首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kirkland, Jerry J. (Oklahoma State University, Stillwater), and Norman N. Durham. Correlation of carbohydrate catabolism and synthesis of macromolecules during enzyme synthesis in Pseudomonas fluorescens. J. Bacteriol. 90: 23-28. 1965.-Glucose, ribose, and fructose shorten the lag period required for synthesis of protocatechuate oxygenase. Radioactivity from uracil-2-C(14) is incorporated into the hot trichloroacetic acid-soluble fraction after a lag period of approximately 20 min after addition of protocatechuic acid. Addition of glucose or ribose simultaneously with the inducer shortens the lag period to approximately 5 min and increases the rate of uracil incorporation. The inducer must be present to initiate incorporation of radioactivity, and the exogenous carbon source accelerates incorporation but is not sufficient to initiate synthesis by itself. The addition of protocatechuic acid increases the rate and total incorporation of radioactivity from uniformly labeled glucose or ribose-1-C(14) into the hot trichloroacetic acid-soluble fraction. Ribose decreases the incorporation of radioactivity from uniformly labeled glucose into the hot trichloroacetic acid-soluble fraction, and glucose shows a similar effect on incorporation of radioactivity from ribose-1-C(14), indicating the two sugars are serving in the same capacity to enhance enzyme synthesis. Radioactivity from glucose-1-C(14) is not incorporated into the hot trichloroacetic acid-soluble fraction. The results suggest that glucose and ribose shorten the lag period for inducible enzyme formation by serving as a "specific" carbon source for synthesis of macromolecules such as ribonucleic acid.  相似文献   

2.
Intergeneric comparison of the three enzymes that initiate metabolism of protocatechuate in Azotobacter and Pseudomonas species revealed close immunological relatedness of isofunctional proteins. Furthermore, beta-ketoadipate induces all of the enzymes of the protocatechuate pathway (except protocatechuate oxygenase) in Azotobacter and in Pseudomonas species of the "fluorescent" and "cepacia" groups. This regulatory property sets the organisms apart from other bacteria. Protocatechuate oxygenase from Pseudomonas cepacia, like the enzyme from fluorescent Pseudomonas species, cross-reacts strongly with antiserum prepared against protocatechuate oxygenase from Azotobacter vinelandii. Double-diffusion experiments conducted with the antiserum revealed relatedness of Azotobacter spp. Protocatechuate oxygenases in the following order: A. vinelandii = Azotobacter miscellum greater than Azotobacter chroococcum greater than Azotobacter beijerinkii. The antiserum also revealed serological heterogeneity among Pseudomonas spp. protocatechuate oxygenases which were serologically indistinguishable in earlier studies using Pseudomonas aeruginosa protocatechuate oxygenase as reference protein.  相似文献   

3.
Kinetic properties of PGM1 and PGM2 phosphoglucomutase "primary" isoenzymes from human erythrocytes were studied. The two enzyme forms share a "ping-pong" kinetic mechanism and show similar Km for substrate (glucose 1-P) and cofactor (glucose 1,6-P2). Micromolar concentrations of fructose 1,6-P2 and glycerate 2,3-P2 inhibit both PGM1 and PGM2 isoenzymes to a similar extent. The sole PGM2 form is affected by ribose monophosphates (ribose 1-P and ribose 5-P) that act as mutase inhibitors vs. glucose 1,6-P2 and as apparent activators vs. glucose 1-P. The interaction between PGM2 isoenzyme and ribose monophosphates is discussed in the light of the ability of this form to also display phosphoribomutase activity.  相似文献   

4.
The light-dependent synthesis of glycolate derived from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate was studied in the intact spinach (Spinacia oleracea) chloroplasts in the absence of CO(2). Glycolate yield increased with an elevation of O(2), pH, and the concentration of the phosphorylated compound supplied. No pH optimum was observed as the pH was increased from 7.4 to 8.5. The average maximal rate of glycolate synthesis was 50 mumoles per milligram chlorophyll per hour while the highest rate observed was 92 with 2.5 mm fructose 1,6-diphosphate in 100% O(2). The highest yields of glycolate synthesized from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate were 0.14, 0.24, and 0.30, respectively, on a molar basis.  相似文献   

5.
The possibility of increasing resistance of some Pseudomonas strains to cobalt at adaptation to monotonous increasing its concentration was studied. Strains Pseudomonas fluorescens B5242 and Pseudomonas fluorescens B894 are capable to increase its resistance in such conditions via inducible synthesis of protective surface proteins. The molecular masses of such proteins were 55.0; 45.0 and 33.0 kDa for P. fluorescens B5242 strain.  相似文献   

6.
2-Pyrone-4,6-dicarboxylate hydrolase was purified from 4-hydroxybenzoate-grown Pseudomonas testosteroni. Gel filtration and electrophoretic measurements indicated that the preparation was homogeneous and gave a molecular weight of 37,200 for the single subunit of the enzyme. Hydrolytic activity was dependent upon a functioning sulfhydryl group(s) and was freely reversible; the equilibrium position was dependent upon pH, with equimolar amounts of pyrone and open-chain form present at pH 7.9. Since the hydrolase was strongly induced when the nonfluorescent organisms P. testosteroni and P. acidovorans grew with 4-hydroxybenzoate, it is suggested that 2-pyrone-4,6-dicarboxylate is a normal intermediate in the meta fission degradative pathway of protocatechuate. Laboratory strains of fluorescent pseudomonads did not metabolize 2-pyrone-4,6-dicarboxylate, but a strain of P. putida was isolated from soil that utilized this compound for growth; the hydrolase was then induced, but it was absent from extracts of 4-hydroxybenzoate-grown cells that readily catabolized protocatechuate by ortho fission reactions. 2-Pyrone-4,6-dicarboxylic acid was the major product formed when gallic acid was oxidized by purified protocatechuate 3,4-dioxygenase. Protocatechuate 4,5-dioxygenase gave only the open-chain ring fission product when gallic acid was oxidized, but the enzyme attacked 3-O-methylgallic acid, giving 2-pyrone-4,6-dicarboxylic acid as the major product. Cell suspensions of 4-hydroxybenzoate-grown P. testosteroni readily oxidized 3-O-methylgallate with accumulation of methanol.  相似文献   

7.
A bacterium was isolated by elective culture with p-hydroxybenzoate as substrate and nitrate as electron acceptor. It grew either aerobically or anaerobically, by nitrate respiration, on a range of aromatic compounds. The organism was identified as a pseudomonad and was given the trivial name Pseudomonas PN-1. Benzoate and p-hydroxybenzoate were metabolized aerobically via protocatechuate, followed by meta cleavage catalyzed by protocatechuic acid-4,5-oxygenase, to yield alpha-hydroxy-gamma-carboxymuconic semialdehyde. Pseudomonas PN-1 grew rapidly on p-hydroxybenzoate under strictly anaerobic conditions, provided nitrate was present, even though protocatechuic acid-4,5-oxygenase was repressed. Suspensions of cells grown anaerobically on p-hydroxybenzoate oxidized benzoate with nitrate and produced 4 to 5 mumoles of CO(2) per mumole of benzoate added; these cells did not oxidize benzoate aerobically. The patterns of the oxidation of aromatic substrates with oxygen or nitrate by cells grown aerobically or anaerobically on different aromatic compounds indicated that benzoate rather than protocatechuate was a key intermediate in the early stages of anaerobic metabolism. It was concluded that the pathway for the anaerobic breakdown of the aromatic ring is different and quite distinct from the aerobic pathway. Mechanisms for the anaerobic degradation of the benzene nucleus by Pseudomonas PN-1 are discussed.  相似文献   

8.
Pseudomonas fluorescens PHK uses 4,5-dihydroxyphthalate as the sole carbon source for o-phthalate catabolism. This intermediate is the substrate for a decarboxylase of the pathway yielding protocatechuate. The decarboxylase was purified to homogeneity by an affinity chromatography procedure in which the reaction product, protocatechuate, was used as a ligand. We describe some properties of the enzyme, including its apparent molecular weight of 420,000 as determined by gel filtration and of 66,000 after sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis, consistent with a hexameric functional protein. The apparent Km for the substrate 4,5-dihydroxyphthalate was 10.4 microM. The characteristics of this enzyme are compared with those described for the isofunctional enzyme from P. testosteroni.  相似文献   

9.
Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT.   总被引:7,自引:2,他引:5       下载免费PDF全文
A strain of Pseudomonas spp. was isolated from nitrobenzene-contaminated soil on 4-nitrotoluene as the sole source of carbon, nitrogen, and energy. The organism also grew on 4-nitrobenzaldehyde, and 4-nitrobenzoate. 4-Nitrobenzoate and ammonia were detected in the culture fluid of glucose-grown cells after induction with 4-nitrotoluene. Washed suspensions of 4-nitrotoluene- or 4-nitrobenzoate-grown cells oxidized 4-nitrotoluene, 4-nitrobenzaldehyde, 4-nitrobenzyl alcohol, and protocatechuate. Extracts from induced cells contained 4-nitrobenzaldehyde dehydrogenase, 4-nitrobenzyl alcohol dehydrogenase, and protocatechuate 4,5-dioxygenase activities. Under anaerobic conditions, cell extracts converted 4-nitrobenzoate or 4-hydroxylaminobenzoate to protocatechuate. Conversion of 4-nitrobenzoate to protocatechuate required NADPH. These results indicate that 4-nitrotoluene was degraded by an initial oxidation of the methyl group to form 4-nitrobenzyl alcohol, which was converted to 4-nitrobenzoate via 4-nitrobenzaldehyde. The 4-nitrobenzoate was reduced to 4-hydroxylaminobenzoate, which was converted to protocatechuate. A protocatechuate 4,5-dioxygenase catalyzed meta-ring fission of the protocatechuate. The detection of 4-nitrobenzaldehyde and 4-nitrobenzyl alcohol dehydrogenase and 4-nitrotoluene oxygenase activities in 4-nitrobenzoate-grown cells suggests that 4-nitrobenzoate is an inducer of the 4-nitrotoluene degradative pathway.  相似文献   

10.
The initial kinetics of yeast phosphofructokinase was studied by stopped-flow measurements over an enzyme concentration range from 0.5 mg/ml to 0.01 mg/ml. Before attaining the steady state the reaction showed a lag phase in the product formation, the duration of which was found to decrease with increasing enzyme concentration. The lag phase disappeared after preincubation of the enzyme for at least five minutes with either fructose 6-phosphate, fructose 1,6-bisphosphate or fructose 2,6-bisphosphate. Preincubation of the enzyme with either AMP or ADP resulted in a reduction of this phase, while ATP was without effect. Simultaneous addition of fructose 1,6-bisphosphate to the reaction mixture of the enzyme causes a significant shortening of the transient phase, whereas micromolar concentrations of fructose 2,6-bisphosphate are capable of abolishing the lag phase completely. The occurrence of an initial transient phase suggests that the enzyme after starting the reaction converts from a state of low activity to one of high activity. This conversion mainly depends on the concentration of fructose 1,6-bisphosphate generated in the course of the reaction. In addition an association reaction of the enzyme seems to be involved in the process of conversion of the phosphofructokinase during the initial transient phase.  相似文献   

11.
The stimulation or inhibition of ribulose diphosphate oxygenase by a variety of compounds is compared with the reported effects on these compounds on the ribulose diphosphate carboxylase activity. A possible transition state analog of ribulose diphosphate, 2-carboxyribitol 1, 5-diphosphate, at a molar ratio of inhibitor to enzyme of 10 to 1, irreversibly inactivates the oxygenase and carboxylase activities. This is consistent with the hypothesis that there may be a single active site for both the carboxylase and oxygenase activities. Several compounds of the reductive pentose photosynthetic carbon cycle act as effectors of the ribulose diphosphate oxygenase in a manner complementary to their reported effect upon the carboxylase. Ribose 5-phosphate inhibits the oxygenase with an apparent Ki of 1.8 mM, but it is reported to activate the carboxylase; fructose 6-phosphate and glucose 6-phosphate act similarly but are less effective than ribose 5-phosphate. Fructose 1. 6-diphosphate stimulates the oxygenase at low magnesium ion concentrations. The stimulatory effect of 6-phosphogluconate on the oxygenase is associated with a 3-fold reduction of the Km (Mg2+). ATP inhibits the oxygenase but has been reported to stimulate the carboxylase; pyrophosphate acts in an opposite manner. From these results it appears that the ratio of carboxylase to oxygenase activity may be a variable factor with predictable subsequent alteration in the ratio between photosynthetic CO2 fixation and photorespiration.  相似文献   

12.
J.E. TURNER AND N. ALLISON. 1995. A newly-isolated strain of Pseudomonas putida (HVA-1) utilized homovanillic acid as sole carbon and energy source. Homovanillate-grown bacteria oxidized homovanillate and homoprotocatechuate but monohydroxylated and other methoxylated phenylacetic acids were oxidized poorly; methoxy-substituted benzoates were not oxidized. Extracts of homovanillate-grown cells contained homoprotocatechuate 2,3-dioxygenase but the primary homovanillate-degrading enzyme could not be detected. No other methoxylated phenylacetic acid supported growth of the organism but vanillate was utilized as a carbon and energy source. When homovanillate-grown cells were used to inoculate media containing vanillate a 26 h lag period occurred before growth commenced. Vanillate-grown bacteria oxidized vanillate and protocatechuate but no significant oxygen uptake was obtained with homovanillate and other phenylacetic acid derivatives. Analysis of pathway intermediates revealed that homovanillate-grown bacteria produced homoprotocatechuate, formaldehyde and the ring-cleavage product 5-carboxymethyl 2-hydroxymuconic semialdehyde (CHMS) when incubated with homovanillate but monohydroxylated or monomethoxylated phenylacetic acids were not detected. These results suggest that homovanillate is degraded directly to the ring-cleavage substrate homoprotocatechuate by an unstable but highly specific demethylase and then undergoes extradiol cleavage to CHMS. It would also appear that the uptake/degradatory pathways for homovanillate and vanillate in this organism are entirely separate and independently controlled. If stabilization of the homovanillate demethylase can be achieved, there is potential for exploiting the substrate specificity of this enzyme in both medical diagnosis and in the paper industry.  相似文献   

13.
Abstract When a cellobiose-grown inoculum of Clostridium thermocellum was transferred to either glucose or fructose as the sole carbon sourcem growth occurred only after a long lag of 180–200 h. We established that sugar uptake and phosphorylation were not limiting growth nor was the lag period the time take for a physiological adaptation process or for the growth of a mutant carried over in the cellibiose-grown incoculum. It became apparent that a mutation was occuring during the lag period in response to the selection pressure exerted by the presence of glucose or fructose as the sole carbon source. Once growth occurred on glucose and fructose, the cells could be transferred to cellobiose and back to glucose or fructose without exhibiting the long lag period. The change was stable over several transfers in the respective sugars.  相似文献   

14.
The metabolism of cresols by species of Pseudomonas   总被引:64,自引:11,他引:53       下载免费PDF全文
1. A comparison of rates of oxidation of various compounds by whole cells indicated that protocatechuate was a reaction intermediate when a non-fluorescent species of Pseudomonas oxidized p-cresol. In contrast, a fluorescent Pseudomonas oxidized 3-methylcatechol and 4-methylcatechol when grown with p-cresol, but did not oxidize protocatechuate. 2. Heat-treated extracts of the fluorescent Pseudomonas oxidized catechol, 3-methylcatechol and 4-methylcatechol to ring-fission products, the spectroscopic properties of which were recorded. Rates of enzymic degradation of these products were also measured. 3. Acetic acid and formic acid were obtained by the action of a Sephadex-treated extract on 3-methylcatechol and 4-methylcatechol respectively. In each case 0.8mol. of the carboxylic acid was formed from 1.0mol. of substrate. 4. Dialysed extracts converted 3-methylcatechol into acetaldehyde and pyruvate, with 4-hydroxy-2-oxovalerate as a reaction intermediate. 4-Methylcatechol was converted first into 4-hydroxy-2-oxohexanoate and then into propionaldehyde and pyruvate. 5. The ring-fission product of catechol was formed from phenol by a fluorescent Pseudomonas, that of 3-methylcatechol was formed from o-cresol and m-cresol, and the ring-fission product of 4-methylcatechol was given from p-cresol. Propionate was readily oxidized by these cells after growth with p-cresol, but this compound was not attacked when phenol, o-cresol or m-cresol served as source of carbon. 6. Cell extracts appeared to attack only one enantiomer of synthetic 4-hydroxy-2-oxohexanoate.  相似文献   

15.
The route of toluene degradation by Pseudomonas mendocina KR1 was studied by separating or purifying from toluene-grown cells the catabolic enzymes responsible for oxidation of p-cresol through the ring cleavage step. Enzymatic transformations corresponding to each of the metabolic steps in the proposed degradative pathway were conducted with cell-free preparations. p-Cresol was metabolized by the enzyme p-cresol methylhydroxylase to p-hydroxybenzaldehyde. p-Hydroxybenzaldehyde was further oxidized by partially purified enzyme preparations to p-hydroxybenzoate and subsequently hydroxylated to form protocatechuate. Protocatechuate was then oxidized by ortho ring cleavage.  相似文献   

16.
The synthesis of the glycoprotein enzymes, invertase and acid phosphatase, by protoplasts of Saccharomyces mutant 1016, is inhibited by 2-deoxy-d-glucose (2-dG) after a 20- to 30-min lag period under conditions (external sugar to 2-dG ratio of 40:1) which cause only a slight decrease in total protein synthesis. Formation of one intracellular enzyme, alpha-glucosidase, is also sensitive, but production of another, alkaline phosphatase, is unaffected. A nonmetabolized glucose analogue, 6-deoxy-d-glucose, had no inhibitory effect. The total uptake of external fructose and maltose was decreased by 2-dG after a lag period of about the same duration as that before the inhibition of synthesis of enzymes or of mannan and glucan; during this time 2-dG was taken up by the protoplasts and accumulated primarily as 2-dG-6-phosphate (2-dG-6-P). Studies in vitro showed that 2-dG-6-P inhibits both yeast phosphoglucose isomerase and phosphomannose isomerase. The intracellular levels of the 6-phosphates of glucose, fructose, and mannose did not increase in the presence of 2-dG. We suggest that the high internal level of 2-dG-6-P blocks synthesis of the cell wall polysaccharides and glycoproteins in two ways. It directly inhibits the conversion of fructose-6-P to glucose-6-P and to mannose-6-P. At the same time, it restricts the transport of fructose and maltose into the cell; however, the continuing limited uptake of the sugars still provides sufficient energy for protein synthesis. The cessation of alpha-glucosidase synthesis is probably a result of depletion of the internal pool of maltose (the inducer). Our findings support the suggestion that restriction of synthesis of the carbohydrate moiety of glycoproteins reduces formation of the active enzyme.  相似文献   

17.
Fructose metabolism in four Pseudomonas species   总被引:1,自引:0,他引:1  
1. ATP-Dependent phosphorylation of fructose could not be detected in extracts of fructose-grown cells of Pseudomonas extorquens strain 16, Pseudomonas 3A2, Pseudomonas acidovorans and Pseudomonas fluorescens. Instead, phosphorylation of fructose to fructose-1-phosphate was found to occur when cell-free extracts were incubated with fructose and phosphoenolpyruvate. Such an activity could not be detected in cell-free extracts of succinate-grown cells. 2. High levels of 1-phosphofructokinase were found in extracts of the above organisms when growth on fructose. 3. Mutants of Pseudomonas extorquens strain 16 lacking 1-phosphofructokinase were unable to grow on fructose. Revertants to growth on fructose had regained the capacity to synthesize this enzyme, indicating its necessary involvement in fructose metabolism. 4. A survey has been carried out of enzymes involved in carbohydrate metabolism in the species listed above.  相似文献   

18.
1. Protocatechuate 3,4-oxygenase in the soluble part of a cell-free extract of Pseudomonas fluorescens (strain T) sedimented more rapidly than vanillate O-demethylase under specified conditions in a preparative ultracentrifuge. 2. The supernatant from this process contained vanillate O-demethylase and formaldehyde dehydrogenase, and when supplemented with NADH oxidized vanillate with an uptake of 1 mole of oxygen/mole of substrate and accumulation of protocatechuate. 3. This uptake was decreased to 0.5mole/mole of substrate in the presence of semicarbazide as trapping agent for formaldehyde. 4. Reasons are presented for the process of methyl group removal from vanillate being oxidative demethylation.  相似文献   

19.
Aims:  To investigate the mechanism of insoluble phosphate (P) solubilization and plant growth-promoting activity by Pseudomonas fluorescens RAF15.
Methods and Results:  We investigated the ability of Ps. fluorescens RAF15 to solubilize insoluble P via two possible mechanisms: proton excretion by ammonium assimilation and organic acid production. There were no clear differences in pH and P solubilization between glucose-ammonium and glucose-nitrate media. P solubilization was significantly promoted with glucose compared to fructose. Regardless of nitrogen sources used, Ps. fluorescens RAF15 solubilized little insoluble P with fructose. High performance liquid chromatography analysis showed that Ps. fluorescens RAF15 produced mainly gluconic and tartaric acids with small amounts of 2-ketogluconic, formic and acetic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with soluble P concentration. Ps. fluorescens RAF1 showed the properties related to plant growth promotion: pectinase, protease, lipase, siderophore, hydrogen cyanide, and indoleacetic acid.
Conclusion:  This study indicated that the P solubility was directly correlated with the organic acids produced.
Significance and Impact of the Study:  Pseudomonas fluorescens RAF15 possessed different traits related to plant growth promotion. Therefore, Ps. fluorescens RAF15 could be a potential candidate for the development of biofertilizer or biocontrol agent.  相似文献   

20.
Lee JK  Ang EL  Zhao H 《Journal of bacteriology》2006,188(17):6179-6183
Molecular modeling and mutational analysis (site-directed mutagenesis and saturation mutagenesis) were used to probe the molecular determinants of the substrate specificity of aminopyrrolnitrin oxygenase (PrnD) from Pseudomonas fluorescens Pf-5. There are 17 putative substrate-contacting residues, and mutations at two of the positions, positions 312 and 277, could modulate the enzyme substrate specificity separately or in combination. Interestingly, several of the mutants obtained exhibited higher catalytic efficiency (approximately two- to sevenfold higher) with the physiological substrate aminopyrrolnitrin than the wild-type enzyme exhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号