首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 810 毫秒
1.
Scoring of unstable chromosomes aberrations (dicentrics, rings and fragments) in circulating lymphocytes is the most extensively studied biologic system for estimating individual exposure to ionizing radiation. In this work, blood samples from 5 patients, with cervical uterine cancer, were analyzed by conventional cytogenetic in order to correlate the frequency of chromosome aberrations in lymphocytes with the dose absorbed by the patient, as a result of radiotherapy with 60Co gamma. The samples were collected in three phases of the treatment: before irradiation, 24 hr after receiving 0.08 Gy and 1.8 Gy, respectively. On the basis of the frequencies of unstable aberrations observed, a good agreement was obtained between doses estimated by calibration curve and the doses previously planned to radiotherapy. This report discusses the methodology employed as an important tool for dose assessment as a result of partial-body exposure to ionizing radiation.  相似文献   

2.
An international study of cervical cancer patients reported a doubling of the risk for leukemia following radiotherapy. To evaluate the extent of residual chromosome damage in circulating T-cell lymphocytes in this population, approximately 200 metaphases were examined from each of 96 irradiated and 26 nonirradiated cervical cancer patients treated more than 17 years ago (average 23 years). Radiation dose averaged over the total red bone marrow was estimated to be 8.1 Gy. The type and frequency of stable and unstable chromosome aberrations were quantified in 24,117 metaphases. Unstable aberrations did not differ significantly between irradiated and nonirradiated patients (P greater than 0.5). Stable aberrations (i.e., translocations, inversions, or chromosomes with deleted segments), however, were significantly higher among irradiated (2.8 per 100 cells) compared to nonirradiated (0.7 per 100 cells) women (P less than 10(4). The frequency of these stable aberrations was found to increase significantly with increasing dose to the bone marrow. These data indicate that a direct relationship between radiation dose and extent of damage to somatic cells persists in populations and can be detected many years after partial-body radiation exposure. The stable aberration rate in irradiated cervical cancer patients was 50 to 75% lower than those observed 25 years or more after radiation exposure in atomic bomb survivors and in ankylosing spondylitis patients treated with radiotherapy. The average marrow dose was only 1 Gy in the examined atomic bomb survivors and 3.5 Gy in the ankylosing spondylitis patients. It appears, then, that a very high dose delivered to the pelvic cavity in fractionated doses resulted in far fewer persistent stable aberrations than lower doses delivered either in acute whole-body exposure or in fractionated doses to the spinal column and sacroiliac joints. The higher radiation dose and the concentration of that dose in a smaller area of the body appear to be responsible for the lower rate of persistent aberrations observed in cervical cancer patients.  相似文献   

3.
Peripheral blood lymphocytes were irradiated in vitro with (213)Bi alpha particles at doses of 0, 10, 20, 50, 100, 200 and 500 mGy. Chromosome analysis was performed on 47-h cultures using single-color fluorescence in situ hybridization (FISH) to paint chromosomes 1, 3 and 5. The whole genome was analyzed for unstable aberrations to derive aberration frequencies and determine cell stability. The dose response for dicentrics was 33.60 +/- 0.47 x 10(-2) per Gy. A more detailed analysis revealed that the majority of aberrations scored as dicentrics were part of complex/multiple aberrations, with the proportion of cells containing complexes increasing with dose. Cells containing aberrations involving painted chromosomes (FISH aberrations) were further classified according to cell stability and complexity. The majority of cells with FISH aberrations were unstable. The proportion of aberrant FISH cells with complex/multiple aberrations ranged from 56% at 10 mGy to 89% at 500 mGy. A linear dose response for genomic frequencies of translocations in stable cells fitted the data from 0 to 200 mGy with a dose response of 7.90 +/- 0.98 x 10(-2) per Gy, thus indicating that they are likely to be observed in peripheral blood lymphocytes from individuals with past or chronic exposure to high-LET radiation. Comparisons with the dose response for low-LET radiation suggest an RBE of 13.6 for dicentrics in all cells and 3.2 for translocations in stable cells. Since stochastic effects of radiation are attributable to genetic changes in viable cells, translocations in stable cells may be a better measure when considering the comparative risks of different qualities of radiation.  相似文献   

4.
For a retrospective dose estimation of human exposure to ionising radiation, a partial genome analysis is routinely used to quantify radiation-induced chromosome aberrations. For this purpose, fluorescence in situ hybridisation (FISH) with whole chromosome painting probes for selected chromosomes is usually applied covering about 20% of the whole genome. Since genome-wide screening techniques like spectral karyotyping (SKY) and multiplex FISH (mFISH) have been developed the detection of radiation-induced aberrations within the whole genome has now become feasible. To determine the correspondence between partial and whole genome analysis of radiation-induced chromosome aberrations, they were measured comprehensively in this study using in vitro irradiated blood samples from three donors. We were able to demonstrate that comparable results can be detected with both approaches. However, complex aberrations might be misinterpreted by partial genome analysis. We therefore conclude that whole genome analysis by SKY is useful especially in the high dose range to correct aberration data for complex exchange aberrations.  相似文献   

5.
Measurement of chromosome translocations in peripheral blood lymphocytes has been used to quantify prior exposure to ionizing radiation, including for workers exposed to low, chronic doses. We assessed translocation frequencies in a subset of U.S. radiologic technologists to substantiate ionizing radiation dose estimates developed for 110,418 technologists who worked between 1916 and 1984. From 3,441 cohort members known to have begun working before 1950, we selected a sample of 152, stratified by estimated cumulative dose, over-sampling from higher-dose categories and excluding persons with a prior cancer diagnosis, a personal or family history of chromosomal instability disorders, or a current history of smoking. Estimates of film-badge dose ranged from less than 10 cSv to more than 30 cSv. Blood samples, obtained in 2004, were analyzed by fluorescence in situ hybridization (FISH) whole chromosome painting by simultaneously labeling chromosomes 1, 2 and 4 in red and 3, 5 and 6 in green. Translocations were scored in 1800 well-spread metaphase cells and expressed per 100 cell equivalents (CE) per person. Linear Poisson regression models with allowance for overdispersion were used to assess the relationship between estimated occupational red bone marrow absorbed dose in cGy and translocation frequency, adjusted for age, gender and estimated red bone marrow absorbed dose score from personal diagnostic procedures. We observed 0.09 excess translocations per 100 CE per cGy red bone marrow dose (95% CI: -0.01, 0.2; P = 0.07), which is similar to the expected estimate based on previous cytogenetic studies (0.05 excess translocations per 100 CE per cGy). Despite uncertainty in the estimates of occupational red bone marrow absorbed doses, we found good general agreement between the doses and translocation frequencies, lending support to the credibility of the dose assessment for this large cohort of U.S. radiologic technologists.  相似文献   

6.
Investigation of application of chromosome aberrations of lymphocytes in peripheral blood for biological dosimetry purposes in remote (up to 40 years) period after acute exposure to doses of 1 Gy and more was carried out. The comparative analysis of frequency of unstable and stable (using FISH and G-banding methods) aberrations was performed for 24 subjects accidentally exposed to radiation on nuclear submarines during 1961-1985. Statistically significant increasing of frequency of dicentrics and centric rings was determined in the exposed subjects in remote period after exposure to compare with controls. Their sum frequency in the exposed group varied depending on ARS heaviness from 0.1 to 1.0 aberrations per 100 cells. In control group it was from 0 to 0.2 correspondingly. Translocation frequency (complete + incomplete) fixed by FISH method (2, 4, and 12 chromosomes) varied within the limits of 0.2-16.0 for exposed subjects and 0.3-1.26 translocations per genome per 100 cells for controls. Some examined persons (5 subjects) exposed to accident in 1985 had results of analysis of unstable chromosome aberration in acute period after exposure that allow to estimate obtained doses by dicentrics frequency which having good correlation with ARS heaviness. Individual dosed using traslocation frequency were defined retrospectively in 11 from 21 exposed persons. They correlate with calculated physics doses and doses estimated by haematolotical parameters in acute period and also doses obtained by ESR spectroscopy of tooth enamel in remote period.  相似文献   

7.
The influence of high doses of sparsely and densely ionising radiation on the yield of aberrant human peripheral lymphocytes in simulated partial-body exposures was studied by investigating radiation-induced chromosome aberration frequencies, namely dicentric and centric ring chromosomes. Peripheral blood samples from two volunteers were irradiated with high doses of 200 kV X-rays or neutrons with a mean energy of <E n>=2.1 MeV and partial-body exposure was simulated by mixing irradiated and non-irradiated blood from the same two donors in proportions of 25, 50, and 75%. Lymphocytes were cultured and first-division metaphase cells were collected after culture times of 48, 56, and 72 h. A significant underrepresentation of dicentric and centric ring chromosomes was observed at the three highest doses of X-rays between the different culture times for nearly all proportions. After neutron irradiation, some significant differences were observed at all doses and all culture times, without however, revealing any systematic pattern. The distribution of dicentric and ring chromosomes showed overdispersion for both radiation types. After simulated partial-body exposures with 200 kV X-rays and <E n>=2.1 MeV neutrons, strong mitotic delays could be observed, which depended on both the irradiated volume and the applied dose: the smaller the irradiated volume and the higher the dose, the higher was the selective advantage of non-irradiated cells. For the purpose of biological dosimetry after partial body exposure, an extension of the lymphocyte culture time is suggested at least for doses ≥3.0 Gy of 200 kV X-rays and ≥0.5 Gy of <E n>=2.1 MeV neutrons in order to prevent a systematic underestimation of cytogenetic damage.  相似文献   

8.
9.
Cytogenetic analysis of the lymphocytes of astronauts provides a direct measurement of space radiation damage in vivo, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. Chromosome exchanges were measured in the blood lymphocytes of eight crew members after their respective space missions, using fluorescence in situ hybridization (FISH) with chromosome painting probes. Significant increases in aberrations were observed after the long-duration missions. The in vivo dose was derived from the frequencies of translocations and total exchanges using calibration curves determined before flight, and the RBE was estimated by comparison with individually measured physical absorbed doses. The values for average RBE were compared to the average quality factor (Q) from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. The ratio of aberrations identified as complex was slightly higher after flight, which is thought to be an indication of exposure to high-LET radiation. To determine whether the frequency of complex aberrations measured in metaphase spreads after exposure to high-LET radiation was influenced by a cell cycle delay, chromosome damage was analyzed in prematurely condensed chromosome samples collected from two crew members before and after a short-duration mission. The frequency of complex exchanges after flight was higher in prematurely condensed chromosomes than in metaphase cells for one crew member.  相似文献   

10.
Structural chromosome aberrations were evaluated in peripheral blood samples obtained from three populations exposed to partial-body irradiation. These included 143 persons who received radiotherapy for enlarged thymus glands during infancy and 50 sibling controls; 79 persons irradiated for enlarged tonsils and 81 persons surgically treated for the same condition during childhood; and 77 women frequently exposed as young adults to fluoroscopic chest X rays during lung collapse treatment for tuberculosis (TB) and 66 women of similar ages treated for TB with other therapies. Radiation exposures occurred 30 and more years before blood was drawn. Doses to active bone marrow averaged over the entire body were 21, 6, and 14 cGy for the exposed thymic, tonsil, and TB subjects, respectively. Two hundred metaphases were scored for each subject, and the frequencies of symmetrical (stable) and asymmetrical (unstable) chromosome aberrations were quantified in 97,200 metaphases. Cells with stable aberrations were detected with greater frequency in the irradiated subjects compared with nonirradiated subjects in all three populations, and an overall test for an association between stable aberrations and partial-body ionizing radiation was highly significant (P less than 0.001). We found no evidence that radiation-induced aberrations varied by age at exposure. These data show that exposure of children or young adults to partial-body fractionated radiation can result in detectable increased frequencies of stable chromosome aberrations in circulating lymphocytes 30 years later, and that these aberrations appear to be informative as biological markers of population exposure.  相似文献   

11.
Manned space missions recently increased in number and duration, thus it became important to estimate the biological risks encountered by astronauts. They are exposed to cosmic and galactic rays, a complex mixture of different radiations. In addition to the measurements realized by physical dosimeters, it becomes essential to estimate real biologically effective doses and compare them to physical doses. Biological dosimetry of radiation exposures has been widely performed using cytogenetic analysis of chromosomes. This approach has been used for many years in order to estimate absorbed doses in accidental or chronic overexposures of humans. In addition to conventional techniques (Giemsa or FPG staining, R- or G-banding), faster and accurate means of analysis have been developed (fluorescence in situ hybridization [FISH] painting). As results accumulate, it appears that strong interindividual variability exists in the basal level of aberrations. Moreover, some aberrations such as translocations exhibit a high background level. Radiation exposures seem to induce variability between individual responses. Its extent strongly differs with the mode of exposure, the doses delivered, the kind of radiation, and the cytogenetic method used. This paper aims to review the factors that may influence the reliability of cytogenetic dosimetry. The emphasis is on the exposure to high linear energy transfer (LET) particles in space as recent studies demonstrated interindividual variations in doses estimated from aberration analysis after long-term space missions. In addition to the problem of dose estimates, the heterogeneity of cosmic radiation raises questions relating to the real numbers of damaged cells in an individual, and potential long-term risks. Actually, densely ionizing particles are extremely potent to induce late chromosomal instability, and again, interindividual variability exists in the expression of damage.  相似文献   

12.
Multicolor fluorescence in situ hybridization (FISH) with tandem-labeling probes for the 1cen-q12 region is a potential biomarker for the detection of structural chromosomal aberrations (CAs) in human cells. To determine the suitability of this technique for biomonitoring humans exposed to 1,3-butadiene (BD) and to characterize the alterations induced as well as their stability over time, the human lymphoblastoid cell line AZH-1 was treated with 5 μM diepoxybutane (DEB) or the positive control mitomycin C (MMC; 0.1 μM) for 24 h. Following the removal of the test chemicals, cell cultures were grown for an additional 19 days in the absence of the test compound. Using the tandem FISH technique, aliquots from the main cultures were examined for the induction of CAs affecting the 1cen-q12 region at various intervals. A significant increase in chromosomal breakage/exchanges affecting the 1cen-q12 region was seen in both the DEB- and MMC-treated interphase and metaphase cells. The damage peaked at approximately 48 h following the addition of the test compound and declined with time. However, at day 20, the frequency of aberrant cells was still significantly higher than the control levels. For comparison, the frequency of micronuclei (MN) formed and their origin was determined using the cytochalasin B-modified MN assay and FISH with a pancentromeric probe. Showing a similar pattern, the frequency of centronere-negative MN peaked at 48 h, but however was not significantly elevated above control levels at 20 days. At early time points, aberrations detected using the FISH assay consisted of nearly equal proportions of unstable- and stable-type aberrations, while at the later time points, translocations were the predominant aberration type. In addition, the use of tandem-label FISH in combination with BrdU-immunfluorescence staining, showed that almost identical frequencies of structural aberrations could be seen in actively replicating and non-replicating cell populations. These studies indicate that a small but significant proportion of the alterations detected using this FISH technique persists over time and that this technique may be valuable for biomonitoring chromosomal alterations in BD-exposed populations.  相似文献   

13.
Single-color painting of whole chromosomes, or protocols in which only a few chromosomes are distinctively painted, will always fail to detect a proportion of complex exchanges because they frequently produce pseudosimple painting patterns that are indistinguishable from those produced by bona fide simple exchanges. When 24-color multi-fluor FISH (mFISH) was employed for the purpose of distinguishing (truly) simple from pseudosimple exchanges, it was confirmed that the acute low-LET radiation dose-response relationship for simple exchanges lacked significant upward curvature. This result has been interpreted to indicate that the formation of simple exchanges requires only one chromosome locus be damaged (e.g. broken) by radiation to initiate an exchange-not two, as classical cytogenetic theory maintains. Because a one-lesion mechanism implies single-track action, it follows that the production of simple exchanges should not be influenced by changes in dose rate. To examine this prediction, we irradiated noncycling primary human fibroblasts with graded doses of (137)Cs gamma rays at an acute dose rate of 1.10 Gy/min and compared, using mFISH, the yield of simple exchanges to that observed after exposure to the same radiation delivered at a chronic dose rate of 0.08 cGy/min. The shape of the dose response was found to be quasi-linear for both dose rates, but, counter to providing support for a one-lesion mechanism, the yield of simple aberrations was greatly reduced by protracted exposure. Although chronic doses were delivered at rates low enough to produce damage exclusively by single-track action, this did not altogether eliminate the formation of complex aberrations, an analysis of which leads to the conclusion that a single track of low-LET radiation is capable of inducing complex exchanges requiring up to four proximate breaks for their formation. For acute exposures, the ratio of simple reciprocal translocations to simple dicentrics was near unity.  相似文献   

14.
The suitability of a three-color fluorescence in situ suppression hybridization technique was examined for monitoring five different groups of individuals: 30 occupied in radiology, 26 occupied in nuclear medicine or radiation physics, 32 patients with breast cancer, 26 occupied with military waste disposal, all presumably exposed to low doses of radiation or chemical mutagens and a non-exposed control group (N=29). The average frequency of breaks constituting the various aberrations did not significantly differ between the groups of medical radiation appliers and the control group. However, breast tumor patients and military waste disposers, as groups, showed a higher aberration rate than did healthy controls. Stable rearrangements mainly characterized the groups of controls, tumor patients, and radiation appliers, while a higher proportion of unstable aberrations was found in the chemically exposed individuals. Individuals with an increased frequency of aberrations could be detected within each examined group, which clearly determined the average values of the whole group. With respect to interchromosomal distribution of the breakpoints constituting the found aberrations and the involvement of the labeled chromosomes in rearrangements, the observed values were very close to the expected ones in the controls. A rather similar trend of deviations from expectation was observed in all other groups. Chromosome 4 was slightly over-affected, while chromosome 2 was slightly underrepresented in all analyzed groups (except tumor patients). Rearrangements of the labeled chromosomes with the unlabeled ones exceeded expectation. In conclusion, chromosome painting if included in further attempts of human population monitoring will broaden the basis of argumentation with respect to health risks introduced by mutagen exposure.  相似文献   

15.
The effect of the fungicide Euparen Multi (containing 50% tolylfluanid) was investigated on the induction of chromosomal aberrations (CA) in cultured bovine peripheral lymphocytes. Cultures from two healthy donors were treated with tolylfluanid-based fungicide at concentrations ranging from 1.7 to 17.5 μg/ml for the last 24 and 48 hours of cultivation. Conventional cytogenetic method (CA assay) with Giemsa staining as well as fluorescence in situ hybridization (FISH) with whole bovine chromosomes 1 and 5 painting probes were used in the experiment. In the CA assay, no clastogenic effect of the fungicide was found after Euparen Multi treatment for 24 hours. On the contrary, significant elevation in polyploidy induction was observed with dose-dependence in one of the donors. Using prolonged time of exposure to the fungicide (the last 48 h of the cultivation), a slight clastogenic effect was detected at the doses of 8.75 and 17.5 μg/ml (P < 0.05, P < 0.01, respectively) in donor 1 and at the dose of 8.75 μg/ml (P < 0.05) in donor 2. The highest doses tested caused reduction of the mitotic indices (MI) (P < 0.05, P < 0.01) in both donors as well as both treatment times. The evaluation of stable structural aberrations in lymphocytes by two-colour FISH (48 h exposure) using bovine chromosome painting probes revealed the presence of nonreciprocal translocations at two examined concentrations (3.5 μg/ml and 8.75 μg/ml).  相似文献   

16.
On 25 June 1990, a radiation accident occurred in a 60Co source radiation unit in Shanghai, due to violations in operation regulations. This accident resulted in the exposure of seven individuals to acute high-dose and dose-rate whole-body external irradiation. Conventional chromosomal aberration analysis, G-banding automatic karyotype analysis and/or fluorescent in situ hybridization (FISH) painting methods were used to analyze chromosomal aberrations in peripheral blood lymphocytes from five of the victims 24 h to 17 years after accidental exposure to 1.9–5.1 Gy of 60Co γ-rays. The frequency of unstable chromosomal aberrations (dicentrics and rings) remained at constant levels 1 month after exposure. Three months after exposure, the frequency was reduced by 20–40% in three victims, while no reduction was seen in the other two victims. Twelve years after exposure, the number of dicentrics and rings decreased by more than 90%, and did not reveal a dose-dependent relationship. However, even at 12–17 years after exposure, stable chromosome aberrations, dominated by translocations, remained at a high level in a dose-dependent manner. The frequency of stable chromosomal aberrations detected by FISH showed a similar dose-dependent relationship as that detected by karyotype analysis of G-banding chromosomes. The G-banding analysis also suggested that the pattern of chromosome breakpoints is random. The FISH data showed a decreasing tendency with time for chromosome translocation frequency in the peripheral lymphocytes, and the rate of reduction varied among different individuals. It is likely that the higher dose the victim received, the lesser the translocation frequency decreased with time. The G-banding data also showed that the rate of reduction of translocations is different among individuals. From 5 to 17 years after accidental irradiation, a very small reduction (~10%) of translocation frequency was observed in victims C and D, while there was about a 35% reduction (the highest among the victims) for victim G who received the smallest dose (1.9 Gy). These observations can be used to validate the existence of chromosomal aberrations in peripheral blood lymphocytes as a biological dosimeter for radiation exposures.  相似文献   

17.
Structural chromosome aberrations (SCAs) are sensitive indicators of a preceding exposure of the hematopoietic system to ionizing radiation. Cytogenetic investigations have therefore become routine tools for an assessment of absorbed radiation doses and their biological effects after occupational exposure or radiation accidents.Due to its speed and ease of use, fluorescence in situ hybridization (FISH) with whole chromosome painting (WCP) probes has become a method of choice to visualize SCAs. Until recently, this technique was limited to a rather small number of chromosomes, which could be tested simultaneously. As a result, only a fraction of the structural aberrations present in a sample could be detected and the overall dose effect had to be calculated by extrapolation. The recent introduction of two genome-wide screening techniques in tumor research, i.e., Spectral Karyotyping (SKY) and multicolor FISH (mFISH) now allows the detection of translocations involving any two non-homologous chromosomes.The present study was prompted by our desire to bring the power of mFISH to bear for the rapid identification of radiation-induced SCAs. We chose two model systems to investigate the utility of mFISH: lymphocytes that were exposed in vitro to 3 Gy photons and single hematopoietic progenitor cell colonies isolated from a Chernobyl victim 9 years after in vivo exposure to 5.4 Sv.In lymphocytes, we found up to 15 different chromosomes involved in rearrangements indicating complex radiation effects. Stable aberrations detected in hematopoietic cell colonies, on the other hand, showed involvement of up to three different chromosomes. These results demonstrated that mFISH is a rapid and powerful approach to detect and characterize radiation-induced SCAs in the hemopoietic system. The application of mFISH is expected to result in a more detailed and, thus, more informative picture of radiation effects. Eventually, this technique will allow researchers to rapidly delineate chromosomal breakpoints and facilitate the identification of the genes involved in radiation tumorigenesis.  相似文献   

18.
Blood lymphocytes of 15 healthy donors have been investigated for their ability to reduce radiosensitivity after low-dose irradiation-radio-induced adaptive response (AR). The frequency of unstable chromosome aberrations was used to evaluate cell radiosensitivity after the irradiation of cells in low adaptive (5 cGy) and high challenge (1 Gy) doses in comparison with the effect of challenge irradiation only. Three indexes have been used, i.e., (A) the frequency of cells with aberrations per total analyzed cell, (B) the number of chromosome aberrations per one cell, (C) and the number of chromosome aberrations per one aberrant cell. It was found that the donors can be divided in the four following groups: 1. AR was not estimated any of the indexes used; 2. AR was estimated with indexes A and B, but not C; 3. AR was shown by indexes B and C; 4. AR was evident with all three indexes. The generally accepted AR repair model only explains the appearance of group-3 and-4 donors, but not group-2. For the purpose of understanding the AR mechanisms and the difference in AR estimations with various criteria, the metaphase distribution by the number of chromosome aberrations has been analyzed for each donor. It was shown that, in group-2 donors, the number of cells without aberrations after adaptive and challenge irradiations was significantly higher than after irradiation with a challenge dose only. Thus, in this group, AR is formed as a result of the changed frequency of cells in the 0 class (population shift). A similar shift is observed in the metaphase distribution in the donors of group 4, but not in group 3. The data obtained show that AR is probably a result of several processes, including the activation of the reparation of premutational genome damages, population shifts evident in the frequency of undamaged cells, and, possibly, the activation of apoptotic cell death. The complex character of AR is reflected to different degrees in each criterion of radiosensitivity.  相似文献   

19.
20.
The ability to probe for the location of DNA sequences in morphologically preserved chromosomes and nuclei by fluorescence in situ hybridization (FISH) provided for cytogenetics a quantum leap forward in resolution and ease of detection of chromosomal aberrations. COBRA-FISH, an acronym for COmbined Binary RAtio-FISH is a multicolor FISH methodology, which enables recognition of all human chromosome arms on the basis of color, thus greatly facilitating cytogenetic analysis. It also permits gene and viral integration site mapping in the context of chromosome arm painting. Here we review the principle, practice and applications of COBRA-FISH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号