共查询到20条相似文献,搜索用时 0 毫秒
1.
Quadt-Akabayov SR Chill JH Levy R Kessler N Anglister J 《Protein science : a publication of the Protein Society》2006,15(11):2656-2668
Type I interferons (IFNs) are a family of homologous helical cytokines that exhibit pleiotropic effects on a wide variety of cell types, including antiviral activity and antibacterial, antiprozoal, immunomodulatory, and cell growth regulatory functions. Consequently, IFNs are the human proteins most widely used in the treatment of several kinds of cancer, hepatitis C, and multiple sclerosis. All type I IFNs bind to a cell surface receptor consisting of two subunits, IFNAR1 and IFNAR2, associating upon binding of interferon. The structure of the extracellular domain of IFNAR2 (R2-EC) was solved recently. Here we study the complex and the binding interface of IFNalpha2 with R2-EC using multidimensional NMR techniques. NMR shows that IFNalpha2 does not undergo significant structural changes upon binding to its receptor, suggesting a lock-and-key mechanism for binding. Cross saturation experiments were used to determine the receptor binding site upon IFNalpha2. The NMR data and previously published mutagenesis data were used to derive a docking model of the complex with an RMSD of 1 Angstrom, and its well-defined orientation between IFNalpha2 and R2-EC and the structural quality greatly improve upon previously suggested models. The relative ligand-receptor orientation is believed to be important for interferon signaling and possibly one of the parameters that distinguish the different IFN I subtypes. This structural information provides important insight into interferon signaling processes and may allow improvement in the development of therapeutically used IFNs and IFN-like molecules. 相似文献
2.
Bryan S. Der Raamesh K. Jha Steven M. Lewis Peter M. Thompson Gurkan Guntas Brian Kuhlman 《Proteins》2013,81(7):1245-1255
We computationally designed a de novo protein–protein interaction between wild‐type ubiquitin and a redesigned scaffold. Our strategy was to incorporate zinc at the designed interface to promote affinity and orientation specificity. A large set of monomeric scaffold surfaces were computationally engineered with three‐residue zinc coordination sites, and the ubiquitin residue H68 was docked to the open coordination site to complete a tetrahedral zinc site. This single coordination bond was intended as a hotspot and polar interaction for ubiquitin binding, and surrounding residues on the scaffold were optimized primarily as hydrophobic residues using a rotamer‐based sequence design protocol in Rosetta. From thousands of independent design simulations, four sequences were selected for experimental characterization. The best performing design, called Spelter, binds tightly to zinc (Kd < 10 nM) and binds ubiquitin with a Kd of 20 µM in the presence of zinc and 68 µM in the absence of zinc. Mutagenesis studies and nuclear magnetic resonance chemical shift perturbation experiments indicate that Spelter interacts with H68 and the target surface on ubiquitin; however, H68 does not form a hotspot as intended. Instead, mutation of H68 to alanine results in tighter binding. Although a 3/1 zinc coordination arrangement at an interface cannot be ruled out as a means to improve affinity, our study led us to conclude that 2/2 coordination arrangements or multiple‐zinc designs are more likely to promote high‐affinity protein interactions. Proteins 2013; 81:1245–1255. © 2013 Wiley Periodicals, Inc. 相似文献
3.
Grant S Murphy Bharatwaj Sathyamoorthy Bryan S Der Mischa C Machius Surya V Pulavarti Thomas Szyperski Brian Kuhlman 《Protein science : a publication of the Protein Society》2015,24(4):434-445
The de novo design of proteins is a rigorous test of our understanding of the key determinants of protein structure. The helix bundle is an interesting de novo design model system due to the diverse topologies that can be generated from a few simple α-helices. Previously, noncomputational studies demonstrated that connecting amphipathic helices together with short loops can sometimes generate helix bundle proteins, regardless of the bundle''s exact sequence. However, using such methods, the precise positions of helices and side chains cannot be predetermined. Since protein function depends on exact positioning of residues, we examined if sequence design tools in the program Rosetta could be used to design a four-helix bundle with a predetermined structure. Helix position was specified using a folding procedure that constrained the design model to a defined topology, and iterative rounds of rotamer-based sequence design and backbone refinement were used to identify a low energy sequence for characterization. The designed protein, DND_4HB, unfolds cooperatively (Tm >90°C) and a NMR solution structure shows that it adopts the target helical bundle topology. Helices 2, 3, and 4 agree very closely with the design model (backbone RMSD = 1.11 Å) and >90% of the core side chain χ1 and χ2 angles are correctly predicted. Helix 1 lies in the target groove against the other helices, but is displaced 3 Å along the bundle axis. This result highlights the potential of computational design to create bundles with atomic-level precision, but also points at remaining challenges for achieving specific positioning between amphipathic helices. 相似文献
4.
Wollacott AM Zanghellini A Murphy P Baker D 《Protein science : a publication of the Protein Society》2007,16(2):165-175
We describe the development of a method for assembling structures of multidomain proteins from structures of isolated domains. The method consists of an initial low-resolution search in which the conformational space of the domain linker is explored using the Rosetta de novo structure prediction method, followed by a high-resolution search in which all atoms are treated explicitly and backbone and side chain degrees of freedom are simultaneously optimized. The method recapitulates, often with very high accuracy, the structures of existing multidomain proteins. 相似文献
5.
Zanghellini A Jiang L Wollacott AM Cheng G Meiler J Althoff EA Röthlisberger D Baker D 《Protein science : a publication of the Protein Society》2006,15(12):2785-2794
The creation of novel enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Here we describe two new algorithms for enzyme design that employ hashing techniques to allow searching through large numbers of protein scaffolds for optimal catalytic site placement. We also describe an in silico benchmark, based on the recapitulation of the active sites of native enzymes, that allows rapid evaluation and testing of enzyme design methodologies. In the benchmark test, which consists of designing sites for each of 10 different chemical reactions in backbone scaffolds derived from 10 enzymes catalyzing the reactions, the new methods succeed in identifying the native site in the native scaffold and ranking it within the top five designs for six of the 10 reactions. The new methods can be directly applied to the design of new enzymes, and the benchmark provides a powerful in silico test for guiding improvements in computational enzyme design. 相似文献
6.
Clark LA Boriack-Sjodin PA Eldredge J Fitch C Friedman B Hanf KJ Jarpe M Liparoto SF Li Y Lugovskoy A Miller S Rushe M Sherman W Simon K Van Vlijmen H 《Protein science : a publication of the Protein Society》2006,15(5):949-960
Improving the affinity of a high-affinity protein-protein interaction is a challenging problem that has practical applications in the development of therapeutic biomolecules. We used a combination of structure-based computational methods to optimize the binding affinity of an antibody fragment to the I-domain of the integrin VLA1. Despite the already high affinity of the antibody (Kd approximately 7 nM) and the moderate resolution (2.8 A) of the starting crystal structure, the affinity was increased by an order of magnitude primarily through a decrease in the dissociation rate. We determined the crystal structure of a high-affinity quadruple mutant complex at 2.2 A. The structure shows that the design makes the predicted contacts. Structural evidence and mutagenesis experiments that probe a hydrogen bond network illustrate the importance of satisfying hydrogen bonding requirements while seeking higher-affinity mutations. The large and diverse set of interface mutations allowed refinement of the mutant binding affinity prediction protocol and improvement of the single-mutant success rate. Our results indicate that structure-based computational design can be successfully applied to further improve the binding of high-affinity antibodies. 相似文献
7.
Latypov RF Liu D Gunasekaran K Harvey TS Razinkov VI Raibekas AA 《Protein science : a publication of the Protein Society》2008,17(4):652-663
Although 8-anilinonaphthalene-1-sulfonic acid (ANS) is frequently used in protein folding studies, the structural and thermodynamic effects of its binding to proteins are not well understood. Using high-resolution two-dimensional NMR and human interleukin-1 receptor antagonist (IL-1ra) as a model protein, we obtained detailed information on ANS-protein interactions in the absence and presence of urea. The effects of ambient to elevated temperatures on the affinity and specificity of ANS binding were assessed from experiments performed at 25 degrees C and 37 degrees C. Overall, the affinity of ANS was lower at 37 degrees C compared to 25 degrees C, but no significant change in the site specificity of binding was observed from the chemical shift perturbation data. The same site-specific binding was evident in the presence of 5.2 M urea, well within the unfolding transition region, and resulted in selective stabilization of the folded state. Based on the two-state denaturation mechanism, ANS-dependent changes in the protein stability were estimated from relative intensities of two amide resonances specific to the folded and unfolded states of IL-1ra. No evidence was found for any ANS-induced partially denatured or aggregated forms of IL-1ra throughout the experimental conditions, consistent with a cooperative and reversible denaturation process. The NMR results support earlier observations on the tendency of ANS to interact with solvent-exposed positively charged sites on proteins. Under denaturing conditions, ANS binding appears to be selective to structured states rather than unfolded conformations. Interestingly, the binding occurs within a previously identified aggregation-critical region in IL-1ra, thus providing an insight into ligand-dependent protein aggregation. 相似文献
8.
Janin J 《Protein science : a publication of the Protein Society》2005,14(2):278-283
The Critical Assessment of PRedicted Interactions (CAPRI) experiment was designed in 2000 to test protein docking algorithms in blind predictions of the structure of protein-protein complexes. In four years, 17 complexes offered by crystallographers as targets prior to publication, have been subjected to structure prediction by docking their two components. Models of these complexes were submitted by predictor groups and assessed by comparing their geometry to the X-ray structure and by evaluating the quality of the prediction of the regions of interaction and of the pair wise residue contacts. Prediction was successful on 12 of the 17 targets, most of the failures being due to large conformation changes that the algorithms could not cope with. Progress in the prediction quality observed in four years indicates that the experiment is a powerful incentive to develop new procedures that allow for flexibility during docking and incorporate nonstructural information. We therefore call upon structural biologists who study protein-protein complexes to provide targets for further rounds of CAPRI predictions. 相似文献
9.
Jos M. Pereira Maria Vieira Srgio M. Santos 《Protein science : a publication of the Protein Society》2021,30(8):1502
Protein design is the field of synthetic biology that aims at developing de novo custom‐made proteins and peptides for specific applications. Despite exploring an ambitious goal, recent computational advances in both hardware and software technologies have paved the way to high‐throughput screening and detailed design of novel folds and improved functionalities. Modern advances in the field of protein design for small molecule targeting are described in this review, organized in a step‐by‐step fashion: from the conception of a new or upgraded active binding site, to scaffold design, sequence optimization, and experimental expression of the custom protein. In each step, contemporary examples are described, and state‐of‐the‐art software is briefly explored. 相似文献
10.
Duan Y Reddy BV Kaznessis YN 《Protein science : a publication of the Protein Society》2005,14(2):316-328
11.
Cazals F Proust F Bahadur RP Janin J 《Protein science : a publication of the Protein Society》2006,15(9):2082-2092
We developed a model of macromolecular interfaces based on the Voronoi diagram and the related alpha-complex, and we tested its properties on a set of 96 protein-protein complexes taken from the Protein Data Bank. The Voronoi model provides a natural definition of the interfaces, and it yields values of the number of interface atoms and of the interface area that have excellent correlation coefficients with those of the classical model based on solvent accessibility. Nevertheless, some atoms that do not lose solvent accessibility are part of the interface defined by the Voronoi model. The Voronoi model provides robust definitions of the curvature and of the connectivity of the interfaces, and leads to estimates of these features that generally agree with other approaches. Our implementation of the model allows an analysis of protein-water contacts that highlights the role of structural water molecules at protein-protein interfaces. 相似文献
12.
Wang C Schueler-Furman O Baker D 《Protein science : a publication of the Protein Society》2005,14(5):1328-1339
Success in high-resolution protein-protein docking requires accurate modeling of side-chain conformations at the interface. Most current methods either leave side chains fixed in the conformations observed in the unbound protein structures or allow the side chains to sample a set of discrete rotamer conformations. Here we describe a rapid and efficient method for sampling off-rotamer side-chain conformations by torsion space minimization during protein-protein docking starting from discrete rotamer libraries supplemented with side-chain conformations taken from the unbound structures, and show that the new method improves side-chain modeling and increases the energetic discrimination between good and bad models. Analysis of the distribution of side-chain interaction energies within and between the two protein partners shows that the new method leads to more native-like distributions of interaction energies and that the neglect of side-chain entropy produces a small but measurable increase in the number of residues whose interaction energy cannot compensate for the entropic cost of side-chain freezing at the interface. The power of the method is highlighted by a number of predictions of unprecedented accuracy in the recent CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods. 相似文献
13.
Structures of hitherto unknown protein complexes can be predicted by docking the solved protein monomers. Here, we present a method to refine initial docking estimates of protein complex structures by a Monte Carlo approach including rigid-body moves and side-chain optimization. The energy function used is comprised of van der Waals, Coulomb, and atomic contact energy terms. During the simulation, we gradually shift from a novel smoothed van der Waals potential, which prevents trapping in local energy minima, to the standard Lennard-Jones potential. Following the simulation, the conformations are clustered to obtain the final predictions. Using only the first 100 decoys generated by a fast Fourier transform (FFT)-based rigid-body docking method, our refinement procedure is able to generate near-native structures (interface RMSD <2.5 A) as first model in 14 of 59 cases in a benchmark set. In most cases, clear binding funnels around the native structure can be observed. The results show the potential of Monte Carlo refinement methods and emphasize their applicability for protein-protein docking. 相似文献
14.
Ertekin A Nussinov R Haliloglu T 《Protein science : a publication of the Protein Society》2006,15(10):2265-2277
Here, we propose a binding site prediction method based on the high frequency end of the spectrum in the native state of the protein structural dynamics. The spectrum is obtained using an elastic network model (GNM). High frequency vibrating (HFV) residues are determined from the fastest modes dynamics. HFV residue clusters and the associated surface patch residues are tested for their likelihood to locate at the binding interfaces using two different data sets, the Benchmark Set of mainly enzymes and antigen/antibodies and the Cluster Set of more diverse structures. The binding interface is identified to be within 7.5 A of the HFV residue clusters in the Benchmark Set and Cluster Set, for 77% and 70% of the structures, respectively. The success rate increases to 88% and 84%, respectively, by using the surface patches. The results suggest that concave binding interfaces, typically those of enzyme-binding sites, are enriched by the HFV residues. Thus, we expect that the association of HFV residues with the interfaces is mostly for enzymes. If, however, a binding region has invaginations and cavities, as in some of the antigen/antibodies and in cases in the Cluster data set, we expect it would be detected there too. This implies that binding sites possess several (inter-related) properties such as cavities, high packing density, conservation, and disposition for hotspots at binding surfaces. It further suggests that the high frequency vibrating residue-based approach is a potential tool for identification of regions likely to serve as protein-binding sites. The software is available at http://www.prc.boun.edu.tr/PRC/software.html. 相似文献
15.
A genetic algorithm (GA) for protein-protein docking is described, in which the proteins are represented by dot surfaces calculated using the Connolly program. The GA is used to move the surface of one protein relative to the other to locate the area of greatest surface complementarity between the two. Surface dots are deemed complementary if their normals are opposed, their Connolly shape type is complementary, and their hydrogen bonding or hydrophobic potential is fulfilled. Overlap of the protein interiors is penalized. The GA is tested on 34 large protein-protein complexes where one or both proteins has been crystallized separately. Parameters are established for which 30 of the complexes have at least one near-native solution ranked in the top 100. We have also successfully reassembled a 1,400-residue heptamer based on the top-ranking GA solution obtained when docking two bound subunits. 相似文献
16.
Keskin O Tsai CJ Wolfson H Nussinov R 《Protein science : a publication of the Protein Society》2004,13(4):1043-1055
Here, we present a diverse, structurally nonredundant data set of two-chain protein-protein interfaces derived from the PDB. Using a sequence order-independent structural comparison algorithm and hierarchical clustering, 3799 interface clusters are obtained. These yield 103 clusters with at least five nonhomologous members. We divide the clusters into three types. In Type I clusters, the global structures of the chains from which the interfaces are derived are also similar. This cluster type is expected because, in general, related proteins associate in similar ways. In Type II, the interfaces are similar; however, remarkably, the overall structures and functions of the chains are different. The functional spectrum is broad, from enzymes/inhibitors to immunoglobulins and toxins. The fact that structurally different monomers associate in similar ways, suggests \"good\" binding architectures. This observation extends a paradigm in protein science: It has been well known that proteins with similar structures may have different functions. Here, we show that it extends to interfaces. In Type III clusters, only one side of the interface is similar across the cluster. This structurally nonredundant data set provides rich data for studies of protein-protein interactions and recognition, cellular networks and drug design. In particular, it may be useful in addressing the difficult question of what are the favorable ways for proteins to interact. (The data set is available at http://protein3d.ncifcrf.gov/~keskino/ and http://home.ku.edu.tr/~okeskin/INTERFACE/INTERFACES.html.) 相似文献
17.
Structural basis of the collagen-binding mode of discoidin domain receptor 2 总被引:3,自引:0,他引:3
下载免费PDF全文

Discoidin domain receptor (DDR) is a cell-surface receptor tyrosine kinase activated by the binding of its discoidin (DS) domain to fibrillar collagen. Here, we have determined the NMR structure of the DS domain in DDR2 (DDR2-DS domain), and identified the binding site to fibrillar collagen by transferred cross-saturation experiments. The DDR2-DS domain structure adopts a distorted jellyroll fold, consisting of eight beta-strands. The collagen-binding site is formed at the interloop trench, consisting of charged residues surrounded by hydrophobic residues. The surface profile of the collagen-binding site suggests that the DDR2-DS domain recognizes specific sites on fibrillar collagen. This study provides a molecular basis for the collagen-binding mode of the DDR2-DS domain. 相似文献
18.
Sebastian Swanson Venkatesh Sivaraman Gevorg Grigoryan Amy E. Keating 《Protein science : a publication of the Protein Society》2022,31(6)
Despite advances in protein engineering, the de novo design of small proteins or peptides that bind to a desired target remains a difficult task. Most computational methods search for binder structures in a library of candidate scaffolds, which can lead to designs with poor target complementarity and low success rates. Instead of choosing from pre‐defined scaffolds, we propose that custom peptide structures can be constructed to complement a target surface. Our method mines tertiary motifs (TERMs) from known structures to identify surface‐complementing fragments or “seeds.” We combine seeds that satisfy geometric overlap criteria to generate peptide backbones and score the backbones to identify the most likely binding structures. We found that TERM‐based seeds can describe known binding structures with high resolution: the vast majority of peptide binders from 486 peptide‐protein complexes can be covered by seeds generated from single‐chain structures. Furthermore, we demonstrate that known peptide structures can be reconstructed with high accuracy from peptide‐covering seeds. As a proof of concept, we used our method to design 100 peptide binders of TRAF6, seven of which were predicted by Rosetta to form higher‐quality interfaces than a native binder. The designed peptides interact with distinct sites on TRAF6, including the native peptide‐binding site. These results demonstrate that known peptide‐binding structures can be constructed from TERMs in single‐chain structures and suggest that TERM information can be applied to efficiently design novel target‐complementing binders. 相似文献
19.
Iakhiaeva E Bhuiyan SH Yin J Zwieb C 《Protein science : a publication of the Protein Society》2006,15(6):1290-1302
The signal recognition particle (SRP) plays an important role in the delivery of secretory proteins to cellular membranes. Mammalian SRP is composed of six polypeptides among which SRP68 and SRP72 form a heterodimer that has been notoriously difficult to investigate. Human SRP68 was purified from overexpressing Escherichia coli cells and was found to bind to recombinant SRP72 as well as in vitro-transcribed human SRP RNA. Polypeptide fragments covering essentially the entire SRP68 molecule were generated recombinantly or by proteolytic digestion. The RNA binding domain of SRP68 included residues from positions 52 to 252. Ninety-four amino acids near the C terminus of SRP68 mediated the binding to SRP72. The SRP68-SRP72 interaction remained stable at elevated salt concentrations and engaged approximately 150 amino acids from the N-terminal region of SRP72. This portion of SRP72 was located within a predicted tandem array of four tetratricopeptide (TPR)-like motifs suggested to form a superhelical structure with a groove to accommodate the C-terminal region of SRP68. 相似文献
20.
Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae
下载免费PDF全文

Luo R Mann B Lewis WS Rowe A Heath R Stewart ML Hamburger AE Sivakolundu S Lacy ER Bjorkman PJ Tuomanen E Kriwacki RW 《The EMBO journal》2005,24(1):34-43
Streptococcus pneumoniae (pneumococcus) remains a significant health threat worldwide, especially to the young and old. While some of the biomolecules involved in pneumococcal pathogenesis are known and understood in mechanistic terms, little is known about the molecular details of bacterium/host interactions. We report here the solution structure of the 'repeated' adhesion domains (domains R1 and R2) of the principal pneumococcal adhesin, choline binding protein A (CbpA). Further, we provide insights into the mechanism by which CbpA binds its human receptor, polymeric immunoglobulin receptor (pIgR). The R domains, comprised of 12 imperfect copies of the leucine zipper heptad motif, adopt a unique 3-alpha-helix, raft-like structure. Each pair of alpha-helices is antiparallel and conserved residues in the loop between Helices 1 and 2 exhibit a novel 'tyrosine fork' structure that is involved in binding pIgR. This and other structural features that we show are conserved in most pneumococcal strains appear to generally play an important role in bacterial adhesion to pIgR. Interestingly, pneumococcus is the only bacterium known to adhere to and invade human cells by binding to pIgR. 相似文献