首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using cloned Rhizobium meliloti, Rhizobium leguminosarum, and Rhizobium sp. strain MPIK3030 nodulation (nod) genes as hybridization probes, homologous regions were detected in the slow-growing soybean symbiont Bradyrhizobium japonicum USDA 110. These regions were found to cluster within a 25-kilobase (kb) region. Specific nod probes from R. meliloti were used to identify nodA-, nodB-, nodC-, and nodD-like sequences clustered on two adjacent HindIII restriction fragments of 3.9 and 5.6 kb. A 785-base-pair sequence was identified between nodD and nodABC. This sequence contained an open reading frame of 420 base pairs and was oriented in the same direction as nodABC. A specific nod probe from R. leguminosarum was used to identify nodIJ-like sequences which were also contained within the 5.6-kb HindIII fragment. A nod probe from Rhizobium sp. strain MPIK3030 was used to identify hsn (host specificity)-like sequences essential for the nodulation of siratro (Macroptilium atropurpureum) on a 3.3-kb HindIII fragment downstream of nodIJ. A transposon Tn5 insertion within this region prevented the nodulation of siratro, but caused little or no delay in the nodulation of soybean (Glycine max).  相似文献   

2.
Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a few other rhizobia that include the poorly characterized isolates related to Rhizobium sp. strain Or191. Distinctive features of the symbiosis between alfalfa and S. meliloti are the marked specificity from the plant to the bacteria and the strict requirement for the presence of sulfated lipochitooligosaccharides (Nod factors [NFs]) at its reducing end. Here, we present evidence of the presence of a functional nodH-encoded NF sulfotransferase in the Or191-like rhizobia. The nodH gene, present in single copy, maps to a high molecular weight megaplasmid. As in S. meliloti, a nodF homolog was identified immediately upstream of nodH that was transcribed in the opposite direction (local synteny). This novel nodH ortholog was cloned and shown to restore both NF sulfation and the Nif+Fix+ phenotypes when introduced into an S. meliloti nodH mutant. Unexpectedly, however, nodH disruption in the Or191-like bacteria did not abolish their ability to nodulate alfalfa, resulting instead in a severely delayed nodulation. In agreement with evidence from other authors, the nodH sequence analysis strongly supports the idea that the Or191-like rhizobia most likely represent a genetic mosaic resulting from the horizontal transfer of symbiotic genes from a sinorhizobial megaplasmid to a not yet clearly identified ancestor.  相似文献   

3.
The nodulation genes of Mesorhizobium sp. (Astragalus sinicus) strain 7653R were cloned by functional complementation of Sinorhizobium meliloti nod mutants. The common nod genes, nodD, nodA, and nodBC, were identified by heterologous hybridization and sequence analysis. The nodA gene was found to be separated from nodBC by approximately 22 kb and was divergently transcribed. The 2. 0-kb nodDBC region was amplified by PCR from 24 rhizobial strains nodulating A. sinicus, which represented different chromosomal genotypes and geographic origins. No polymorphism was found in the size of PCR products, suggesting that the separation of nodA from nodBC is a common feature of A. sinicus rhizobia. Sequence analysis of the PCR-amplified nodA gene indicated that seven strains representing different 16S and 23S ribosomal DNA genotypes had identical nodA sequences. These data indicate that, whereas microsymbionts of A. sinicus exhibit chromosomal diversity, their nodulation genes are conserved, supporting the hypothesis of horizontal transfer of nod genes among diverse recipient bacteria.  相似文献   

4.
Rhizobia are soil bacteria able to fix atmospheric nitrogen in symbiosis with leguminous plants. In response to a signal cascade coded by genes of both symbiotic partners, a specific plant organ, the nodule, is formed. Rhizobial nodulation (nod) genes trigger nodule formation through the synthesis of Nod factors, a family of chitolipooligosaccharides that are specifically recognized by the host plant at the first stages of the nodulation process. Here, we present the organization and sequence of the common nod genes from Rhizobium galegae, a symbiotic member of the RHIZOBIACEAE: This species has an intriguing phylogenetic position, being symbiotic among pathogenic agrobacteria, which induce tumors instead of nodules in plant shoots or roots. This apparent incongruence raises special interest in the origin of the symbiotic apparatus of R. galegae. Our analysis of DNA sequence data indicated that the organization of the common nod gene region of R. galegae was similar to that of Sinorhizobium meliloti and Rhizobium leguminosarum, with nodIJ downstream of nodABC and the regulatory nodD gene closely linked to the common nod operon. Moreover, phylogenetic analyses of the nod gene sequences showed a close relationship especially between the common nodA sequences of R. galegae, S. meliloti, and R. leguminosarum biovars viciae and trifolii. This relationship in structure and sequence contrasts with the phylogeny based on 16S rRNA, which groups R. galegae close to agrobacteria and separate from most other rhizobia. The topology of the nodA tree was similar to that of the corresponding host plant tree. Taken together, these observations indicate that lateral nod gene transfer occurred from fast-growing rhizobia toward agrobacteria, after which the symbiotic apparatus evolved under host plant constraint.  相似文献   

5.
We describe the isolation and characterization of alfalfa-nodulating rhizobia from acid soils of different locations in Central Argentina and Uruguay. A collection of 465 isolates was assembled, and the rhizobia were characterized for acid tolerance. Growth tests revealed the existence of 15 acid-tolerant (AT) isolates which were able to grow at pH 5.0 and formed nodules in alfalfa with a low rate of nitrogen fixation. Analysis of those isolates, including partial sequencing of the genes encoding 16S rRNA and genomic PCR-fingerprinting with MBOREP1 and BOXC1 primers, demonstrated that the new isolates share a genetic background closely related to that of the previously reported Rhizobium sp. Or191 recovered from an acid soil in Oregon (B. D. Eardly, J. P. Young, and R. K. Selander, Appl. Environ. Microbiol. 58:1809–1815, 1992). Growth curves, melanin production, temperature tolerance, and megaplasmid profiles of the AT isolates were all coincident with these characteristics in strain Or191. In addition to the ability of all of these strains to nodulate alfalfa (Medicago sativa) inefficiently, the AT isolates also nodulated the common bean and Leucaena leucocephala, showing an extended host range for nodulation of legumes. In alfalfa, the time course of nodule formation by the AT isolate LPU 83 showed a continued nodulation restricted to the emerging secondary roots, which was probably related to the low rate of nitrogen fixation by the largely ineffective nodules. Results demonstrate the complexity of the rhizobial populations present in the acidic soils represented by a main group of N2-fixing rhizobia and a second group of ineffective and less-predominant isolates related to the AT strain Or191.  相似文献   

6.
In Rhizobium meliloti 2011 nodulation genes (nod) required to nodulate specifically alfalfa are located on a pSym megaplasmid. Nod- derivatives carrying large pSym deletions were isolated. By complementation of these strains with in vivo- and in vitro-constructed episomes containing pSym of sequences and introduction of these episomes into Agrobacterium tumefaciens, we show (i) that from a region of pSym of about 360 kilobases, genes required for specific alfalfa nodulation are clustered in a DNA fragment of less than 30 kilobases and (ii) that a nod region located between nifHDK and the common nod genes is absolutely required for alfalfa nodulation and controls the specificity of root hair curling and nodule organogenesis initiation.  相似文献   

7.
Bacteria from nodules of the legume Acaciella angustissima native to the south of Mexico were characterized genetically and their nodulation and competitiveness were evaluated. Phylogenetic studies derived from rpoB gene sequences indicated that A. angustissima is nodulated by Sinorhizobium mexicanum, Rhizobium tropici, Mesorhizobium plurifarium and Agrobacterium tumefaciens and by bacteria related to Sinorhizobium americanum, Sinorhizobium terangae, Rhizobium etli and Rhizobium gallicum . A new lineage related to S. terangae is recognized based on the sequences of gyrA, nolR, recA, rpoB and rrs genes, DNA–DNA hybridization and phenotypic characteristics. The name for this new species is Sinorhizobium chiapanecum and its type strain is ITTG S70T. The symbiotic genes nodA and nifH were similar to those from S. mexicanum strains, which are Acaciella symbionts as well, with nodA gene sequences grouped within a cluster of nod genes from strains that nodulate plants from the Mimosoideae subfamily of the Leguminosae. Sinorhizobium isolates were the most frequently obtained from A. angustissima nodules and were among the best strains to promote plant growth in A. angustissima and to compete in interstrain nodule competition assays. Lateral transfer of symbiotic genes is not evident among the genera that nodulate A. angustissima ( Rhizobium, Sinorhizobium and Mesorhizobium ) but may occur among the sympatric and closely related sinorhizobia that nodulate Acaciella .  相似文献   

8.
In several rhizobia, bacteria that inhabit the soil in free-living conditions and associate in symbiosis with the root of legumes as nitrogen-fixing organisms, plasmid DNA can constitute a high percentage of the genome. We have characterized acid-tolerant isolates of rhizobia-here represented by the strain Rhizobium sp. LPU83-that have an extended nodulation-host range including alfalfa, the common bean, and Leucena leucocephala. In this study we analyzed the plasmids of R. sp. LPU83 in order to characterize their role in the evolution of Medicago symbionts and their involvement in symbiotic behavior. The pLPU83a plasmid was found to be transmissible with no associated phenotypic traits. The symbiotic plasmid pLPU83b could be transferred at very low frequencies under laboratory conditions only when pLPU83a was present; could restore nodulation to a strain cured of its symbiotic plasmid, S. meliloti A818; but could not restore the full nitrogen fixation associated with alfalfa.  相似文献   

9.
We determined the sequences for a 260-base segment amplified by the polymerase chain reaction (corresponding to positions 44 to 337 in the Escherichia coli 16S rRNA sequence) from seven strains of fast-growing soybean-nodulating rhizobia (including the type strains of Rhizobium fredii chemovar fredii, Rhizobium fredii chemovar siensis, Sinorhizobium fredii, and Sinorhizobium xinjiangensis) and broad-host-range Rhizobium sp. strain NGR 234. These sequences were compared with the corresponding previously published sequences of Rhizobium leguminosarum, Rhizobium meliloti, Agrobacterium tumefaciens, Azorhizobium caulinodans, and Bradyrhizobium japonicum. All of the sequences of the fast-growing soybean rhizobia, including strain NGR 234, were identical to the sequence of R. meliloti and similar to the sequence of R. leguminosarum. These results are discussed in relation to previous findings; we concluded that the fast-growing soybean-nodulating rhizobia belong in the genus Rhizobium and should be called Rhizobium fredii.  相似文献   

10.
11.
Sulfate modification on Rhizobium Nod factor signaling molecules is not a prerequisite for successful symbiosis with the common bean (Phaseolus vulgaris L.). However, many bean-nodulating rhizobia, including the broad host strain Sinorhizobium sp. BR816, produce sulfated Nod factors. Here, we show that the nodH gene, encoding a sulfotransferase, is responsible for the transfer of sulfate to the Nod factor backbone in Sinorhizobium sp. BR816, as was shown for other rhizobia. Interestingly, inactivation of nodH enables inoculated bean plants to fix significantly more nitrogen under different experimental setups. Our studies show that nodH in the wild-type strain is still expressed during the later stages of symbiosis. This is the first report on enhanced nitrogen fixation by blocking Nod factor sulfation.  相似文献   

12.
A collection of rhizobia isolated from Acacia tortilis subsp. raddiana from various sites in the North and South of Sahara was analyzed for their diversity at both taxonomic and symbiotic levels. On the basis of whole cell protein (SDS-PAGE) and 16S rDNA sequence analysis, most of the strains were found to belong to the Sinorhizobium and Mesorhizobium genera where they may represent several different genospecies. Despite their chromosomal diversity, most A. tortilis Mesorhizobium and Sinorhizobium symbionts exhibited very similar symbiotic characters. Nodulation tests showed that the strains belong to the Acacia-Leucaena-Prosopis nodulation group, although mainly forming non-fixing nodules on species other than A. tortilis. Most of the strains tested responded similarly to flavonoid nod gene inducers, as estimated by using heterologous nodA-lacZ fusions. Thin layer chromatography analysis of the Nod factors synthesized by overproducing strains showed that most of the strains exhibited similar profiles. The structures of Nod factors produced by four different Sinorhizobium sp. strains were determined and found to be similar to other Acacia-Prosopis-Leucaena nodulating rhizobia of the Sinorhizobium-Mesorhizobium-Rhizobium branch. They are chitopentamers, N-methylated and N-acylated by common fatty acids at the terminal non reducing sugar. The molecules can also be 6-O sulfated at the reducing end and carbamoylated at the non reducing end. The phylogenetic analysis of available NodA sequences, including new sequences from A. tortilis strains, confirmed the clustering of the NodA sequences of members of the Acacia-Prosopis-Leucaena nodulation group.  相似文献   

13.
14.
Nodulation of alfalfa by exoB mutants of Rhizobium meliloti occurred without root hair curling or infection thread formation. nod exoB double mutants had the same nodulation deficiency as single nod mutants. Therefore, all the known nod genes are involved in nodule induction by exoB mutants, which apparently occurs via intercellular invasion.  相似文献   

15.
Sinorhizobium meliloti nodulation factors (NFs) elicit a number of symbiotic responses in alfalfa (Medicago sativa) roots. Using a semiquantitative nodulation assay, we have shown that chemically synthesized NFs trigger nodule formation in the same range of concentrations (down to 10(-10) M) as natural NFs. The absence of O-sulfate or O-acetate substitutions resulted in a decrease in morphogenic activity of more than 100-fold and approximately 10-fold, respectively. To address the question of the influence of the structure of the N-acyl chain, we synthesized a series of sulfated tetrameric lipo-chitooligosaccharides (LCOs) having fatty acids of different lengths and with unsaturations either conjugated to the carbonyl group (2E) or located in the middle of the chain (9Z). A nonacylated, sulfated chitin tetramer was unable to elicit nodule formation. Acylation with short (C8) chains rendered the LCO active at 10(-7) M. The optimal chain length was C16, with the C16-LCO being more than 10-fold more active than the C12- and C18-LCOs. Unsaturations were important, and the diunsaturated 2E,9Z LCO was more active than the monounsaturated LCOs. We discuss different hypotheses for the role of the acyl chain in NF perception.  相似文献   

16.
Forty-five Rhizobium strains nodulating sulla (Hedysarum coronarium L.), isolated from plants grown in different sites in Menorca Island and southern Spain, were examined for plasmid content and the location and organization of nif (nitrogen fixation) and nod (nodulation) sequences. A great diversity in both number and size of the plasmids was observed in this native population of strains, which could be distributed among 19 different groups according to their plasmid profiles. No correlation was found between plasmid profile and geographical origin of the strains. In each strain a single plasmid ranging from 187 to 349 megadaltons hybridized to Rhizobium meliloti nifHD and nodD DNA, and in three strains the spontaneous loss of this plasmid resulted in the loss of the nodulation capacity. In addition to the symbiotic plasmid, 18 different cryptic plasmids were identified. A characteristic cryptic plasmid of >1,000 megadaltons was present in all strains. Total DNA hybridization experiments, with nifHD and portions of nodC and nodD genes (coding for common nodulation functions) from R. meliloti as probes, demonstrated that both the sequence and organization of nif and common nod genes were highly conserved within rhizobia nodulating sulla. Evidence for reiteration of nodD sequences and for linkage of nodC to at least one copy of nodD was obtained for all the strains examined. From these results we conclude that Rhizobium strains nodulating sulla are a homogeneous group of symbiotic bacteria that are closely related to the classical fast-growing group of rhizobia.  相似文献   

17.
Interaction of nod and exo Rhizobium meliloti in alfalfa nodulation   总被引:2,自引:0,他引:2  
Among the genes of Rhizobium meliloti SU47 that affect nitrogen-fixing symbiosis with alfalfa are nod genes, in which mutations block nodule induction, and exo genes, in which mutations allow nodule formation but block rhizobial exopolysaccharide production as well as nodule invasion and nitrogen fixation. To investigate whether an exo+ bacterium can "help" (that is, reverse the symbiotic defect of) an exo mutant in trans, we have coinoculated alfalfa with pairs of rhizobia of different genotypes. Coinoculant genotypes were chosen so that the exo+ helper strain was nif while the exo "indicator" strain was nif+, and thus any fixation observed was carried out by the exo coinoculant. We find that a nod exo+ coinoculant can help an exo mutant both to invade nodules and to fix nitrogen. However, a nod+ exo+ coinoculant cannot help an exo mutant: Few exo bacteria are recovered from nodules, some bacteroids differentiate into bizarre aberrant forms, and the nodules fail to fix nitrogen. In a triple coinoculation, the effect of nod+ helper supersedes that of nod helper. Implications of these results for interaction of nod and exo gene products are discussed.  相似文献   

18.
19.
In Rhizobium meliloti , the genes required for nodulation of legume hosts are under the control of DNA regulatory sequences called nod boxes. In this paper, we have characterized three host-specific nodulation genes, which form a flavonoid-inducible operon down-stream of the nod box n5. The first gene of this operon is identical to the nodL gene identified by Baev and Kondorosi (1992) in R. meliloti strain AK631. The product of the second gene, NoeA, presents some homology with a methyl transferase. nodL mutants synthesize Nod factors lacking the O -acetate substituent. In contrast, in strains carrying a mutation in either noeA or noeB , no modification in Nod-factor structure or production could be detected. On particular hosts, such as Medicago littoralis , mutants of the n5 operon showed a very weak nodule-forming ability, associated with a drastic decrease in the number of infection threads, while nodulation of Medicago truncatula or Melilotus alba was not affected. Thus, nodL , noeA and noeB are host-specific nodulation genes. By using a gain-of-function approach, we showed that the presence of nodL , and hence of O -acetylated Nod factors, is a major prerequisite for confering the ability to nodulate alfalfa upon the heterologous bacterium Rhizobium tropici .  相似文献   

20.
The Rhizobium leguminosarum biovar viciae nodulation protein NodO is partially homologous to haemolysin of Escherichia coli and, like haemolysin, is secreted into the growth medium. The NodO protein can be secreted by a strain of E. coli carrying the cloned nodO gene plus the haemolysin secretion genes hlyBD, in a process that also requires the outer membrane protein encoded by tolC. The related protease secretion genes, prtDEF, from Erwinia chrysanthemi also enable E. coli to secrete NodO. The Rhizobium genes encoding the proteins required for NodO secretion are unlinked to nodO and are unlike other nod genes, since they do not require flavonoids or NodO for their expression. Although proteins similar to NodO were not found in rhizobia other than R. leguminosarum bv. viciae, several rhizobia and an Agrobacterium strain containing the cloned nodO gene were found to have the ability to secrete NodO. These observations indicate that a wide range of the Rhizobiaceae have a protein secretion mechanism analogous to that which secretes haemolysin and related toxins and proteases in the ENterobacteriaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号