 61.52–99.8%) and 95% relative specificity (95% confidence limits: 85.13–99%). Collectively, our results show a potential utility of the RT-QuIC assay to advance the development of a rapid, sensitive, and specific prion diagnostic assay for CWD prions.  相似文献   

4.
Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected with CWD. Primary cultures derived from uninfected mule deer brain tissue were transformed by transfection with a plasmid containing the simian virus 40 genome. A transformed cell line (MDB) was exposed to microsomes prepared from the brainstem of a CWD-affected mule deer. CWD-associated, protease-resistant prion protein (PrP(CWD)) was used as an indicator of CWD infection. Although no PrP(CWD) was detected in any of these cultures after two passes, dilution cloning of cells yielded one PrP(CWD)-positive clone out of 51. This clone, designated MDB(CWD), has maintained stable PrP(CWD) production through 32 serial passes thus far. A second round of dilution cloning yielded 20 PrP(CWD)-positive subclones out of 30, one of which was designated MDB(CWD2). The MDB(CWD2) cell line was positive for fibronectin and negative for microtubule-associated protein 2 (a neuronal marker) and glial fibrillary acidic protein (an activated astrocyte marker), consistent with derivation from brain fibroblasts (e.g., meningeal fibroblasts). Two inhibitors of rodent scrapie protease-resistant PrP accumulation, pentosan polysulfate and a porphyrin compound, indium (III) meso-tetra(4-sulfonatophenyl)porphine chloride, potently blocked PrP(CWD) accumulation in MDB(CWD) cells. This demonstrates the utility of these cells in a rapid in vitro screening assay for PrP(CWD) inhibitors and suggests that these compounds have potential to be active against CWD in vivo.  相似文献   

5.
The natural occurrence of chronic wasting disease (CWD) in a 1993 cohort of captive white-tailed deer (Odocoileus virginianus) afforded the opportunity to describe epidemic dynamics in this species and to compare dynamics with those seen in contemporary cohorts of captive mule deer (O. hemionus) also infected with CWD. The overall incidence of clinical CWD in white-tailed deer was 82% (nine of 11) among individuals that survived >15 mo. Affected white-tailed deer died or were killed because of terminal CWD at age 49-76 mo (x = 59.6 mo, SE = 3.9 mo). Epidemic dynamics of CWD in captive white-tailed deer were similar to dynamics in mule deer cohorts. Incidence of clinical CWD was 57% (4/7) among hand-raised (HR) and 67% (4/6) among dam-raised (DR) mule deer; affected HR mule deer succumbed at 64-86 mo of age (x = 72 mo; SE = 5 mo), and affected DR mule deer died at age 31-58 mo (x = 41.3 mo; SE = 6.1 mo). Sustained horizontal transmission of CWD most plausibly explained epidemic dynamics, but the original source of exposures could not be determined. Apparent differences in mean age at CWD-caused death among these cohorts may be attributable to differences in the timing or intensity of exposure to CWD, and these factors appear to be more likely to influence epidemic dynamics than species differences. It follows that CWD epidemic dynamics in sympatric, free-ranging white-tailed and mule deer sharing habitats in western North American ranges also may be similar.  相似文献   

6.
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, remains prevalent in North American elk, white-tailed deer and mule deer. A natural case of CWD in reindeer (Rangifer tarandus tarandus) has not been reported despite potential habitat overlap with CWD-infected deer or elk herds. This study investigates the experimental transmission of CWD from elk or white-tailed deer to reindeer by the oral route of inoculation. Ante-mortem testing of the three reindeer exposed to CWD from white-tailed deer identified the accumulation of pathological PrP (PrP(CWD)) in the recto-anal mucosa associated lymphoid tissue (RAMALT) of two reindeer at 13.4 months post-inoculation. Terminal CWD occurred in the two RAMALT-positive reindeer at 18.5 and 20 months post-inoculation while one other reindeer in the white-tailed deer CWD inoculum group and none of the 3 reindeer exposed to elk CWD developed disease. Tissue distribution analysis of PrP(CWD) in CWD-affected reindeer revealed widespread deposition in central and peripheral nervous systems, lymphoreticular tissues, the gastrointestinal tract, neuroendocrine tissues and cardiac muscle. Analysis of prion protein gene (PRNP) sequences in the 6 reindeer identified polymorphisms at residues 2 (V/M), 129 (G/S), 138 (S/N) and 169 (V/M). These findings demonstrate that (i) a sub-population of reindeer are susceptible to CWD by oral inoculation implicating the potential for transmission to other Rangifer species, and (ii) certain reindeer PRNP polymorphisms may be protective against CWD infection.  相似文献   

7.
《朊病毒》2013,7(2):153-162
Chronic wasting disease (CWD) is a major concern for the management of North American cervid populations. This fatal prion disease has led to declines in populations which have high CWD prevalence and areas with both high and low infection rates have experienced economic losses in wildlife recreation and fears of potential spill-over into livestock or humans. Research from human and veterinary medicine has established that the prion protein gene (Prnp) encodes the protein responsible for transmissible spongiform encephalopathies (TSEs). Polymorphisms in the Prnp gene can lead to different prion forms that moderate individual susceptibility to and progression of TSE infection. Prnp genes have been sequenced in a number of cervid species including those currently infected by CWD (elk, mule deer, white-tailed deer, moose) and those for which susceptibility is not yet determined (caribou, fallow deer, sika deer). Over thousands of sequences examined, the Prnp gene is remarkably conserved within the family Cervidae; only 16 amino acid polymorphisms have been reported within the 256 amino acid open reading frame in the third exon of the Prnp gene. Some of these polymorphisms have been associated with lower rates of CWD infection and slower progression of clinical CWD. Here we review the body of research on Prnp genetics of North American cervids. Specifically, we focus on known polymorphisms in the Prnp gene, observed genotypic differences in CWD infection rates and clinical progression, mechanisms for genetic TSE resistance related to both the cervid host and the prion agent and potential for natural selection for CWD-resistance. We also identify gaps in our knowledge that require future research.  相似文献   

8.
A captive adult male white-tailed deer (Odocoileus virginianus) with wasting and neurologic signs similar to chronic wasting disease (CWD) was evaluated by histopathology, histochemistry, and immunohistochemistry (IHC) for disease-associated prion protein (PrP(d)). On histologic examination, the brainstem had areas of vacuolation in neuropil and extensive multifocal mineralization of blood vessels with occasional occlusion of the lumen. Some of the clinical and pathologic features of this case were similar to the CWD of white-tailed deer. However, the tissues were negative for PrP(d) by IHC. Because the lesions were more prominent in the obex region of the brainstem, it is speculated that this would have resulted in clinical signs similar to CWD in white-tailed deer. To our knowledge, neither cerebrovascular mineralization nor clinicopathologic changes resembling CWD have previously been described in white-tailed deer without the presence of PrP(d). Such a case should be considered in a differential diagnosis of CWD of white-tailed deer.  相似文献   

9.
We generated mice expressing cervid prion protein to produce a transgenic system simulating chronic wasting disease (CWD) in deer and elk. While normal mice were resistant to CWD, these transgenic mice uniformly developed signs of neurological dysfunction approximately 230 days following intracerebral inoculation with four CWD isolates. Inoculated transgenic mice homozygous for the transgene array developed disease after approximately 160 days. The brains of sick transgenic mice exhibited widespread spongiform degeneration and contained abnormal prion protein and abundant amyloid plaques, many of which were florid plaques. Transmission studies indicated that the same prion strain caused CWD in the analyzed mule deer and elk. These mice provide a new and reliable tool for detecting CWD prions.  相似文献   

10.
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting captive and free-ranging cervids. Currently, tests for CWD in live animals involve relatively invasive procedures to collect lymphoid tissue biopsies and examine them for CWD-associated, protease-resistant cervid prion protein (PrP(CWD)) detected by immunohistochemistry (IHC). We adapted an ultrasensitive prion detection system, protein misfolding cyclic amplification (PMCA), to detect PrP(CWD) in Rocky Mountain elk (Cervus elaphus nelsoni) feces. Our PMCA reproducibly detected a 1.2 × 10(7) dilution of PrP(CWD) (a 10% infected brain homogenate diluted 1.2 × 10(6)-fold into 10% fecal homogenates), equivalent to approximately 100 pg of PrP(CWD)/g of feces. We developed a semiquantitative scoring system based on the first PMCA round at which PrP(CWD) was detected and fit a nonlinear regression curve to our serial dilutions to correlate PMCA scores with known PrP(CWD) concentrations. We used this PMCA scoring system to detect PrP(CWD) and estimate its concentration in feces from free-ranging elk from Rocky Mountain National Park, Colorado. We compared our results to PrP(CWD) IHC of rectoanal mucosa-associated lymphoid tissue and obex from the same animals. The PMCA successfully detected PrP(CWD) in feces from elk that were positive by IHC, with estimated prion loads from 100 to 5,000 pg PrP(CWD)/g of feces. These data show for the first time PrP(CWD) in feces from naturally exposed free-ranging elk and demonstrate the potential of PMCA as a new, noninvasive CWD diagnostic tool to complement IHC.  相似文献   

11.
《朊病毒》2013,7(1):52-61
Scrapie of sheep and chronic wasting disease (CWD) of cervids are transmissible prion diseases. Milk and placenta have been identified as sources of scrapie prions but do not explain horizontal transmission. In contrast, CWD prions have been reported in saliva, urine and feces, which are thought to be responsible for horizontal transmission. While the titers of CWD prions have been measured in feces, levels in saliva or urine are unknown. Because sheep produce ~17 L/day of saliva, and scrapie prions are present in tongue and salivary glands of infected sheep, we asked if scrapie prions are shed in saliva. We inoculated transgenic (Tg) mice expressing ovine prion protein, Tg(OvPrP) mice, with saliva from seven Cheviot sheep with scrapie. Six of seven samples transmitted prions to Tg(OvPrP) mice with titers of -0.5 to 1.7 log ID50 U/ml. Similarly, inoculation of saliva samples from two mule deer with CWD transmitted prions to Tg(ElkPrP) mice with titers of -1.1 to -0.4 log ID50 U/ml. Assuming similar shedding kinetics for salivary prions as those for fecal prions of deer, we estimated the secreted salivary prion dose over a 10-mo period to be as high as 8.4 log ID50 units for sheep and 7.0 log ID50 units for deer. These estimates are similar to 7.9 log ID50 units of fecal CWD prions for deer. Because saliva is mostly swallowed, salivary prions may reinfect tissues of the gastrointestinal tract and contribute to fecal prion shedding. Salivary prions shed into the environment provide an additional mechanism for horizontal prion transmission.  相似文献   

12.
Chronic wasting disease (CWD) is an emerging prion disease of deer and elk. The risk of CWD transmission to humans following exposure to CWD-infected tissues is unknown. To assess the susceptibility of nonhuman primates to CWD, two squirrel monkeys were inoculated with brain tissue from a CWD-infected mule deer. The CWD-inoculated squirrel monkeys developed a progressive neurodegenerative disease and were euthanized at 31 and 34 months postinfection. Brain tissue from the CWD-infected squirrel monkeys contained the abnormal isoform of the prion protein, PrP-res, and displayed spongiform degeneration. This is the first reported transmission of CWD to primates.  相似文献   

13.
Besnoitia sp. was diagnosed in two caribou (Rangifer tarandus caribou) which died of pneumonia at the Assiniboine Park Zoo (Winnipeg, Manitoba, Canada) in 1983. During the following 3 yr besnoitiosis spread to an isolated herd of caribou, to mule deer (Odocoileus hemionus hemionus) and to reindeer (Rangifer tarandus tarandus). Reduction of exposure to biting insects appears to have reduced the transmission of besnoitiosis within the reindeer herd. The morbidity rate was approximately 82% in caribou and 67% in mule deer over the age of 2 mo. Most animals with clinical signs were euthanized; this precluded an estimation of the disease-related mortality rate. Twenty-eight caribou, 10 mule deer and three reindeer have been euthanized or died as a result of this epidemic. Attempts to artificially transmit the disease to potentially susceptible intermediate and definitive hosts were unsuccessful.  相似文献   

14.
Chronic wasting disease (CWD) is a contagious, rapidly spreading transmissible spongiform encephalopathy (TSE), or prion disease, occurring in cervids such as white tailed-deer (WTD), mule deer or elk in North America. Despite efficient horizontal transmission of CWD among cervids natural transmission of the disease to other species has not yet been observed. Here, we report for the first time a direct biochemical demonstration of pathological prion protein PrP(TSE) and of PrP(TSE)-associated seeding activity, the static and dynamic biochemical markers for biological prion infectivity, respectively, in skeletal muscles of CWD-infected cervids, i. e. WTD for which no clinical signs of CWD had been recognized. The presence of PrP(TSE) was detected by Western- and postfixed frozen tissue blotting, while the seeding activity of PrP(TSE) was revealed by protein misfolding cyclic amplification (PMCA). Semi-quantitative Western blotting indicated that the concentration of PrP(TSE) in skeletal muscles of CWD-infected WTD was approximately 2000-10,000-fold lower than in brain tissue. Tissue-blot-analyses revealed that PrP(TSE) was located in muscle-associated nerve fascicles but not, in detectable amounts, in myocytes. The presence and seeding activity of PrP(TSE) in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans.  相似文献   

15.
We estimated chronic wasting disease (CWD) prevalence among vehicle-killed mule deer (Odocoileus hemionus) in select data analysis units (DAUs) in northern Colorado, USA, and compared these with estimated CWD prevalence among mule deer of the same sex sampled in the vicinity of collision sites to assess relative vulnerability of CWD-infected individuals to vehicle collisions. Twenty-five of 171 vehicle-killed mule deer tested positive for CWD (overall prevalence=0.146, 95% confidence interval [CI]=0.097-0.208); 173 of 2,317 deer sampled in the vicinity of these vehicle-killed deer tested positive (overall prevalence=0.075, 95% CI=0.064-0.085). In nine of ten DAU x sex comparisons, relative risk of CWD infection tended to be higher among vehicle-killed deer (range of estimated relative risks=1.6-15.9). Spongiform encephalopathy was detected in 12 of 20 (60%; 95% CI=39-81%) CWD-positive deer killed by vehicles and in 79 of 180 (44%; 95% CI=37-52%) CWD-positive deer detected via random sampling (relative risk=1.37; 95% CI=0.92-2.03), suggesting that infected deer killed by vehicles tended to be in later stages of disease than those killed by hunters. Our data offer evidence that CWD-infected mule deer may be relatively vulnerable to vehicle collisions. It follows that sampling of vehicle-killed mule deer may be exploited to increase efficiency of surveillance programs designed to detect new foci of CWD infection; moreover, evidence of increased susceptibility to vehicle collisions may aid in understanding vulnerability of CWD-infected individuals to other forms of death, particularly predation.  相似文献   

16.

Background

Bovine spongiform encephalopathy (BSE), a member of the transmissible spongiform encephalopathies (TSE), primarily affects cattle. Transmission is via concentrate feed rations contaminated with infected meat and bone meal (MBM). In addition to cattle, other food animal species are susceptible to BSE and also pose a potential threat to human health as consumption of infected meat products is the cause of variant Creutzfeldt-Jakob disease in humans, which is invariably fatal. In the UK, farmed and free ranging deer were almost certainly exposed to BSE infected MBM in proprietary feeds prior to legislation banning its inclusion. Therefore, although BSE has never been diagnosed in any deer species, a possible risk to human health remains via ingestion of cervine products. Chronic wasting disease (CWD), also a TSE, naturally infects several cervid species in North America and is spreading rapidly in both captive and free-ranging populations.

Results

Here we show that European red deer (Cervus elaphus elaphus) are susceptible to intra-cerebral (i/c) challenge with BSE positive cattle brain pool material resulting in clinical neurological disease and weight loss by 794–1290 days and the clinical signs are indistinguishable to those reported in deer with CWD. Spongiform changes typical of TSE infections were present in brain and accumulation of the disease-associated abnormal prion protein (PrPd) was present in the central and peripheral nervous systems, but not in lymphoid or other tissues. Western immunoblot analysis of brain material showed a similar glycosylation pattern to that of BSE derived from infected cattle and experimentally infected sheep with respect to protease-resistant PrP isoforms. However, the di-, mono- and unglycosylated bands migrated significantly (p < 0.001) further in the samples from the clinically affected deer when compared to BSE infected brains of cattle and sheep.

Conclusion

This study shows that deer are susceptible to BSE by intra-cerebral inoculation and display clinical signs and vacuolar pathology that are similar to those of CWD. These findings highlight the importance of preventing the spread to Europe of CWD from North America as this may necessitate even more extensive testing of animal tissues destined for human consumption within the EU. Although the absence of PrPd in lymphoid and other non-neurological tissues potentially limits the risk of transmission to humans, the replication of TSE agents in peripheral tissues following intra-cerebral challenge is often limited. Thus the assessment of risk posed by cervine BSE as a human pathogen or for environmental contamination should await the outcome of ongoing oral challenge experiments.
  相似文献   

17.
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of cervids now detected in 19 states of the United States, three Canadian provinces, and South Korea. Whether noncervid species can be infected by CWD and thereby serve as reservoirs for the infection is not known. To investigate this issue, we previously used serial protein misfolding cyclic amplification (sPMCA) to demonstrate that CWD prions can amplify in brain homogenates from several species sympatric with cervids, including prairie voles (Microtus ochrogaster) and field mice (Peromyscus spp.). Here, we show that prairie voles are susceptible to mule deer CWD prions in vivo and that sPMCA amplification of CWD prions in vole brain enhances the infectivity of CWD for this species. Prairie voles inoculated with sPMCA products developed clinical signs of TSE disease approximately 300 days prior to, and more consistently than, those inoculated with CWD prions from deer brain. Moreover, the deposition patterns and biochemical properties of protease-resistant form of PrP (PrP(RES)) in the brains of affected voles differed from those in cervidized transgenic (CerPrP) mice infected with CWD. In addition, voles inoculated orally with sPMCA products developed clinical signs of TSE and were positive for PrP(RES) deposition, whereas those inoculated orally with deer-origin CWD prions did not. These results demonstrate that transspecies sPMCA of CWD prions can enhance the infectivity and adapt the host range of CWD prions and thereby may be useful to assess determinants of prion species barriers.  相似文献   

18.
Chronic wasting disease (CWD) is a neurodegenerative prion disease of cervids. Some animal prion diseases, such as bovine spongiform encephalopathy, can infect humans; however, human susceptibility to CWD is unknown. In ruminants, prion infectivity is found in central nervous system and lymphoid tissues, with smaller amounts in intestine and muscle. In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.Prion diseases are fatal neurodegenerative diseases that include Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, and chronic wasting disease (CWD) in cervids. Cross-species prion infection can occur and is responsible for the spread of BSE to humans (2). Since spread is likely due to exposure to infected tissues, it is vital to know which tissues contain infectivity. In animals such as cattle, sheep, and cervids, whose tissues are part of both the human and domestic-animal food chains, the central nervous system (CNS) has the highest propensity for infectivity. Lymphoid organs and muscles can also be positive for the disease agent, but this varies among species (1, 4, 7). We recently found prion infectivity in brown and white fat of scrapie agent-infected mice (13) and wanted to determine if fat from animals actually consumed by humans may also carry infectivity. To answer this question, we inoculated fat from two CWD agent-infected deer into susceptible transgenic mice expressing deer prion protein (TgDeerPrP mouse) (10).  相似文献   

19.
《朊病毒》2013,7(6):449-462
ABSTRACT

The sequence of the prion protein gene (PRNP) affects susceptibility to spongiform encephalopathies, or prion diseases in many species. In white-tailed deer, both coding and non-coding single nucleotide polymorphisms have been identified in this gene that correlate to chronic wasting disease (CWD) susceptibility. Previous studies examined individual nucleotide or amino acid mutations; here we examine all nucleotide polymorphisms and their combined effects on CWD. A 626 bp region of PRNP was examined from 703 free-ranging white-tailed deer. Deer were sampled between 2002 and 2010 by hunter harvest or government culling in Illinois and Wisconsin. Fourteen variable nucleotide positions were identified (4 new and 10 previously reported). We identified 68 diplotypes comprised of 24 predicted haplotypes, with the most common diplotype occurring in 123 individuals. Diplotypes that were found exclusively among positive or negative animals were rare, each occurring in less than 1% of the deer studied. Only one haplotype (C, odds ratio 0.240) and 2 diplotypes (AC and BC, odds ratios of 0.161 and 0.108 respectively) has significant associations with CWD resistance. Each contains mutations (one synonymous nucleotide 555C/T and one nonsynonymous nucleotide 286G/A) at positions reported to be significantly associated with reduced CWD susceptibility. Results suggest that deer populations with higher frequencies of haplotype C or diplotypes AC and BC might have a reduced risk for CWD infection – while populations with lower frequencies may have higher risk for infection. Understanding the genetic basis of CWD has improved our ability to assess herd susceptibility and direct management efforts within CWD infected areas.  相似文献   

20.
Scrapie of sheep and chronic wasting disease (CWD) of cervids are transmissible prion diseases. Milk and placenta have been identified as sources of scrapie prions but do not explain horizontal transmission. In contrast, CWD prions have been reported in saliva, urine and feces, which are thought to be responsible for horizontal transmission. While the titers of CWD prions have been measured in feces, levels in saliva or urine are unknown. Because sheep produce ∼17 L/day of saliva and scrapie prions are present in tongue and salivary glands of infected sheep, we asked if scrapie prions are shed in saliva. We inoculated transgenic (Tg) mice expressing ovine prion protein, Tg(OvPrP) mice, with saliva from seven Cheviot sheep with scrapie. Six of seven samples transmitted prions to Tg(OvPrP) mice with titers of −0.5 to 1.7 log ID50 U/ml. Similarly, inoculation of saliva samples from two mule deer with CWD transmitted prions to Tg(ElkPrP) mice with titers of −1.1 to −0.4 log ID50 U/ml. Assuming similar shedding kinetics for salivary prions as those for fecal prions of deer, we estimated the secreted salivary prion dose over a 10-mo period to be as high as 8.4 log ID50 units for sheep and 7.0 log ID50 units for deer. These estimates are similar to 7.9 log ID50 units of fecal CWD prions for deer. Because saliva is mostly swallowed, salivary prions may reinfect tissues of the gastrointestinal tract and contribute to fecal prion shedding. Salivary prions shed into the environment provide an additional mechanism for horizontal prion transmission.Key words: scrapie, chronic wasting disease, saliva, horizontal transmission, titers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号