首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heteronuclear 13C and 15N three-dimensional nuclear magnetic resonance (n.m.r.) techniques have been used to determine the solution structure of human interleukin 4, a four-helix bundle protein. A dynamical simulated annealing protocol was used to calculate an ensemble of structures from an n.m.r. data set of 1735 distance restraints, 101 phi angle restraints and 27 pairs of hydrogen bond restraints. The protein structure has a left-handed up-up-down-down topology for the four helices with the two long overhand loops in the structure being connected by a short section of irregular antiparallel beta-sheet. Analysis of the side-chains in the protein shows a clustering of hydrophobic residues, particularly leucines, in the core of the bundle with the side-chains of charged residues being located on the protein surface. The solution structure has been compared with a recent structure prediction for human interleukin 4 and with crystal structures of other helix bundle proteins.  相似文献   

2.
Gao GH  Liu W  Dai JX  Wang JF  Hu Z  Zhang Y  Wang DC 《Biochemistry》2001,40(37):10973-10978
The three-dimensional solution structure of PAFP-S, an antifungal peptide extracted from the seeds of Phytolacca americana, was determined using 1H NMR spectroscopy. This cationic peptide contains 38 amino acid residues. Its structure was determined from 302 distance restraints and 36 dihedral restraints derived from NOEs and coupling constants. The peptide has six cysteines involved in three disulfide bonds. The previously unassigned parings have now been determined from NMR data. The solution structure of PAFP-S is presented as a set of 20 structures using ab initio dynamic simulated annealing, with an average RMS deviation of 1.68 A for the backbone heavy atoms and 2.19 A for all heavy atoms, respectively. For the well-defined triple-stranded beta-sheet involving residues 8-10, 23-27, and 32-36, the corresponding values were 0.39 and 1.25 A. The global fold involves a cystine-knotted three-stranded antiparallel beta-sheet (residues 8-10, 23-27, 32-36), a flexible loop (residues 14-19), and four beta-reverse turns (residues 4-8, 11-14, 19-22, 28-32). This structure features all the characteristics of the knottin fold. It is the first structural model of an antifungal peptide that adopts a knottin-type structure. PAFP-S has an extended hydrophobic surface comprised of residues Tyr23, Phe25, Ile27, Tyr32, and Val34. The side chains of these residues are well-defined in the NMR structure. Several hydrophilic and positively charged residues (Arg9, Arg38, and Lys36) surround the hydrophobic surface, giving PAFP-S an amphiphilic character which would be the main structural basis of its biological function.  相似文献   

3.
A low resolution solution structure of the cytokine interleukin-1 beta, a 153 residue protein of molecular weight 17,400, has been determined on the basis of 446 nuclear Overhauser effect (NOE) derived approximate interproton distance restraints involving solely NH, C alpha H and C beta H protons, supplemented by 90 distance restraints for 45 hydrogen bonds, and 79 phi torsion angle restraints. With the exception of 27 C alpha H-C alpha H NOEs, all the NOEs were assigned from a three-dimensional 1H-1H NOE 15N-1H heteronuclear multiple quantum coherence (HMQC) spectrum. The torsion angle restraints were obtained from accurate 3JHN alpha coupling constants measured from a HMQC-J spectrum, while the hydrogen bonds were derived from a qualitative analysis of the NOE, coupling constant and amide exchange data. A total of 20 simulated annealing (SA) structures was computed using the hybrid distance geometry-dynamical simulated annealing method. The solution structure of IL-1 beta comprises 12 beta-strands arranged in three pseudo-symmetrical topological units (each consisting of 5 anti-parallel beta-strands), joined by turns, short loops and long loops. The core of the structure, which is made up of the 12 beta-strands, together with the turns joining strands I and II, strands VIII and IX and strands X and XI, is well determined with a backbone atomic root-mean-square (r.m.s.) distribution about the mean co-ordinate positions of 1.2(+/- 0.1) A. The loop conformations, on the other hand, are poorly determined by the current data. A comparison of the core of the low resolution solution structure of IL-1 beta with that of the X-ray structure indicates that they are similar, with a backbone atomic r.m.s. difference of only 1.5 A between the co-ordinates of the restrained minimized mean of the SA structures and the X-ray structure.  相似文献   

4.
The three-dimensional solution structure of a nonspecific lipid transfer protein extracted from maize seeds determined by 1H NMR spectroscopy is described. This cationic protein consists of 93 amino acid residues. Its structure was determined from 1,091 NOE-derived distance restraints, including 929 interresidue connectivities and 197 dihedral restraints (phi, psi, chi 1) derived from NOEs and 3J coupling constants. The global fold involving four helical fragments connected by three loops and a C-terminal tail without regular secondary structures is stabilized by four disulfide bridges. The most striking feature of this structure is the existence of an internal hydrophobic cavity running through the whole molecule. The global fold of this protein, very similar to that of a previously described lipid transfer protein extracted from wheat seeds (Gincel E et al., 1994, Eur J Biochem 226:413-422) constitutes a new architecture for alpha-class proteins. 1H NMR and fluorescence studies show that this protein forms well-defined complexes in aqueous solution with lysophosphatidylcholine. Dissociation constants, Kd, of 1.9 +/- 0.6 x 10(-6) M and > 10(-3) M were obtained with lyso-C16 and -C12, respectively. A structure model for a lipid-protein complex is proposed in which the aliphatic chain of the phospholipid is inserted in the internal cavity and the polar head interacts with the charged side chains located at one end of this cavity. Our model for the lipid-protein complex is qualitatively very similar to the recently published crystal structure (Shin DH et al., 1995, Structure 3:189-199).  相似文献   

5.
The solution conformation of the antibacterial polypeptide cecropin A from the Cecropia moth is investigated by nuclear magnetic resonance (NMR) spectroscopy under conditions where it adopts a fully ordered structure, as judged by previous circular dichroism studies [Steiner, H. (1982) FEBS Lett. 137, 283-287], namely, 15% (v/v) hexafluoroisopropyl alcohol. By use of a combination of two-dimensional NMR techniques the 1H NMR spectrum of cecropin A is completely assigned. A set of 243 approximate interproton distance restraints is derived from nuclear Overhauser enhancement (NOE) measurements. These, together with 32 distance restraints for the 16 intrahelical hydrogen bonds identified on the basis of the pattern of short-range NOEs, form the basis of a three-dimensional structure determination by dynamical simulated annealing [Nilges, M., Clore, G.M., & Gronenborn, A.M. (1988) FEBS Lett. 229, 317-324]. The calculations are carried out starting from three initial structures, an alpha-helix, an extended beta-strand, and a mixed alpha/beta structure. Seven independent structures are computed from each starting structure by using different random number seeds for the assignments of the initial velocities. All 21 calculated structures satisfy the experimental restraints, display very small deviations from idealized covalent geometry, and possess good nonbonded contacts. Analysis of the 21 converged structure indicates that there are two helical regions extending from residues 5 to 21 and from residues 24 to 37 which are very well defined in terms of both atomic root mean square differences and backbone torsion angles. For the two helical regions individually the average backbone rms difference between all pairs of structures is approximately 1 A. The long axes of the two helices lie in two planes, which are at an angle of 70-100 degrees to each other. The orientation of the helices within these planes, however, cannot be determined due to the paucity of NOEs between the two helices.  相似文献   

6.
Polytopic alpha-helical membrane proteins present one of the final frontiers for protein structural biology, with significant challenges causing severe under-representation in the protein structure databank. However, with the advent of hardware and methodology geared to the study of large molecular weight complexes, solution NMR is being increasingly considered as a tool for structural studies of these types of membrane proteins. One method that has the potential to facilitate these studies utilizes uniformly deuterated samples with protons reintroduced at one or two methyl groups of leucine, valine and isoleucine. In this work we demonstrate that in spite of the increased proportion of these amino acids in membrane proteins, the quality of structures that can be obtained from this strategy is similar to that obtained for all alpha-helical water soluble proteins. This is partly attributed to the observation that NOEs between residues within the transmembrane helix did not have an impact on structure quality. Instead the most important factors controlling structure accuracy were the strength of dihedral angle restraints imposed and the number of unique inter-helical pairs of residues constrained by NOEs. Overall these results suggest that the most accurate structures will arise from accurate identification of helical segments and utilization of inter-helical distance restraints from various sources to maximize the distribution of long-range restraints.  相似文献   

7.
The peptide 6-amino caproyl-Pro-Ser-Leu-Lys-Met-Ala-Asp-Pro-Asn-Arg-Phe-Arg-Gly-Lys-Asp-Leu- Pro-6- amino caproate has been synthesized and its secondary structure has been investigated by 1H n.m.r. at 400 MHz. Resonances were assigned from 2D NOESY and COSY spectra, and the secondary structure was determined using NOEs, three-bond coupling constants, and exchange rates of amide protons. The peptide has two tight turns centered on the Pro-Asn and Arg-Gly pairs. The relationship between the secondary structure found here and the antigenic nature of the peptide is discussed.  相似文献   

8.
C D Andrew  S Penel  G R Jones  A J Doig 《Proteins》2001,45(4):449-455
A simplistic, yet often used, view of protein stability is that amino acids attract other amino acids with similar polarity, whereas nonpolar and polar side chains repel. Here we show that nonpolar/polar interactions, namely Val or Ile bonding to Lys or Arg in alpha-helices, can in fact be stabilizing. Residues spaced i, i + 4 in alpha-helices are on the same face of the helix, with potential to favorably interact and stabilize the structure. We observe that the nonpolar/polar pairs Ile-Lys, Ile-Arg, and Val-Lys occur in protein helices more often than expected when spaced i, i + 4. Partially helical peptides containing pairs of nonpolar/polar residues were synthesized. Controls with i, i + 5 spacing have the residues on opposite faces of the helix and are less helical than the test peptides with the i, i + 4 interactions. Experimental circular dichroism results were analyzed with helix-coil theory to calculate the free energy for the interactions. All three stabilize the helix with DeltaG between -0.14 and -0.32 kcal x mol(-1). The interactions are hydrophobic with contacts between Val or Ile and the alkyl groups in Arg or Lys. Side chains such as Lys and Arg can thus interact favorably with both polar and nonpolar residues.  相似文献   

9.
The depsipeptide DNA-intercalating antibiotic luzopeptin was studied in solution by n.m.r. methods. Two-dimensional 1H double-quantum-filtered correlation spectroscopy (DQF-COSY) and nuclear-Overhauser-effect spectroscopy (NOESY) confirm the primary structure and twofold symmetry of luzopeptin and provide details of its three-dimensional conformation in solution. Trans-annular hydrogen bonds between the glycine NH groups and carbonyl oxygen atoms have been identified in the crystalline state [Arnold & Clardy (1981) J. Am. Chem. Soc. 103, 1243-1244], and are important in maintaining an antiparallel beta-sheet conformation. The n.m.r. data indicate that the glycine NH protons are appreciably shielded from the solvent molecules, which suggests that these hydrogen bonds are maintained in solution. The orientation of the quinoline chromophores is defined by two-dimensional NOE cross-peaks that position the N-methyl group of the L-beta-hydroxyvaline residue close in space to both the quinoline H-8 and serine NH proton. This pattern of NOEs is in accord both with the chromophore configuration found in the crystal and one where the quinoline rings are aligned in a parallel manner at right-angles to the depsipeptide ring. The n.m.r. data are consistent with a hydrogen bond between the quinoline hydroxy groups and the quinoline carbonyl oxygen atoms. The pyridazine acetylmethyl groups give NOEs to the C(alpha)H groups of the beta-hydroxy-N-methylvaline residues, showing that the acetyl groups, for at least some of the time, stretch over the depsipeptide ring, occluding one face of the molecule. Both of the latter features are also found in the crystal structure. Resonances in the 13C-n.m.r. spectrum of luzopeptin have been assigned by transferring 1H assignments to their covalently bonded carbon atoms via a heteronuclear shift-correlation experiment (HETCOR). The measurement of spin-lattice relaxation times and 1H-13C NOEs at specific sites in the molecule has led us to conclude that segmental motions within the depsipeptide ring are restricted and that the 13C relaxation data for luzopeptin's protonated carbon atoms are adequately described by isotropic tumbling in solution. Furthermore, relaxation data for the carbon atoms of the quinoline chromophores show that these rings exhibit similar motion to the depsipeptide ring and are not rotating rapidly with respect to it. Taken together all the data imply that luzopeptin is fairly rigid in solution, on the time scale of molecular tumbling, and has, or can readily attain, a staple-like structure suitable for bisintercalation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The solution structure of a novel 69 residue proteinase inhibitor, Linum usitatissimum trypsin inhibitor (LUTI), was determined using a method based on computer aided assignment of nuclear Overhauser enhancement spectroscopy (NOESY) data. The approach applied uses the program NOAH/DYANA for automatic assignment of NOESY cross-peaks. Calculations were carried out using two unassigned NOESY peak lists and a set of determined dihedral angle restraints. In addition, hydrogen bonds involving amide protons were identified during calculations using geometrical criteria and values of HN temperature coefficients. Stereospecific assignment of beta-methylene protons was carried out using a standard procedure based on nuclear Overhauser enhancement intensities and 3J(alpha)(beta) coupling constants. Further stereospecific assignment of methylene protons and diastereotopic methyl groups were established upon structure-based method available in the program GLOMSA and chemical shift calculations. The applied algorithm allowed us to assign 1968 out of 2164 peaks (91%) derived from NOESY spectra recorded in H2O and 2H2O. The final experimental data input consisted of 1609 interproton distance restraints, 88 restraints for 44 hydrogen bonds, 63 torsion angle restraints and 32 stereospecifically assigned methylene proton pairs and methyl groups. The algorithm allowed the calculation of a high precision protein structure without the laborious manual assignment of NOESY cross-peaks. For the 20 best conformers selected out of 40 refined ones in the program CNS, the calculated average pairwise rmsd values for residues 3 to 69 were 0.38 A (backbone atoms) and 1.02 A (all heavy atoms). The three-dimensional LUTI structure consists of a mixed parallel and antiparallel beta-sheet, a single alpha-helix and shows the fold of the potato 1 family of proteinase inhibitors. Compared to known structures of the family, LUTI contains Arg and Trp residues at positions P6' and P8', respectively, instead of two Arg residues, involved in the proteinase binding loop stabilization. A consequence of the ArgTrp substitution at P8' is a slightly more compact conformation of the loop relative to the protein core.  相似文献   

11.
M J Sutcliffe  C M Dobson 《Proteins》1991,10(2):117-129
The effect of including paramagnetic relaxation data as additional restraints in the determination of protein tertiary structures from NMR data has been explored by a systematic series of model calculations. The system used for testing the method was the 2.0 A resolution tetragonal crystal structure of hen egg white lysozyme (129 amino acid residues) and structures were generated using a version of the hybrid "distance geometry-dynamic simulated annealing" procedure. A limited set of 769 NOEs was used as restraints in all the calculations; the strengths of these were categorized into three classes on the basis of distances observed in the crystal structure. The values of 50 phi angles were also restrained on the basis of amide-alpha coupling constants calculated from the X-ray structure. Five sets of 12 structures were determined using differing sets of paramagnetic relaxation data as restraints additional to those involving the NOE and coupling constant data. The paramagnetic relaxation data were modeled on the basis of the distances of defined protons from the crystallographic binding site of Gd3+ in lysozyme. Analysis of the results showed that the relaxation data significantly improved the correspondence between the set of generated structures and the crystal structure, and that the more well defined the relaxation data, the more significant the improvement in the quality of the structures. The results suggest that the inclusion of paramagnetic relaxation restraints could be of significant value for the experimental determination of protein structures from NMR data.  相似文献   

12.
The determination of the three-dimensional solution structure of α1-purothionin using a combination of metric matrix distance geometry and restrained molecular dynamics calculations based on n.m.r. data is presented. The experimental data comprise complete sequence-specific proton resonance assignments, a set of 310 approximate interproton distance restraints derived from nuclear Overhauser effects, 27 Ø backbone torsion angle restraints derived from vicinal coupling constants, 4 distance restraints from hydrogen bonds and 12 distance restraints from disulphide bridges. The average atomic rms difference between the final nine converged structures and the mean structure obtained by averaging their coordinates is 1.5 ± 0.1 å for the backbone atoms and 2.0 ± 0.1 å for all atoms. The overall shape of α1-purothionin is that of the capital letter L, similar to that of crambin, with the longer arm comprising two approximately parallel α-helices and the shorter arm a strand and a mini anti-parallel β sheet.  相似文献   

13.
Alpha1-microglobulin (alpha1m) is an electrophoretically heterogeneous plasma protein. It belongs to the lipocalin superfamily, a group of proteins with a three-dimensional (3D) structure that forms an internal hydrophobic ligand-binding pocket. Alpha1m carries a covalently linked unidentified chromophore that gives the protein a characteristic brown color and extremely heterogeneous optical properties. Twenty-one different colored tryptic peptides corresponding to residues 88-94, 118-121, and 122-134 of human alpha1m were purified. In these peptides, the side chains of Lys92, Lys118, and Lys130 carried size heterogeneous, covalently attached, unidentified chromophores with molecular masses between 122 and 282 atomic mass units (amu). In addition, a previously unknown uncolored lipophilic 282 amu compound was found strongly, but noncovalently associated with the colored peptides. Uncolored tryptic peptides containing the same Lys residues were also purified. These peptides did not carry any additional mass (i.e., chromophore) suggesting that only a fraction of the Lys92, Lys118, and Lys130 are modified. The results can explain the size, charge, and optical heterogeneity of alpha1m. A 3D model of alpha1m, based on the structure of rat epididymal retinoic acid-binding protein (ERABP), suggests that Lys92, Lys118, and Lys130 are semiburied near the entrance of the lipocalin pocket. This was supported by the fluorescence spectra of alpha1m under native and denatured conditions, which indicated that the chromophores are buried, or semiburied, in the interior of the protein. In human plasma, approximately 50% of alpha1m is complex bound to IgA. Only the free alpha1m carried colored groups, whereas alpha1m linked to IgA was uncolored.  相似文献   

14.
High-resolution structure determination of homo-oligomeric protein complexes remains a daunting task for NMR spectroscopists. Although isotope-filtered experiments allow separation of intermolecular NOEs from intramolecular NOEs and determination of the structure of each subunit within the oligomeric state, degenerate chemical shifts of equivalent nuclei from different subunits make it difficult to assign intermolecular NOEs to nuclei from specific pairs of subunits with certainty, hindering structural analysis of the oligomeric state. Here, we introduce a graphical method, DISCO, for the analysis of intermolecular distance restraints and structure determination of symmetric homo-oligomers using residual dipolar couplings. Based on knowledge that the symmetry axis of an oligomeric complex must be parallel to an eigenvector of the alignment tensor of residual dipolar couplings, we can represent distance restraints as annuli in a plane encoding the parameters of the symmetry axis. Oligomeric protein structures with the best restraint satisfaction correspond to regions of this plane with the greatest number of overlapping annuli. This graphical analysis yields a technique to characterize the complete set of oligomeric structures satisfying the distance restraints and to quantitatively evaluate the contribution of each distance restraint. We demonstrate our method for the trimeric E. coli diacylglycerol kinase, addressing the challenges in obtaining subunit assignments for distance restraints. We also demonstrate our method on a dimeric mutant of the immunoglobulin-binding domain B1 of streptococcal protein G to show the resilience of our method to ambiguous atom assignments. In both studies, DISCO computed oligomer structures with high accuracy despite using ambiguously assigned distance restraints.  相似文献   

15.
A designed peptide, PGAa showed an excellent antifungal activity as well as an efficient bactericidal activity toward gram-positive, especially in the pathogenic yeast Candida albicans 28838. The solution structures of PGAa have been determined both in 40% TFE/water solution and DPC micelle by CD and NMR spectroscopy. Based on NOEs, vicinal coupling constants, backbone amide exchange rates, and chemical shift indices, PGAa formed a long amphipathic alpha-helical conformation in both TFE and DPC micelle environments, spanning the residues Ile(2)-Ala(19) in TFE and Lys(5)-Ala(19) in DPC micelle, respectively. Solution structures suggested that the hydrophobic residues would interact with the fatty acyl chains of the lipid bilayer, while the positively charged side-chains exposed to aqueous environments. Therefore, we conclude that the alpha-helical structure as well as the highly amphiphatic nature of PGAa peptide may play a critical role in its antimicrobial activity as well as selectivities in different species.  相似文献   

16.
The conformation of substance P (free acid) (SPOH) has been investigated in dimethylsulfoxide (DMSO), water and dipalmitoylphosphotidylcholine (DPPC) bilayers by two-dimensional NMR and restraint molecular dynamics simulations. The observed NOE patterns for SPOH in these media are very much different from each other. Molecular modeling of the conformation of SPOH by incorporating NOEs as distance restraints shows wide differences in its conformation in three media. The main structural features for SPOH in DMSO are y-bends at Pro4 and Phe7 along with a non-specific bend around Lys3-Pro4-Gln5-Gln6, which are stabilized by Lys3CO-->Gln5NH, Gln6CO-->Phe8NH hydrogen bonding. The more flexible conformation of SPOH in water is transformed to an ordered structure after incorporation in DPPC bilayers. The conformation of SPOH in DPPC bilayers is characterized by gamma-bends at Pro4, Gln6 and Phe7, which are stabilized by hydrogen bonding between Lys3CO-->Gln5NH, Gln5CO-->Phe7NH and Gln6CO-->Phe8NH, respectively. The absence of biological activity in SPOH has been attributed to the absence of any helix like structure at the central residues and absence of any interresidue interaction with C-terminal OH group, in DPPC bilayers, a feature shown to be an important prerequisite for SP and SP agonists to bind to the NKI tachykinin receptor.  相似文献   

17.
The three-dimensional solution structure of the alpha-subunit in the alpha, beta heterodimeric human chorionic gonadotropin (hCG), deglycosylated with endo-beta-N-acetylglucosaminidase-B (dg-alpha hCG), was determined using 2D homonuclear and 2D heteronuclear 1H, 13C NMR spectroscopy at natural abundance in conjunction with the program package XPLOR. The distance geometry/simulated annealing protocol was modified to allow for the efficient modelling of the cystine knot motif present in alpha hCG. The protein structure was modelled with 620 interproton distance restraints and the GlcNAc residue linked to Asn78 was modelled with 30 protein-carbohydrate and 3 intraresidual NOEs. The solution structure of dg-alpha hCG is represented by an ensemble of 27 structures. In comparison to the crystal structure of the dimer, the solution structure of free dg-alpha hCG exhibits: (a) an increased structural disorder (residues 33-57); (b) a different backbone conformation near Val76 and Glu77; and (c) a larger flexibility. These differences are caused by the absence of the interactions with the beta-subunit. Consequently, in free dg-alpha hCG, compared to the intact dimer, the two hairpin loops 20-23 and 70-74 are arranged differently with respect to each other. The beta-GlcNAc(78) is tightly associated with the hydrophobic protein-core in between the beta-hairpins. This conclusion is based on the NOEs from the axial H1, H3, H5 atoms and the N-acetyl protons of beta-GlcNAc(78) to the protein-core. The hydrophobic protein-core between the beta-hairpins is thereby shielded from the solvent.  相似文献   

18.
We have used NMR spectroscopy to determine the three-dimensional (3D) structure, and to characterize the backbone dynamics, of a recombinant version of bovine beta-lactoglobulin (variant A) at pH 2. 6, where the protein is a monomer. The structure of this low-pH form of beta-lactoglobulin is very similar to that of a subunit within the dimer at pH 6.2. The root-mean-square deviation from the pH 6.2 (crystal) structure, calculated for backbone atoms of residues 6-160, is approximately 1.3 A. Differences arise from the orientation, with respect to the calyx, of the A-B and C-D loops, and of the flanking three-turn alpha-helix. The hydrophobic cavity within the calyx is retained at low pH. The E-F loop (residues 85-90), which moves to occlude the opening of the cavity over the pH range 7.2-6.2, is in the "closed" position at pH 2.6, and the side chain of Glu89 is buried. We also carried out measurements of (15)N T(1)s and T(2)s and (1)H-(15)N heteronuclear NOEs at pH 2.6 and 37 degrees C. Although the residues of the E-F loop (residues 86-89) have the highest crystallographic B-factors, the conformation of this loop is reasonably well defined by the NMR data, and its backbone is not especially mobile on the pico- to nanosecond time scale. Several residues (Ser21, Lys60, Ala67, Leu87, and Glu112) exhibit large ratios of T(1) to T(2), consistent with conformational exchange on a micro- to millisecond time scale. The positions of these residues in the 3D structure of beta-lactoglobulin are consistent with a role in modulating access to the hydrophobic cavity.  相似文献   

19.
An automated method, based on the principle of simulated annealing, is presented for determining the three-dimensional structures of proteins on the basis of short (less than 5 A) interproton distance data derived from nuclear Overhauser enhancement (NOE) measurements. The method makes use of Newton's equations of motion to increase temporarily the temperature of the system in order to search for the global minimum region of a target function comprising purely geometric restraints. These consist of interproton distances supplemented by bond lengths, bond angles, planes and soft van der Waals repulsion terms. The latter replace the dihedral, van der Waals, electrostatic and hydrogen-bonding potentials of the empirical energy function used in molecular dynamics simulations. The method presented involves the implementation of a number of innovations over our previous restrained molecular dynamics approach [Clore, G.M., Brünger, A.T., Karplus, M. and Gronenborn, A.M. (1986) J. Mol. Biol., 191, 523-551]. These include the development of a new effective potential for the interproton distance restraints whose functional form is dependent on the magnitude of the difference between calculated and target values, and the design and implementation of robust and fully automatic protocol. The method is tested on three systems: the model system crambin (46 residues) using X-ray structure derived interproton distance restraints, and potato carboxypeptidase inhibitor (CPI; 39 residues) and barley serine proteinase inhibitor 2 (BSPI-2; 64 residues) using experimentally derived interproton distance restraints. Calculations were carried out starting from the extended strands which had atomic r.m.s. differences of 57, 38 and 33 A with respect to the crystal structures of BSPI-2, crambin and CPI respectively. Unbiased sampling of the conformational space consistent with the restraints was achieved by varying the random number seed used to assign the initial velocities. This ensures that the different trajectories diverge during the early stages of the simulations and only converge later as more and more interproton distance restraints are satisfied. The average backbone atomic r.m.s. difference between the converged structures is 2.2 +/- 0.3 A for crambin (nine structures), 2.4 +/- 0.3 A for CPI (eight structures) and 2.5 +/- 0.2 A for BSPI-2 (five structures). The backbone atomic r.m.s. difference between the mean structures derived by averaging the coordinates of the converged structures and the corresponding X-ray structures is 1.2 A for crambin, 1.6 A for CPI and 1.7 A for BSPI-2.  相似文献   

20.
The conformations of a cyclic analogue of somatostatin, SMS 201-995, have been studied by n.m.r. spectroscopy at 500 MHz in aqueous solution. Assignments were made by use of 2D-correlated methods, especially by detecting long-range connectivities in order to identify the aromic amino-acid and long-range couplings between alpha protons of consecutive residues. Measurements of temperature coefficients of amide protons and of NH-C alpha H coupling constants enabled us to conclude that in water the molecule is rather flexible, with no evidence for a beta turn structure involving Thr6. An equilibrium involving two gamma turn conformations stabilized respectively by Cys2-D-Trp4 and Phe3-Lys5 hydrogen bonds, is responsible for the large upfield shift observed for the Lys5 gamma protons and is compatible with the measured JNH-C alpha H coupling constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号