首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli is one of the most widely used vehicles to overexpress membrane proteins (MPs). Currently, it is not possible to predict if an overexpressed MP will end up in the cytoplasmic membrane or in inclusion bodies. Overexpression of MPs in the cytoplasmic membrane is strongly favoured to overexpression in inclusion bodies, since it is relatively easy to isolate MPs from membranes and usually impossible to isolate them from inclusion bodies. Here we show that green fluorescent protein (GFP), when fused to an overexpressed MP, can be used as an indicator to monitor membrane insertion versus inclusion body formation of overexpressed MPs in E. coli. Furthermore, we show that an overexpressed MP can be recovered from a MP-GFP fusion using a site specific protease. This makes GFP an excellent tool for large-scale MP target selection in structural genomics projects.  相似文献   

2.
Consequences of membrane protein overexpression in Escherichia coli   总被引:1,自引:0,他引:1  
Overexpression of membrane proteins is often essential for structural and functional studies, but yields are frequently too low. An understanding of the physiological response to overexpression is needed to improve such yields. Therefore, we analyzed the consequences of overexpression of three different membrane proteins (YidC, YedZ, and LepI) fused to green fluorescent protein (GFP) in the bacterium Escherichia coli and compared this with overexpression of a soluble protein, GST-GFP. Proteomes of total lysates, purified aggregates, and cytoplasmic membranes were analyzed by one- and two-dimensional gel electrophoresis and mass spectrometry complemented with flow cytometry, microscopy, Western blotting, and pulse labeling experiments. Composition and accumulation levels of protein complexes in the cytoplasmic membrane were analyzed with improved two-dimensional blue native PAGE. Overexpression of the three membrane proteins, but not soluble GST-GFP, resulted in accumulation of cytoplasmic aggregates containing the overexpressed proteins, chaperones (DnaK/J and GroEL/S), and soluble proteases (HslUV and ClpXP) as well as many precursors of periplasmic and outer membrane proteins. This was consistent with lowered accumulation levels of secreted proteins in the three membrane protein overexpressors and is likely to be a direct consequence of saturation of the cytoplasmic membrane protein translocation machinery. Importantly accumulation levels of respiratory chain complexes in the cytoplasmic membrane were strongly reduced. Induction of the acetate-phosphotransacetylase pathway for ATP production and a down-regulated tricarboxylic acid cycle indicated the activation of the Arc two-component system, which mediates adaptive responses to changing respiratory states. This study provides a basis for designing rational strategies to improve yields of membrane protein overexpression in E. coli.  相似文献   

3.
A structured kinetic model that accounts for proteolytic degradation due to recombinant protein overexpression is introduced and its performance evaluated by comparison with previously reported fed-batch experimental data. This mathematical model contains an additional pool for a generic key precursor (in our case phenylalanine), an improved IPTG transport term, a phenylalanine transport term, and a variable protein turnover expression that accounts for proteolytic activity. The model predictions concerning proteolytic activity, glucose level, and cell growth are in very good agreement with an amino acid depletion hypothesis. Cultures exposed to greater stress showed higher and/or longer proteolysis, whereas less overall proteolytic activity was observed when the effect of induction was somewhat ameliorated.  相似文献   

4.
5.
Recombinant protein overexpression and the classical stringent response have been shown to induce the same proteases. Since the stringent response was the result of an intracellular amino acid shortage, it was hypothesized that the overexpression of the recombinant protein also caused an intracellular amino acid shortage. A structured non-segregated kinetic mathematical model of recombinant Escherichia coli was developed to predict intracellular amino acid shortages during recombinant protein overexpression, and thus the induction of the stringent response. Two model recombinant proteins were examined, chloramphenicol acetyl-transferase (CAT) and an 'average protein'. The model predicted an aromatic amino acid shortage during CAT overexpression, as predicted based on the CAT's amino acid content. The model also predicted a shortage of the intracellular alanine family amino acid pool during CAT overexpression. This was unexpected due to the relatively low content of alanine family amino acids in CAT compared to the average E. coli protein. The model predicted alanine, glutarate, and aspartate family amino acid shortages during recombinant 'average protein' overexpression. Additionally, the model predicted a decrease in the ribosome pool at induction for both recombinant proteins, which agrees with published experimental results. Thus, the structured kinetic model was able to predict amino acid shortages, that could potentially cause a stringent response and elevated protease activity.  相似文献   

6.
7.
The activity of a 35 kDa protease increased in response to induced expression of chloramphenicol acetyltransferase (CAT) in E. coli. This protease was partially purified, extensively characterized, and identified via the use of zymogram gels as the outer membrane protease, OmpT. In experiments targeting the overlap of well-characterized stress responses, OmpT activity was found to increase in response to heat shock but was only minimally affected by amino acid limitation. The largest increase in activity was found after induction of CAT. OmpT expression levels also increased in response to induction of recombinant CAT overexpression and heat shock. This is the first report of increased activity and expression of an outer membrane protease during cytoplasmic overexpression of a recombinant protein.  相似文献   

8.
Functional and structural studies of membrane proteins usually require overexpression of the proteins in question. Often, however, the 'trial and error' approaches that are mainly used to produce membrane proteins are not successful. Our rapidly increasing understanding of membrane protein insertion, folding and degradation means that membrane protein overexpression can be more rationalized, both at the level of the overexpression host and the overexpressed membrane protein. This change of mindset is likely to have a significant impact on membrane protein research.  相似文献   

9.
Actively growing Escherichia coli C600(pBR322), immobilized within the macroporous matrix of asymmetric-wall hollow-fiber membranes, has been propagated to extremely high densities, typically more than 10(12) cells/mL of accessible void volume, in some regions cells accounting for nearly 100% of the available macrovoid volume forming a tissue-like mass. Production rates of beta-lactamase, an enzyme used as an indicator of the culture's biosynthetic potential, remained at high and relatively stable levels for more than three weeks of continuous operation, and effluent supernatant enzyme activities attained 25% of the accumulated level measured in a 24-h shaker-flask culture. Based on the accessible void volume within the fiber wall, the beta-lactamase productivity was independent of the specific asymmetric membrane used. On a per cell basis, however, cells cultured using hollow-fiber membranes were only 10% as productive as those in the shaker-flask culture, possibly due to the high packing density or culture aging. By contrast, the hollow-fiber bioreactor was 100 times more productive than the shaker-flask culture on a reactor-volume basis, primarily as a consequence of the high cell densities. Reactor productivity was dependent on the number of cells in the reactor, suggesting that reactor performance was kinetically controlled and not mass transport limited.  相似文献   

10.
11.
R J Cabelli  L Chen  P C Tai  D B Oliver 《Cell》1988,55(4):683-692
The soluble and membrane components of an E. coli in vitro protein translocation system prepared from a secA amber mutant, secA13[Am], contain reduced levels of SecA and are markedly defective in both the cotranslational and posttranslational translocation of OmpA and alkaline phosphatase into membrane vesicles. Moreover, the removal of SecA from soluble components prepared from a wild-type strain by passage through an anti-SecA antibody column similarly abolishes protein translocation. Translocation activity is completely restored by addition of submicrogram amounts of purified SecA protein, implying that the observed defects are solely related to loss of SecA function. Interestingly, the translocation defect can be overcome by reconstitution of SecA into SecA-depleted membranes, suggesting that SecA is an essential, membrane-associated translocation factor.  相似文献   

12.
13.
A major barrier to the physical characterization and structure determination of membrane proteins is low yield in recombinant expression. To address this problem, we have designed a selection strategy to isolate mutant strains of Escherichia coli that improve the expression of a targeted membrane protein. In this method, the coding sequence of the membrane protein of interest is fused to a C‐terminal selectable marker, so that the production of the selectable marker and survival on selective media is linked to expression of the targeted membrane protein. Thus, mutant strains with improved expression properties can be directly selected. We also introduce a rapid method for curing isolated strains of the plasmids used during the selection process, in which the plasmids are removed by in vivo digestion with the homing endonuclease I‐CreI. We tested this selection system on a rhomboid family protein from Mycobacterium tuberculosis (Rv1337) and were able to isolate mutants, which we call EXP strains, with up to 75‐fold increased expression. The EXP strains also improve the expression of other membrane proteins that were not the target of selection, in one case roughly 90‐fold.  相似文献   

14.
The overexpression of secreted proteins is of critical importance to the biotechnology and biomedical fields. A common roadblock to high yields of proteins is in the endoplasmic reticulum (ER) where proofreading for properly folded proteins is often rate limiting. Heterologous expression of secreted proteins can saturate the cell's capacity to properly fold protein, initiating the unfolded protein response (UPR), and resulting in a loss of protein expression. An obvious method for overcoming this block would be to increase the capacity of the folding process (overexpressing chaperones) or decreasing the proofreading process (blocking the down-regulation by the UPR). Unfortunately, these processes are tightly interlinked, whereby modification of one mechanism has unknown effects on the other. Although some success has been achieved in improving expression via co-overexpressing ER chaperones, the results have not lead to a global method for increasing all heterologously overexpressed proteins. Further, many diseases have been linked to extended periods of stress and are not treatable by these approaches. This work utilises both experimental analysis of the interactions within the ER and modelling in order to understand how these interactions affect early secretory pathway dynamics. This study shows that overexpression of the ER chaperone binding protein does not regulate Ire1p and the UPR as predicted by a model based on the published understanding of the molecular mechanism. A new model is proposed for Ire1p regulation and the UPR that better fits the experimental data and recent studies on Ire1p.  相似文献   

15.
The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory, especially for eukaryotic membrane proteins. This has initiated a revolution of membrane protein overexpression in bacteria. Recent studies have shown that it is feasible to (i) engineer or select for E. coli strains with strongly improved membrane protein overexpression characteristics, (ii) use bacteria other than E. coli for the expression of membrane proteins, (iii) engineer or select for membrane protein variants that retain functionality but express better than the wild-type protein, and (iv) express membrane proteins using E. coli-based cell-free systems.  相似文献   

16.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

17.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

18.
The adaptive response in E. coli   总被引:1,自引:0,他引:1  
M Defais 《Biochimie》1985,67(3-4):357-360
The adaptive response appears in E. coli after exposure to low levels of alkylating agents. This system is under the positive control of the ada gene. At least two enzymes are induced during the response: 3-methyladenine DNA glycosylase II and O6-methylguanine DNA methyltransferase. The latter is also the product of the ada gene.  相似文献   

19.
R Koebnik 《The EMBO journal》1996,15(14):3529-3537
The two-domain, 325 residue outer membrane protein OmpA of Escherichia coli is a well-established model for the study of membrane assembly. The N-terminal domain, consisting of approximately 170 amino acid residues, is embedded in the membrane, presumably in the form of a beta-barrel consisting of eight antiparallel transmembrane beta-strands. A set of 16 gene variants carrying deletions in the membrane-embedded domain of OmpA was constructed. When pairs of these mutant genes were co-expressed in E.coli, it was found that a functional OmpA protein could be assembled efficiently from two complementary protein fragments. Assembly was found when the polypeptide chain was split at the second or third periplasmic turn. All four protein termini were located in the periplasmic space. Interestingly, duplication of transmembrane strands five and six led to a variant with an unusual topology: the N-terminus of one fragment and the C-terminus of the other fragment were exposed at the cell surface. This is the first demonstration of correct membrane assembly of split beta-structured membrane proteins. These findings are important for a better understanding of their folding/assembly pathway and may have implications for the development of artificial outer membrane proteins and for the cell surface display of heterologous peptides or proteins.  相似文献   

20.
We have designed a novel protein fusion partner (P8CBD) to utilize the co‐translational SRP pathway in order to target heterologous proteins to the E. coli inner membrane. SRP‐dependence was demonstrated by analyzing the membrane translocation of P8CBD‐PhoA fusion proteins in wt and SRP‐ffh77 mutant cells. We also demonstrate that the P8CBD N‐terminal fusion partner promotes over‐expression of a Thermotoga maritima polytopic membrane protein by replacement of the native signal anchor sequence. Furthermore, the yeast mitochondrial inner membrane protein Oxa1p was expressed as a P8CBD fusion and shown to function within the E. coli inner membrane. In this example, the mitochondrial targeting peptide was replaced by P8CBD. Several practical features were incorporated into the P8CBD expression system to aid in protein detection, purification, and optional in vitro processing by enterokinase. The basis of membrane protein over‐expression toxicity is discussed and solutions to this problem are presented. We anticipate that this optimized expression system will aid in the isolation and study of various recombinant forms of membrane‐associated protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号