首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pineal melatonin rhythm in golden hamsters was abolished during hibernation. After arousal in darkness, pineal melatonin increased rapidly regardless of whether the arousal was induced during the day or at night. Rapid increase of pineal melatonin after arousal was markedly diminished in animals exposed to light. In hamsters aroused at midnight, the melatonin rhythm in constant darkness ran with the reversed phase relative to hamsters aroused at noon. Since after arousal the melatonin rhythm obviously starts anew from the same phase, we conclude that the circadian pacemaker driving the rhythm might be arrested during hibernation at the day-time phase.  相似文献   

2.
Among the suite of seasonal adaptations displayed by nontropical rodents, some species demonstrate increased territorial aggression in short compared with long day lengths despite basal levels of testosterone. The precise physiological mechanisms mediating seasonal changes in aggression, however, remain largely unknown. The goal of the present study was to examine the role of melatonin, as well as adrenal hormones, in the regulation of seasonal aggression in male Siberian hamsters (Phodopus sungorus). In Experiment 1, male Siberian hamsters received either daily (s.c.) injections of melatonin (15 microg/day) or saline 2 h before lights out for 10 consecutive days. In Experiment 2, hamsters received adrenal demedullations (ADMEDx), whereas in Experiment 3 animals received adrenalectomies (ADx); control animals in both experiments received sham surgeries. Animals in both experiments subsequently received daily injections of melatonin or vehicle as in Experiment 1. Animals in all experiments were tested using a resident-intruder model of aggression. In Experiment 1, exogenous melatonin treatment increased aggression compared with control hamsters. In Experiment 2, ADMEDx had no effect on melatonin-induced aggression. In Experiment 3, the melatonin-induced increase in aggression was significantly attenuated by ADx. Collectively, the results of the present study demonstrate that short day-like patterns of melatonin increase aggression in male Siberian hamsters and suggest that increased aggression is due, in part, to changes in adrenocortical steroids.  相似文献   

3.
Abstract: The diurnal variations and photic regulation of cyclic AMP and melatonin content in golden hamster retina were studied. Both parameters showed significant diurnal variations with maximal values at night. Light exposure during the night inhibited retinal cyclic AMP and melatonin levels, whereas exposure to darkness during the day significantly increased cyclic AMP and melatonin content. Incubation with melatonin of retinas excised at different intervals indicated that the methoxyindole inhibited cyclic AMP accumulation in a time-dependent manner. The inhibitory effect of melatonin at 2400 h and at noon showed a threshold concentration of 1 and 10 pM, respectively. At 0400 h melatonin did not affect cyclic AMP accumulation. The results indicate a diurnal variability of retinal cyclic AMP and melatonin content in hamsters, mainly influenced by a photic stimulus. Cyclic AMP could be a putative second messenger for melatonin action in golden hamster retina.  相似文献   

4.
Many nontropical rodent species rely on photoperiod as a primary cue to coordinate seasonally appropriate changes in physiology and behavior. Among these changes, some species of rodents demonstrate increased aggression in short, "winter-like" compared with long "summer-like" day lengths. The precise neuroendocrine mechanisms mediating changes in aggression, however, remain largely unknown. The goal of the present study was to examine the effects of photoperiod and exogenous melatonin on resident-intruder aggression in male Syrian hamsters (Mesocricetus auratus). In Experiment 1, male Syrian hamsters were housed in long (LD 14:10) or short (LD 10:14) days for 10 weeks. In Experiment 2, hamsters were housed in long days and half of the animals were given daily subcutaneous melatonin injections (15 microg/day in 0.1 ml saline) 2 h before lights out for 10 consecutive days to simulate a short-day pattern of melatonin secretion, while the remaining animals received injections of the vehicle alone. Animals in both experiments were then tested using a resident-intruder model of aggression and the number of attacks, duration of attacks, and latency to initial attack were recorded. In Experiment 1, short-day hamsters underwent gonadal regression and displayed increased aggression compared with long-day animals. In Experiment 2, melatonin treatment also increased aggression compared with control hamsters without affecting circulating testosterone. Collectively, the results of the present study demonstrate that exposure to short days or short day-like patterns of melatonin increase aggression in male Syrian hamsters. In addition, these results suggest that photoperiodic changes in aggression provide an important, ecologically relevant model with which to study the neuroendocrine mechanisms underlying aggression in rodents.  相似文献   

5.
Classic findings have demonstrated an important role for sex steroids as regulators of aggression, but this relationship is lacking within some environmental contexts. In mammals and birds, the adrenal androgen dehydroepiandrosterone (DHEA), a non-gonadal precursor of biologically active steroids, has been linked to aggression. Although females, like males, use aggression when competing for limited resources, the mechanisms underlying female aggression remain understudied. Here, we propose a previously undescribed endocrine mechanism regulating female aggression via direct action of the pineal hormone melatonin on adrenal androgens. We examined this in a solitary hamster species, Phodopus sungorus, in which both sexes are highly territorial across the seasons, and display increased aggression concomitant with decreased serum levels of sex steroids in short ‘winter-like'' days. Short- but not long-day females had increased adrenal DHEA responsiveness co-occurring with morphological changes in the adrenal gland. Further, serum DHEA and total adrenal DHEA content were elevated in short days. Lastly, melatonin increased DHEA and aggression and stimulated DHEA release from cultured adrenals. Collectively, these findings demonstrate that DHEA is a key peripheral regulator of aggression and that melatonin coordinates a ‘seasonal switch’ from gonadal to adrenal regulation of aggression by direct action on the adrenal glands.  相似文献   

6.
《Chronobiology international》2013,30(6):1171-1182
Although previous reports indicate that nocturnal plasma melatonin secretion declines with age, some recent findings do not support this point. In the present cross-sectional study, we documented serum melatonin concentrations at two time points, 02:00 and 08:00h, in 144 persons aged 30–110 yr and found a significant age-related decline. It began around the age of 60 and reached a very significantly lower level in subjects in their 70s and over 80 yr of age (P<0.01, when compared with age <60 yr). Nocturnal melatonin levels were higher among (post-menopausal only) women than men overall (P<0.05). In the older age-groups, nocturnal melatonin levels did not differ between healthy controls and subjects with high blood pressure or ischemic heart disease. To further check these results, we also assessed the circadian pattern of serum melatonin in four subgroups of healthy men, aged 30–39, 40–49, 50–59, and 60–69 yr: blood samples were taken at 2h intervals from 08:00 to 22:00h and hourly from 22:00 to 08:00h. Our results showed generally similar circadian melatonin patterns that peaked at night with very low levels during the daytime. No significant difference was found among the three younger groups, but nocturnal melatonin levels were significantly lower in the men in their 60s.  相似文献   

7.
Seasonal changes in the length of the daily photoperiod induce significant changes in social behavior. Hamsters housed in winter-like short photoperiods (SP) can express significantly higher levels of aggression than hamsters housed in long photoperiods (LP) that mimic summer. The mechanisms responsible for increasing aggressiveness in SP-exposed female hamsters are not well understood but may involve seasonal changes in the endocrine system. In experiment 1, the effects of SP exposure on the circulating levels of three adrenal hormones were determined. Short photoperiod exposure was found to significantly depress the circulating levels of cortisol and the adrenal androgen dehydropiandrosterone (DHEA) but significantly increased the circulating levels of the sulfated form of DHEA, DHEAS. Experiment 2 examined the effects of gonadal hormones on several different measures of aggression including its intensity in females housed in both long and short photoperiod. Exposure to SP resulted in high levels of aggression regardless of the endocrine state of the animal or the measure used to quantify aggression. In contrast, administration of estradiol to hamsters housed in LP significantly reduced aggression. The data of the present study support the hypothesis that SP-housed females are more aggressive than LP-housed females because SP exposure renders females insensitive to the aggression-reducing effects of ovarian hormones.  相似文献   

8.
《Chronobiology international》2013,30(9):1206-1215
The daily pattern of blood-borne melatonin varies seasonally under the control of a multi-oscillator circadian pacemaker. Here we examine patterns of melatonin secretion and locomotor activity in Siberian and Syrian hamsters entrained to bimodal LDLD8:4:8:4 and LD20:4 lighting schedules that facilitate novel temporal arrangements of component circadian oscillators. Under LDLD, both species robustly bifurcated wheel-running activity in distinct day scotophase (DS) and night scotophase (NS) bouts. Siberian hamsters displayed significant melatonin increases during each scotophase in LDLD, and in the single daily scotophase of LD20:4. The bimodal melatonin secretion pattern persisted in acutely extended 16 h scotophases. Syrian hamsters, in contrast, showed no significant increases in plasma melatonin during either scotophase of LDLD8:4:8:4 or in LD20:4. In this species, detectable levels were observed only when the DS of LDLD was acutely extended to yield 16 h of darkness. Established species differences in the phase lag of nocturnal melatonin secretion relative to activity onset may underlie the above contrast: In non-bifurcated entrainment to 24 h LD cycles, Siberian hamsters show increased melatonin secretion within ~2 h after activity onset, whereas in Syrian hamsters, detectable melatonin secretion phase lags activity onset and the L/D transition by at least 4?h. The present results provide new evidence indicating multi-oscillator regulation of the waveform of melatonin secretion, specifically, the circadian control of the onset, offset and duration of nocturnal secretion.  相似文献   

9.
The guidelines for night and shift workers recommend that after night work, they should sleep in a dark environment during the daytime. However, staying in a dark environment during the daytime reduces nocturnal melatonin secretion and delays its onset. Daytime bright-light exposure after night work is important for melatonin synthesis the subsequent night and for maintaining the circadian rhythms. However, it is not clear whether daytime sleeping after night work should be in a dim- or a bright-light environment for maintaining melatonin secretion. The aim of this study, therefore, was to evaluate the effect of bright-light exposure during daytime sleeping on nocturnal melatonin secretion after simulated night work. Twelve healthy male subjects, aged 24.8 ± 4.6 (mean ± SD), participated in 3-day sessions under two experimental conditions, bright light or dim light, in a random order. On the first day, the subjects entered the experimental room at 16:00 and saliva samples were collected every hour between 18:00 and 00:00 under dim-light conditions. Between 00:00 and 08:00, they participated in tasks that simulated night work. At 10:00 the next morning, they slept for 6 hours under either a bright-light condition (>3000 lx) or a dim-light condition (<50 lx). In the evening, saliva samples were collected as on the first day. The saliva samples were analyzed for melatonin concentration. Activity and sleep times were recorded by a wrist device worn throughout the experiment. In the statistical analysis, the time courses of melatonin concentration were compared between the two conditions by three-way repeated measurements ANOVA (light condition, day and time of day). The change in dim light melatonin onset (ΔDLMO) between the first and second days, and daytime and nocturnal sleep parameters after the simulated night work were compared between the light conditions using paired t-tests. The ANOVA results indicated a significant interaction (light condition and3 day) (p = .006). Post hoc tests indicated that in the dim-light condition, the melatonin concentration was significantly lower on the second day than on the first day (p = .046); however, in the bright-light condition, there was no significant difference in the melatonin concentration between the days (p = .560). There was a significant difference in ΔDLMO between the conditions (p = .015): DLMO after sleeping was advanced by 11.1 ± 17.4 min under bright-light conditions but delayed for 7.2 ± 13.6 min after sleeping under dim-light conditions. No significant differences were found in any sleep parameter. Our study demonstrated that daytime sleeping under bright-light conditions after night work could not reduce late evening melatonin secretion until midnight or delay the phase of melatonin secretion without decreasing the quality of the daytime sleeping. Thus, these results suggested that, to enhance melatonin secretion and to maintain their conventional sleep–wake cycle, after night work, shift workers should sleep during the daytime under bright-light conditions rather than dim-light conditions.  相似文献   

10.
Melatonin is produced and secreted by the pineal gland in a rhythmic manner; circulating levels are high at night and low in the day. Leptin is a hormone secreted by adipocytes as a product of the obese gene and plays an important role in regulating body energy homeostasis and reproductive function in rodents and humans. The present study was conducted to examine daily fluctuations in serum levels of melatonin and leptin in Syrian hamster. We measured serum leptin and melatonin levels by ELISA in (a) intact and pinealectomized (pinx) male hamsters kept under long daylight conditions [14 h of light (14L)]; (b) intact and pinx hamsters under short daylight (10L); and (c) intact hamsters in constant light (24L). Blood samples were obtained every 2 h throughout a 24-h period. Statistically significant circadian variations were found in both melatonin and leptin profiles. Their relationship was inverse, i.e. when melatonin was high in the serum, leptin was comparably low. These results suggest that there is a rhythm in leptin levels in the adult male Syrian hamster and this rhythm is pineal gland (melatonin) and/or photoperiod dependent.  相似文献   

11.
Exposure to low ambient temperatures (Ta) accelerates appearance of the winter phenotype in Siberian hamsters transferred from long to short day lengths. Because melatonin transduces the effects of day length on the neuroendocrine axis, the authors assessed whether low Ta promotes the transition to winterlike traits by accelerating the onset of increased nocturnal melatonin secretion or by enhancing responsiveness to melatonin in short day lengths. Male hamsters were transferred from 16L (16 h light/day) to 8L (8 h light/day) photoperiods and held at 5 degrees C or 22 degrees C. Locomotor activity was recorded continuously, and body mass, testis size, and pelage color were determined biweekly for 8 weeks. The duration of nocturnal locomotion (alpha), a reliable indicator of the duration of nocturnal melatonin secretion, lengthened significantly earlier in hamsters exposed to a Ta of 5 degrees C than 22 degrees C. Cold exposure increased the proportion of hamsters that were photoresponsive: gonadal regression in short days increased from 44% at 22 degrees C to 81% at 5 degrees C (p < 0.05); low Ta did not, however, accelerate testicular regression in animals that were photoresponsive. Nonphotoresponsive animals at 5 degrees C temporarily had longer alphas during the first 4 weeks in short days and significant decreases in body mass and testicular size that were reversed during the ensuing weeks when alpha decreased. In a 2nd experiment, pinealectomized male hamsters infused for 10 h/day with melatonin for 2 weeks had significantly lower body and testes masses when maintained at 5 degrees C but not 22 degrees C. Low-ambient temperature appears to accelerate the appearance of the winter phenotype primarily by increasing target tissue responsiveness to melatonin and to a lesser extent by augmenting the rate at which the duration of nocturnal melatonin secretion increases in short day lengths.  相似文献   

12.
Summary Pineal N-acetyl-transferase activity and radioimmunoassayable melatonin levels were determined in adult male gerbils subjected to aggressive encounters using the intruder-model. In the first experiment, a single encounter of 3 min was applied in the afternoon to intact and to animals with sympathetically denervated pineal organs. Compared with controls, both stressed groups demonstrated a drastic decrease in N-acetyl-transferase activity followed by a slow recovery. In both groups there also occurred a marked change in pineal melatonin content: in intact animals pineal melatonin levels were elevated immediately after the encounter; thereafter, melatonin values decreased. In animals bearing denervated pineal organs melatonin levels fell as a consequence of the encounter. In a second experiment, intact gerbils experienced four daily encounters of 1 min for one week. Thereafter the nocturnal formation of melatonin was studied. In comparison with untreated controls, the repeatedly stressed animals demonstrated a temporal delay in the rise of both N-acetyl-transferase activity and melatonin. Since the pineal organ is able to transduce events of the social environment into an endocrine message — as set forth by both our experiments — the pineal organ might play an important role within central processing of social stress.Abbreviations NAT N-acetyl-transferase - HIOMT Hydroxy-indole-o-methyl-transferase - SCGX Superior cervical ganglion-ectomy  相似文献   

13.
When adult male Syrian hamsters were maintained under 14 h light and 10 h darkness daily (lights on from 0600-2000 h), peak pineal melatonin levels (705 pg/gland) were attained at 0500 h. When the dark phase of the light:dark cycle was interrupted with a 15 min pulse of light from 2300–2315 h (3 h after lights out), the highest melatonin levels achieved was roughly 400 pg/gland. Finally, if the 15 min pulse of light was given at 0200–0215 h (6 h after lights out) the nocturnal rise in pineal melatonin was completely abolished. Having made these observations, a second experiment was designed to determine the ability of afternoon melatonin injections to inhibit reproduction in hamsters kept under an uninterrupted 1410 cycle or under the same lighting regimen where the dark phase was interrupted with a 15 min pulse of light (0200–0215 h). In the uninterrupted light:dark schedule the daily afternoon injection of 25 g melatonin caused the testes and the accessory sex organs to atrophy within 11 weeks. Conversely, if the dark phase was interrupted with light between 0200–0215 h, afternoon melatonin injections were incapable of inhibiting the growth of the reproductive organs. The findings suggest that exogenously administered melatonin normally synergizes with endogenously produced melatonin to cause gonadal involution in hamsters.  相似文献   

14.
The main objective of the study was to test the hypothesis that the phase of melatonin release with respect to the light-dark cycle mediates the effects of photoperiod on the reproductive response of the ewe. To test the phase hypothesis, we eliminated endogenous melatonin secretion by pinealectomy and then restored physiological levels of serum melatonin with rises of the same duration but at different phases of the light-dark cycle (either at night or in the middle of the day). Serum melatonin patterns were determined by radioimmunoassay in samples taken hourly for 24 h. The reproductive state was monitored by measuring serum luteinizing hormone (LH) in ovariectomized ewes treated with constant-release estradiol implants. Infusion of a long-day pattern of melatonin was equally effective in maintaining reproductive suppression when given during the night or the middle of the day. LH remained low for approximately 150 days and then rose as ewes became refractory to the inhibitory melatonin signal. These results do not support the phase hypothesis. Rather, they are consistent with the hypothesis that the duration of the nocturnal secretion of melatonin codes for day length.  相似文献   

15.
Daily changes of pineal melatonin content were determined in warm-adapted nonhibernating and cold-adapted hibernating golden hamsters (Mesocricetus auratus). Pineal melatonin in nonhibernating golden hamsters showed marked daily rhythm with the night values about 20 times higher than the daytime ones. In hamsters hibernating for 2 and 3 days the melatonin rhythm was abolished, since no increase of pineal melatonin over basal levels occurred throughout 24 hr period. After arousal from hibernation melatonin increased rapidly regardless whether the hamsters were provoked to arousal during day or night.  相似文献   

16.
Cortisol and melatonin have well known circadian rhythms, coupled to the solar day. Melatonin has been shown to serve as an endogenuous “Zeitgeber” (time giver) and is secreted by the human pineal gland throughout the night but not during the day. Patients with coronary heart disease (CHD) have significant depressed nocturnal melatonin secretion compared to healthy individuals (Brugger et al., 1995). In addition to our previous study we measured serum concentrations of cortisol to evaluate whether the circadian rhythm of cortisol secretion is also different in patients with CHD. Blood was collected by venous puncture at 0200 and at 1400, serum separated and kept frozen at -20°C until analysis. Cortisol and melatonin were measured with a commercially available radioimmunoassay according to the instructions of the manufacturer. Nineteen patients with angiographically documented CHD (mean age 53 years) participated in this study. As control group served 12 adults without any signs of CHD. Melatonin serum concentrations (median; mean ± SD) at night were significantly depressed in patients with coronary heart disease (7.8; 8.6 ± 3.3 pg/ml) in comparison to the control group (38.0; 45.4 ± 24.1 pg/ml) p &lt; 0.01. Melatonin in the afternoon was not detectable in either of the groups. Cortisol values at night were significantly raised in patients with coronary heart disease (6.0; 7.2 ± 3.7 µg/dl) in comparison to the control group (2.7; 3.8 ± 2.9 µg/dl) p &lt; 0.05. Cortisol levels in the afternoon were also elevated in patients with CHD (8.9; 9.5 ± 3.8 µg/dl) but there was no significant difference compared to controls (6.8; 6.9 ± 4.5 µg/dl). The results of the present study indicate that patients with coronary heart disease have atypical secretory patterns of nocturnal cortisol and melatonin secretion.  相似文献   

17.
The photic regulation of heme oxygenase (HO) activity was examined in the golden hamster retina. This enzymatic activity was significantly higher at midday than at midnight. When the hamsters were placed under constant darkness for 48 h and killed at subjective day or at subjective night, the differences in HO activity disappeared. Western blot analysis showed no differences in HO levels among these time points. Dopamine significantly increased this activity in retinas excised at noon or at midnight, with a higher sensitivity at night. The effect of dopamine was reversed by SCH 23390 but not by spiperone and clozapine and it was not reproduced by quinpirole. In vitro, the increase in HO activity found in retinas incubated under light for 1 h was significantly reduced by SCH 23390. Two cAMP analogs increased HO activity and their effect, as well as the effect of dopamine was blocked by H-89, a protein kinase A (PKA) inhibitor. Tin protoporphyrin IX, an HO inhibitor, significantly decreased cGMP accumulation with maximal effects during the day. Low concentrations of bilirubin decreased retinal thiobarbituric acid substances levels (an index of lipid peroxidation) in basal conditions and after exposing retinal cells to H2O2. These results suggest that hamster retinal HO activity is regulated by the photic stimulus, probably through a dopamine/cAMP/PKA dependent pathway.  相似文献   

18.
Anthropogenic disturbance may affect animal behaviour and should generally be minimised. We examined how anthropogenic disturbance (24 h food deprivation) affected circadian rhythms in laboratory mussels Mytilus edulis exposed to natural light in the absence of tides. Repeated measures data were collected on mussel gape angle, exhalant pumping and valve adduction using a Hall sensor system over eight consecutive 24 h periods when exposed to two feeding conditions after 24 h food deprivation. Mussels (fed once per day at either midday or midnight) exposed to natural light showed a clear day–night rhythm with increased nocturnal activity: significantly greater gape angle, increased exhalant pumping and had significantly higher valve adduction rates. However, circadian rhythms were less clear directly after anthropogenic food deprivation, in terms of the circadian rhythm in gape angle becoming significantly more apparent over the following days. Unlike mussels fed at midnight, those fed at midday displayed no significant change in gape angle from the hour before to the hour after they were fed, i.e. mussels given food at midday reacted to this food less than mussels fed at midnight. We suggest that independent of feeding time, laboratory mussels exposed to natural light and free from anthropogenic disturbance increase feeding activity at night because their circadian rhythms are strongly influenced by light levels. This study emphasises that the behaviour of animals in the laboratory and in the wild can be altered by anthropogenic disturbances such as vibrations caused by experimental setups and artificial illumination at night.  相似文献   

19.
During the nonbreeding season, when gonadal androgen synthesis is basal, recent evidence suggests that neurosteroids regulate the aggression of male song sparrows. In particular, dehydroepiandrosterone (DHEA) is rapidly converted in the brain to androgens in response to aggressive interactions. In other species, aggressive encounters increase systemic glucocorticoid levels. However, the relationship between aggression and local steroid levels is not well understood. Here, during the breeding and nonbreeding seasons, we tested the effects of a simulated territorial intrusion (STI) on DHEA and corticosterone levels in the brachial and jugular plasma. Jugular plasma is enriched with neurosteroids and provides an indirect index of brain steroid levels. Further, during the nonbreeding season, we directly measured steroid levels in the brain and peripheral tissues. Both breeding and nonbreeding males displayed robust aggressive responses to STI. During the breeding season, STI increased brachial and jugular corticosterone levels and jugular DHEA levels. During the nonbreeding season, STI did not affect plasma corticosterone levels, but increased jugular DHEA levels. During the nonbreeding season, STI did not affect brain levels of corticosterone or DHEA. However, STI did increase corticosterone and DHEA concentrations in the liver and corticosterone concentrations in the pectoral muscle. These data suggest that 1) aggressive social interactions affect neurosteroid levels in both seasons and 2) local steroid synthesis in peripheral tissues may mobilize energy reserves to fuel aggression in the nonbreeding season. Local steroid synthesis in brain, liver or muscle may serve to avoid the costs of systemic increases in corticosterone and testosterone.  相似文献   

20.
《Chronobiology international》2013,30(7):1443-1461
Long-term, night shiftwork has been identified as a potential carcinogenic risk factor. It is hypothesized that increased light at night exposure during shiftwork reduces melatonin production, which is associated with increased cancer risk. Sleep duration has been hypothesized to influence both melatonin levels and cancer risk, and it has been suggested that sleep duration could be used as a proxy for melatonin production. Finally, physical activity has been shown to reduce cancer risk, and laboratory studies indicate it may influence melatonin levels. A cross-sectional study of light exposure, sleep duration, physical activity, and melatonin levels was conducted among 61 female rotating shift nurses (work schedule: two 12?h days, two 12?h nights, five days off). Light intensity was measured using a light-intensity data logger, and sleep duration and physical activity were self-reported in a study diary and questionnaire. Melatonin concentrations were measured from urine and saliva samples. The characteristics of nurses working day and night shifts were similar. Light intensity was significantly higher during sleep for those working at night (p<?0.0001), while urinary melatonin levels following sleep were significantly higher among those working days (p?=?0.0003). Mean sleep duration for nurses working during the day (8.27?h) was significantly longer than for those working at night (4.78?h, p<?0.0001). An inverse association (p?=?0.002) between light exposure and urinary melatonin levels was observed; however, this was not significant when stratified by shift group. There was no significant correlation between sleep duration and melatonin, and no consistent relationship between physical activity and melatonin. Analysis of salivary melatonin levels indicated that the circadian rhythms of night workers were not altered, meaning peak melatonin production occurred at night. This study indicates that two nights of rotating shift work may not change the timing of melatonin production to the day among those working at night. Additionally, in this study, sleep duration was not correlated with urinary melatonin levels, suggesting it may not be a good proxy for melatonin production. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号