首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
DNA-protein interactions involving enhancer and promoter sequences within the U3 regions of several avian retroviral long terminal repeats (LTRs) were studied by DNase I footprinting. The rat CCAAT/enhancer-binding protein, C/EBP, bound to all four viral LTRs examined. The Rous sarcoma virus binding site corresponded closely to the 5' limit of the LTR enhancer; nucleotides -225 to -188 were protected as a pair of adjacent binding domains. The Fujinami sarcoma virus LTR bound C/EBP at a single site at nucleotides -213 to -195. C/EBP also bound to the promoter region of the enhancerless Rous-associated virus-0 LTR at nucleotides -77 to -57. The avian myeloblastosis virus LTR bound C/EBP at three sites: nucleotides -262 to -246, -154 to -134, and -55 to -39. We have previously observed binding of C/EBP to an enhancer in the gag gene of avian retroviruses. A heat-treated nuclear extract from chicken liver bound to all of the same retroviral sequences as did C/EBP. Alignment of the avian retroviral binding sequences with the published binding sites for C/EBP in two CCAAT boxes and in the simian virus 40, polyoma, and murine sarcoma virus enhancers suggested TTGNNGCTAATG as a consensus sequence for binding of C/EBP. When two bases of this consensus sequence were altered by site-specific mutagenesis of the Rous sarcoma virus LTR, binding of the heat-stable chicken protein was eliminated.  相似文献   

3.
4.
5.
6.
Sequence-specific DNA-protein interactions mediate the regulation of rat androgen receptor (rAR) gene expression. Previously, DNase I footprinting revealed that nuclear factor kappa B (NFkB) binds to region -574 to -554 on rAR promoter and represses its expression. In this study, we demonstrate that when NFkB protein is removed from its site by competitor DNA in DNase I footprinting reaction, a new DNase I protected region is formed overlapping adjacently (-594 to -561). This indicates that another nuclear protein (named here as FRN, factor repressed by NFkB) binds to rAR promoter only after NFkB protein is displaced. By competitive electrophoretic mobility shift assay and mutation analysis, we confirmed the formation of FRN-DNA complex. FRN interacts with a novel sequence on rAR promoter and may play a role in regulation of rAR gene expression in concert with NFkB.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Acetaldehyde was previously shown to activate the alpha1(I) and alpha2(I) collagen promoters and to increase collagen production in activated stellate cells. Also, CCAAT/enhancer binding protein beta (C/EBPbeta) binds and activates the mouse alpha1(I) collagen promoter. This study investigates the role of C/EBPbeta in mediating the activation of the alpha1(I) collagen promoter by acetaldehyde. Nuclear extracts isolated from cultured activated rat hepatic stellate cells formed four protein-DNA complexes on electrophoretic mobility shift assay with an oligonucleotide including the C/EBP binding site between -365 and -335 in the alpha1(I) collagen promoter. The four complexes were identified to represent C/EBPbeta binding to the oligonucleotide by supershift with C/EBPbeta antibody. The principal C/EBP isoform found in the nuclear extracts from stellate cells was C/EBPbeta, with very low amounts of C/EBPalpha detected. Acetaldehyde (200 microM) increased C/EBPbeta protein in stellate nuclear extracts, increased its binding to the promoter, and activated the alpha1(I) collagen promoter in transfected stellate cells. Mutation of the C/EBPbeta binding site markedly decreased nuclear protein binding. A transfected promoter, mutated at the C/EBP binding site, had decreased basal activity, was not activated by acetaldehyde, and was not activated when cotransfected with a C/EBPbeta expression vector. This study shows that C/EBPbeta is the predominant C/EBP isoform found in activated stellate cells and that increased C/EBPbeta protein and C/EBPbeta binding to a proximal C/EBP binding site in the promoter mediates the activating effect of acetaldehyde.  相似文献   

18.
An ecdysone response element in the Drosophila hsp27 promoter   总被引:20,自引:4,他引:16       下载免费PDF全文
It has previously been shown that a region of ˜100 bp in the Drosophila hsp27 promoter is sufficient to confer ecdysone inducibility on a heterologous gene. We now show, using binding and DNase I footprinting assays, that a 23-bp hyphenated dyad within this sequence forms a protein-binding site, and that this is sufficient for inducibility. The sequence shows partial homology with mammalian steroid receptor binding sites. UV crosslinking identifies an 80- to 90-kd protein that binds specifically to this sequence and is thus a candidate for the ecdysone receptor.  相似文献   

19.
The promoter-specific binding of Escherichia coli RNA polymerase to the T7-A3 and the lacUV5 promoters at 0 degrees C was analyzed by DNase I footprinting. At 37 degrees C, the footprint from RNA polymerase bound to the A3 promoter is essentially the same as that reported by Galas, D.J., and Schmitz, A., (1978) Nucleic Acids Res. 5, 3157-3170 for the lacUV5 promoter. At 0 degrees C, the footprint for the A3 promoter is well defined but reduced in size. The principal difference between the 0 and 37 degrees C footprints is a region from -2 to +18 which is protected by polymerase at the higher but not at the lower temperature. In contrast, the 0 degree C footprint for the lacUV5 promoter differs substantially in character from the footprint for A3 at 0 degree C. The footprint is similar to the pattern of DNase I digestion of DNA bound to a surface; alternating regions of sensitive and protected DNA are spaced at intervals of about 10 base pairs. This region of DNase I-sensitive and -resistant DNA has the same boundaries as the 0 degree C footprint on T7-A3. Temperature shift experiments confirmed the sequence specificity of the RNA polymerase interaction with UV5 at 0 degree C. These results indicate that RNA polymerase binds specifically to each promoter sequence in a closed complex. The increased time and amounts of RNA polymerase required to form the 0 degree C footprint on the lacUV5 promoter indicate that it binds RNA polymerase more weakly than does the T7-A3 promoter. Therefore there is a correlation between the binding constant for closed complex formation estimated from kinetic measurements and the formation of the 0 degree C footprint. The -35 region of the promoter may be more important in establishing the 0 degree C footprint because the T7-A3 promoter is a better match to the consensus sequence. Conversely, the -10 region seems less important because lacUV5 is a perfect match to the consensus, whereas the T7-A3 promoter matches at only five out of seven positions. The 0 degree C footprints encompass both regions along with the spacer; the combination of these regions rather than an individual region may determine the character of the footprint and the magnitude of the binding constant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号