首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ser158 is located near the middle of the matrix loop connecting transmembrane helices C and D of the mitochondrial phosphate transport protein (PTP). The mutant Ser158Thr PTP is transport-inactive. His32 is located near the middle of transmembrane helix A and Thr79 is located 5 residues away from transmembrane helix B and its N-terminal (matrix end). Single site mutant PTPs that have either residue replaced with Ala are transport-inactive. Based on the high resolution structure of a subunit of the bovine ADP/ATP translocase, on sequence similarities between members of the mitochondrial transport protein family, and on the PTP subunit/subunit contact site between transmembrane A helices, it is now suggested that the Ser158 site is at the PTP subunit/subunit contact site. This contact site is essential for keeping the transport cycles catalyzed by the two PTP subunits 180 degrees out of phase. The data also suggest that His32 and Thr79 of the same subunit interact and couple the phosphate and the proton transport paths.  相似文献   

2.
The mitochondrial phosphate transport protein (PTP) has been purified in a reconstitutively active form from Saccharomyces cerevisiae and Candida parapsilosis. ADP/ATP carriers that copurify have been identified. The PTP from S. cerevisiae migrates as a single band (35 kDa) in sodium dodecyl sulfate gels with the same mobility as the N-ethylmaleimide-alkylated beef heart PTP. It does not cross-react with anti-sera against beef heart PTP. The CNBr peptide maps of the yeast and beef proteins are very different. The rate of unidirectional phosphate uptake into reconstituted proteoliposomes is stimulated about 2.5-fold to a Vmax of 170 mumol of phosphate min-1 (mg PTP)-1 (22 degrees C) by increasing the pHi of the proteoliposomes from 6.8 (same as pHe) to 8.0. The Km for Pi of this reconstituted activity is 2.2 mM. The transport is sensitive to mersalyl (50% inhibition at 60 microM) and insensitive to N-ethylmaleimide. We have purified peptides matching the highly conserved motif Pro-X-(Asp/glu)-X-X-(Lys/Arg)-X-(Arg/lys) (X is an unspecified amino acid) of the triplicate gene structure sequence of the beef heart PTP. The N-ethylmaleimide-reactive Cys42 of the beef heart protein, located between the two basic amino acids of this motif (Lys41-Cys42-Arg43), is replaced with a Thr in the yeast protein. This substitution most likely is responsible for the lack of N-ethylmaleimide sensitivity of the yeast protein and mersalyl thus reacts with another cysteine to inhibit the transport. Finally it is concluded that Cys42 has no essential role in the catalysis of inorganic phosphate transport by the mitochondrial phosphate transport protein.  相似文献   

3.
Briggs C  Mincone L  Wohlrab H 《Biochemistry》1999,38(16):5096-5102
The mitochondrial phosphate transport protein (PTP) from the yeast Saccharomyces cerevisiae has been expressed in Escherichia coli, purified, and reconstituted. Basic and hydroxyl residues were replaced to identify structurally and functionally important regions in the protein. Physiologically relevant unidirectional transport from extraliposomal (cytosol) pH 6.8 to intraliposomal (matrix) pH 8.0 was assayed. Replacements that affect transport most dramatically are at Lys42 (matrix end of helix A), Thr79 (helix B), Lys90 (cytosol end of helix B), Arg140 and Arg142 (matrix end of helix C), Lys179 and Lys187 (helix D), Ser232 (helix E), and Arg276 (helix F). The deleterious nature of these mutations was confirmed by the observation that the yeast PTP null mutant transformed with any one of these mutant genes cannot grow or has difficulties growing with glycerol as the primary carbon source. More than 90% of transport activity can be blocked by various mutations without affecting growth on glycerol. Alterations in the structure of the transport protein caused by the mutations were characterized by determining the fraction of PTP incorporated into liposomes during reconstitution. The incorporation of all PTPs (wild type and mutant) into liposomes is 15.5 +/- 8.4 ng of PTP/25 microL and fairly independent of the amount of PTP in the initial reconstitution mix (49-212 ng of PTP/25 microL). Arg159Ala and Lys295Gln show the smallest incorporation of 2.3 +/- 1.6 ng of PTP/25 microL and 2.6 +/- 0.2 ng of PTP/25 microL, respectively. Ser145Ala shows the largest incorporation of 37.0 ng of PTP/25 microL. These three mutants show near wild-type reconstituted transport activity. Two of these three mutations are located in the loop connecting the matrix ends of helices C and D, Ser145 at its N-terminal (the matrix end of helix C) and Arg159 near its center. Lys295 is located at the C-terminal of PTP beyond helix F. These results, together with those from other mutations, suggest that like helix A, the protein segment consisting of the loop connecting helices C and D and helix D as well as the C-terminal of PTP beyond helix F faces the subunit interface of this homodimer. The role of the replacement-sensitive residues in the phosphate or in the coupled proton transport path is discussed.  相似文献   

4.
The yeast mitochondrial phosphate transport protein (PTP) has only 38% sequence similarity to the bovine heart protein, and it has recently been postulated to code for a mitochondrial import receptor. Since the reconstitutively active protein is not completely pure, it is important to demonstrate explicitly that the yeast gene codes for PTP. We have replaced Thr43 with Cys (T43C) and show that its unidirectional and pH gradient-dependent inorganic phosphate transport activity becomes highly sensitive to N-ethylmaleimide. This new PTP/T43C catalyzes less than 10% of the wild type transport activity (1 mM [Pi]e, pHe (6.80); 0 mM [Pi]i, pHi (8.07); 30 s [Pi] uptake) suggesting that Thr43 occupies an important position in the PTP.  相似文献   

5.
The mitochondrial phosphate transport protein (PTP) has six (A--F) transmembrane (TM) helices per subunit of functional homodimer with all mutations referring to the subunit of the homodimer. In earlier studies, conservative replacements of several residues located either at the matrix end (Asp39/helix A, Glu137/helix C, Asp236/helix E) or at the membrane center (His32/helix A, Glu136/helix C) of TM helices yielded inactive single mutation PTPs. Some of these residues were suggested to act as phosphate ligands or as part of the proton cotransport path. We now show that the mutation Ser158Thr, not part of a TM helix but located near the center of the matrix loop (Ile141--Ser171) between TM helices C and D, inactivates PTP and is thus also functionally relevant. On the other side of the membrane, the single mutation Glu192Asp at the intermembrane space end of TM helix D yields a PTP with 33% wild-type activity. We constructed double mutants by adding this mutation to the six transport-inactivating mutations. Transport was detected only in those with Asp39Asn, Glu137Gln, or Ser158Thr. We conclude that TM helix D can interact with TM helices A and C and matrix loop Ile141--Ser171 and that Asp39, Glu137, and Ser158 are not essential for phosphate transport. Since our results are consistent with residues present in all 12 functionally identified members of the mitochondrial transport protein (MTP) family, they lead to a general rule that specifies MTP residue types at 7 separate locations. The conformations of all the double mutation PTPs (except that with the matrix loop Ser158Thr) are significantly different from those of the single mutation PTPs, as indicated by their very low liposome incorporation efficiency and their requirement for less detergent (Triton X-100) to stay in solution. These dramatic conformational differences also suggest an interaction between TM helices D and E. The results are discussed in terms of TM helix movements and changes in the PTP monomer/dimer ratio.  相似文献   

6.
Wohlrab H  Annese V  Haefele A 《Biochemistry》2002,41(9):3254-3261
The phosphate transport protein (PTP) catalyzes the proton cotransport of phosphate into the mitochondrial matrix. It functions as a homodimer, and thus residues of the phosphate and proton pores are somewhat scattered throughout the primary sequence. With 71 new single mutation per subunit PTPs, all its hydroxyl, basic, and acidic residues have now been replaced to identify these essential residues. We assayed the initial rate of pH gradient-dependent unidirectional phosphate transport activity and the liposome incorporation efficiency (LIE) of these mutants. Single mutations of Thr79, Tyr83, Lys90, Tyr94, and Lys98 inactivate transport. The spacings between these residues imply that they are located along the same face of transmembrane (TM) helix B, requiring an extension of its current model C-terminal domain by 10 residues. This extension superimposes very well onto the shorter bovine PTP helix B, leaving a 15-residue hydrophobic extension of the yeast helix B N-terminus. This is similar to the helix D and F regions of the yeast PTP. Only one transport-inhibiting mutation is located within loops: Ser158Thr in the matrix loop between helices C and D. All other transport-inhibiting mutations are located within the TM helices. Mutations that yield LIEs of <6% are all, except for four, within helices. The four exceptions are Tyr12Ala near the PTP N-terminus and Arg159Ala, Glu163Gln, and Glu164Gln in the loop between helices C and D. The PTP C-terminal segment beyond Thr214 at the N-terminus of helix E has 11 mutations with LIEs >20% and none with LIE <6%. Mutations with LIEs >20% are located near the ends of all the TM helices except TM helix D. Only a few mutations alter PTP structure (LIE) and also affect PTP transport activity. A novel observation is that Ser4Ala blocks the formation of PTP bacterial inclusion bodies.  相似文献   

7.
We have cloned the gene of the Saccharomyces cerevisiae phosphate transport protein (PTP), a member of the mitochondrial anion transport protein gene family. As PTP has a blocked N-terminus, we prepared three peptides. Oligonucleotides, based on their sequences, were used to screen a Yep24-housed genomic library. A total of 2073 bases of clone Y22 code for a 311 amino acid protein (Mr 32,814), which has similarities to the anion transport proteins: a triplicate gene structure and 6 hydrophobic segments. Typical for PTP, the triplicate gene structure possesses the X-Pro-X-(Asp/Glu)-X-X-(Lys/Arg)-X-(Arg/Lys)-X (X is an unspecified amino acid) motif and the very high homology only between the first and second repeat. The 6 hydrophobic segments harbor most of the 116 amino acids that are conserved between the yeast and the beef proteins. An N-terminal-extended signal sequence, as found in the beef protein, is absent. The yeast protein has about 33% fewer basic and acidic amino acids and five fewer Cys residues than the beef protein. The protein is insensitive to N-ethylmaleimide since Cys-42 (beef) has been replaced with a Thr. Mersalyl sensitivity has been retained and must be due to one of its three cysteines. Among these three cysteines, only Cys-28, located in the first hydrophobic segment, is conserved between the yeast and the beef protein.  相似文献   

8.
Protein tyrosine phosphatases (PTPs) are important signaling enzymes that control such fundamental processes as proliferation, differentiation, survival/apoptosis, as well as adhesion and motility. Potent and selective PTP inhibitors serve not only as powerful research tools, but also as potential therapeutics against a variety illness including cancer and diabetes. PTP activity-based assays are widely used in high throughput screening (HTS) campaigns for PTP inhibitor discovery. These assays suffer from a major weakness, in that the reactivity of the active site Cys can cause serious problems as highly reactive oxidizing and alkylating agents may surface as hits. We describe the development of a fluorescence polarization (FP)-based displacement assay that makes the use of an active site Cys to Ser mutant PTP (e.g., PTP1B/C215S) that retains the wild-type binding affinity. The potency of library compounds is assessed by their ability to compete with the fluorescently labeled active site ligand for binding to the Cys to Ser PTP mutant. Finally, the substitution of the active site Cys by a Ser renders the mutant PTP insensitive to oxidation and alkylation and thus will likely eliminate "false" positives due to modification of the active site Cys that destroy the phosphatase activity.  相似文献   

9.
Although members of the protein tyrosine phosphatase (PTP) family are known to play critical roles in various cellular processes through the regulation of protein tyrosine phosphorylation in cooperation with protein tyrosine kinases (PTKs), the physiological functions of individual PTPs are poorly understood. This is due to a lack of information concerning the physiological substrates of the respective PTPs. Several years ago, substrate-trap mutants were developed to identify the substrates of PTPs, but only a limited number of PTP substrates have been identified using typical biochemical techniques in vitro. The application of this strategy to all the PTPs seems difficult, because the substrates identified to date were restricted to relatively abundant and highly tyrosine phosphorylated cellular proteins. Therefore, the development of a standard method applicable to all PTPs has long been awaited. We report here a genetic method to screen for PTP substrates which we have named the "yeast substrate-trapping system." This method is based on the yeast two-hybrid system with two essential modifications: the conditional expression of a PTK to tyrosine-phosphorylate the prey protein, and screening using a substrate-trap PTP mutant as bait. This method is probably applicable to all the PTPs, because it is based on PTP-substrate interaction in vivo, namely the substrate recognition of individual PTPs. Moreover, this method has the advantage that continuously interacting molecules for a PTP are also identified, at the same time, under PTK-noninductive conditions. The identification of physiological substrates will shed light on the physiological functions of individual PTPs.  相似文献   

10.
The mitochondrial citrate transport protein (CTP) has been investigated by mutating 28 consecutive residues within transmembrane domain III (TMDIII), one at a time, to cysteine. A cysteine-less CTP that retains wild-type functional properties, served as the starting template. The single Cys CTP mutants were abundantly expressed in Escherichia coli, isolated, and functionally reconstituted in a liposomal system. The accessibility of each single Cys mutant to two methanethiosulfonate reagents was evaluated by determining the rate constants for inhibition of CTP function. These rate constants varied by over five orders of magnitude. With two independent data sets we observed peaks and troughs in the rate constant data at identical amino acid positions and a periodicity of 4 was observed from residues 123-137. Based on the pattern of accessibility we conclude that residues 123-137 exist as an alpha-helix. Although less certain, a combination of the rate constant data and the specific activity data with the single Cys mutants suggests that the alpha-helical secondary structure may extend to residue 113. Furthermore, the rate constant data define water-accessible and water-inaccessible faces of the helix. We infer that the water-accessible face comprises a portion of the substrate translocation pathway through the CTP, whereas the water-inaccessible surface faces the lipid bilayer. Finally, based on a combination of the CTP inhibition rate constant data and the existence of significant sequence identity with a transmembrane segment within glycophorin A that forms a portion of its dimer interface, a model for a putative CTP TMDIII-TMDIII' dimer interface has been developed.  相似文献   

11.
All members in the protein tyrosine phosphatase (PTP) family of enzymes contain an invariant Cys residue which is absolutely indispensable for catalysis. Due to the unique microenvironment surrounding the active center of PTPs, this Cys residue exhibits an unusually low pKa characteristic, thus being highly susceptible to oxidation or S-nitrosylation. While oxidation-dependent regulation of PTP activity has been extensively examined, the molecular details and biological consequences of PTP S-nitrosylation remain unexplored. We hypothesized that the catalytic Cys residue is targeted by proximal nitric oxide (NO) and its derivatives collectively termed reactive nitrogen species (RNS), leading to nitrosothiol formation concomitant with reversible inactivation of PTPs. To test this hypothesis, we have developed novel strategies to examine the redox status of Cys residues of purified PTP1B that was exposed to NO donor S-Nitroso-N-penicillamine (SNAP). A gel-based method in conjunction with mass spectrometry (MS) analysis revealed that the catalytic Cys215 of PTP1B was reversibly modified when PTP1B was briefly treated with SNAP. In order to further identify the exact mode of NO-induced modification, we employed an online LC-ESI-MS/MS analysis incorporating a mass difference-based, data-dependent acquisition function that effectively mapped the S-nitrosylated Cys residues. Our results demonstrated that treating PTP1B with SNAP led to S-nitrosothiol formation of the catalytic Cys215. Interestingly, SNAP-induced modifications were strictly reversible as highly oxidized Cys derivatives (Cys-SO(2)H or Cys-SO(3)H) were not identified by MS analyses. Thus, the methods introduced in this study provide direct evidence to prove the direct link between S-nitrosylation of the catalytic Cys residue and reversible inactivation of PTPs.  相似文献   

12.
Using a functional mitochondrial oxoglutarate carrier mutant devoid of Cys residues (C-less carrier), each amino acid residue in transmembrane domain IV and flanking hydrophilic loops (from T179 to S205) was replaced individually with Cys. The great majority of the 27 mutants exhibited significant oxoglutarate transport in reconstituted liposomes as compared to the activity of the C-less carrier. In contrast, Cys substitution for G183, R190, Q198, and Y202, in either C-less or wild-type carriers, yielded molecules with complete loss of oxoglutarate transport activity. G183 and R190 could be partially replaced only by Ala and Lys, respectively, whereas Q198 and Y202 were irreplaceable with respect to oxoglutarate transport. Of the single-Cys mutants tested, only T187C, A191C, V194C, and N195C were strongly inactivated by N-ethylmaleimide and by low concentrations of methanethiosulfonate derivatives. Oxoglutarate protects Cys residues at positions 187, 191, and 194 against reaction with N-ethylmaleimide. These positions as well as the residues found to be essential for the carrier activity, except Y202 which is located in the extramembrane loop IV-V, reside on the same face of transmembrane helix IV, probably lining part of a water-accessible crevice or channel between helices of the oxoglutarate carrier.  相似文献   

13.
D Baker  L Hicke  M Rexach  M Schleyer  R Schekman 《Cell》1988,54(3):335-344
Transport of alpha-factor precursor from the endoplasmic reticulum to the Golgi apparatus has been reconstituted in gently lysed yeast spheroplasts. Transport is measured through the coupled addition of outer-chain carbohydrate to [35S]methionine-labeled alpha-factor precursor translocated into the endoplasmic reticulum of broken spheroplasts. The reaction is absolutely dependent on ATP, stimulated 6-fold by cytosol, and occurs between physically separable sealed compartments. Transport is inhibited by the guanine nucleotide analog GTP gamma S. sec23 mutant cells have a temperature-sensitive defect in endoplasmic reticulum-to-Golgi transport in vivo. This defect has been reproduced in vitro using sec23 membranes and cytosol. Transport at 30 degrees C with sec23 membranes requires addition of cytosol containing the SEC23 (wild-type) gene product. This demonstrates that an in vitro inter-organelle transport reaction depends on a factor required for transport in vivo. Complementation of sec mutations in vitro provides a functional assay for the purification of individual intercompartmental transport factors.  相似文献   

14.
The isolated and liposome-reconstituted mitochondrial phosphate carrier exhibits a sigmoidal inhibition curve by mersalyl, similar to that found with intact mitochondria. In contrast a hyperbolic inhibition curve is found (a) by titration of the soluble carrier with mersalyl before reconstitution in liposomes and (b) by titration of the reconstituted carrier with mersalyl after successively pretreatment of the mitochondria with low, non-inhibitory concentrations of mersalyl, excess N-ethylmaleimide and dithiothreitol. The inhibition of the reconstituted, but not of the soluble, phosphate carrier by mersalyl can be reversed by dithiothreitol. Cupric di(1,10-phenanthroline) inhibits the soluble but not the reconstituted phosphate carrier. The inhibited phosphate carrier can be reactivated by dithiothreitol in the soluble state but not after reconstitution in liposomes. The data support the previously suggested model of the phosphate carrier, assuming a dimer of two identical subunits for the active unit.  相似文献   

15.
We identified 25 protein tyrosine phosphatases (PTPs) expressed in rat ovarian granulosa cells. Of these PTPs, the expression levels of at least PTP20, PTP-MEG1, PTPepsilonM, and PTPepsilonC significantly changed during the estrous cycle. We examined the cellular functions of PTP20 in granulosa cells by expressing the wild type, a catalytically inactive CS mutant in which Cys229 of PTP20 was changed to Ser, or a substrate-trapping DA mutant in which Asp197 was mutated to Ala, using an adenovirus vector. Overexpression of the wild type, but not of the CS mutant, induced retraction of the cell body with the extension of long, dendritic-like processes after stimulation with FSH, a critical factor for the survival and differentiation of these cells. In addition, cell adhesion to the substratum decreased in an FSH-dependent manner. Inhibiting Rho GTPase activity with C3 botulinum toxin caused similar morphological changes. The FSH-enhanced phosphotyrosine (p-Tyr) level of p190 RhoGAP was selectively reduced by the overexpressed wild type, but not by mutated PTP20. Although p190 RhoGAP is tyrosine phosphorylated by c-Src via the tyrosine kinase Pyk2, wild-type PTP20 had little effect on p-Tyr418 of c-Src and no effect on p-Tyr402 of Pyk2, which are required for full c-Src activity and for interacting between Pyk2 and c-Src, respectively. The CS and DA mutants as well as the wild type reduced the formation of p190 RhoGAP-p120 RasGAP complexes. Confocal microscopy analysis revealed that PTP20 intracellularly colocalizes with p190 RhoGAP. These results demonstrate that PTP20 regulates the functions of granulosa cells in an FSH-dependent manner by dephosphorylating p190 RhoGAP and subsequently inducing reorganization of the actin cytoskeleton. Moreover, our data suggest that PTPs play significant roles in controlling the dynamics of ovarian functions.  相似文献   

16.
During uptake of Ca2+ by rabbit sarcoplasmic reticulum, about 1 mumol of 32Pi was taken up per mumol 45Ca2+ transported. The uptake of Pi was dependent on external Ca2+, Mg2+ and ATP. Intravesicular Ca2+ did not substitute for external Ca2+. In contrast to the accumulation of Ca2+ which was abolished by the ionophore A23187, the uptake of Pi continued to take place provided sufficient Ca2+ was present in the medium. Thus, a Ca2+ gradient did not seem to be required. Similar observations were made with proteoliposomes reconstituted with membrane preparations of sarcoplasmic reticulum and soybean phospholipids. However, when purified Ca2+ -ATPase was used for reconstitution, there was ATP-dependent Ca2+ uptake but no ATP-dependent Pi transport was observed. These data show that the mechanism of Pi transport cannot be a passive movement in response to a Ca2+ gradient but appears to be catalyzed by a specific protein, which is inactivated during purification of the Ca2+ -ATPase. A protein that catalyzes Pi transport in reconstituted vesicles has been solubilized by extraction of sarcoplasmic reticulum with sodium cholate.  相似文献   

17.
CPDS (6,6'-dithiodinicotinic acid), a non permeant thiol agent which affects several mitochondrial functions in a way different to that of mersalyl [18-19] revealed striking differences between the phosphate translocating systems of pig heart and rat liver mitochondria. Pi entry was measured either by swelling in 0.12 M ammonium phosphate or by rapid centrifugation in 32Pi medium. Pi efflux was measured after preloading of mitochondria with 32Pi, by exchange against Pi or malate; the "ATP-FCCP" system has been tested previously [19]. In pig heart mitochondria, Pi entry seems to proceed exclusively via the Pi/OH- carrier; CPDS completely inhibits this transport and the energy-linked functions. In contrast n-butyl-malonate does not affect the Pi-entry and the energy-linked functions. The Pi efflux is not affected either by CPDS or mersalyl, which do not produce a swelling in the "ATP-uncoupler system". In rat liver mitochondria, CPDS inhibits only the Pi/OH- carrier; both CPDS and n-butylmalonate are necessary to inhibit completely Pi entry. CPDS as well as mersalyl provokes a swelling in the presence of the "APT-uncoupler system". The results suggest two distinct functions of phosphate transport in both types of mitochondria.  相似文献   

18.
Previous studies have shown that a Ca(2+)-dependent nitric-oxide synthase (NOS) is activated as part of a cellular response to low doses of ionizing radiation. Genetic and pharmacological inhibitor studies linked this NO signaling to the radiation-induced activation of ERK1/2. Herein, a mechanism for the radiation-induced activation of Tyr phosphorylation-dependent pathways (e.g. ERK1/2) involving the inhibition of protein-Tyr phosphatases (PTPs) by S-nitrosylation is tested. The basis for this mechanism resides in the redox-sensitive active site Cys in PTPs. These studies also examined oxidative stress induced by low concentrations of H(2)O(2). S-Nitrosylation of total cellular PTP and immunopurified SHP-1 and SHP-2 was detected as protection of PTP enzymatic activity from alkylation by N-ethylmaleimide and reversal by ascorbate. Both radiation and H(2)O(2) protected PTP activity from alkylation by a mechanism reversible by ascorbate and inhibited by NOS inhibitors or expression of a dominant negative mutant of NOS-1. Radiation and H(2)O(2) stimulated a transient increase in cytoplasmic free [Ca(2+)]. Radiation, H(2)O(2), and the Ca(2+) ionophore, ionomycin, also stimulated NOS activity, and this was associated with an enhanced S-nitrosylation of the active site Cys(453) determined by isolation of S-nitrosylated wild type but not active site Cys(453) --> Ser SHP-1 mutant by the "biotin-switch" method. Thus, one consequence of oxidative stimulation of NO generation is S-nitrosylation and inhibition of PTPs critical in cellular signal transduction pathways. These results support the conclusion that a mild oxidative signal is converted to a nitrosative one due to the better redox signaling properties of NO.  相似文献   

19.
Protein tyrosine phosphatases (PTPs) are fundamental to the regulation of cellular signalling cascades triggered by protein tyrosine kinases. Most receptor-like PTPs (RPTPs) comprise two tandem PTP domains, with only the membrane proximal domains (D1) having significant phosphatase activity; the membrane distal domains (D2) display little to no catalytic activity. Intriguingly, however, many RPTP D2s share the catalytically essential Cys and Arg residues of D1s. D2 of RPTPalpha may function as a redox sensor that mediates regulation of D1 via reactive oxygen species. Oxidation of Cys723 of RPTPalpha D2 (equivalent to PTP catalytic Cys residues) stabilizes RPTPalpha dimers, induces rotational coupling, and is required for inactivation of D1 phosphatase activity. Here, we investigated the structural consequences of RPTPalpha D2 oxidation. Exposure of RPTPalpha D2 to oxidants promotes formation of a cyclic sulfenamide species, a reversibly oxidized state of Cys723, accompanied by conformational changes of the D2 catalytic site. The cyclic sulfenamide is highly resistant to terminal oxidation to sulfinic and sulfonic acids. Conformational changes associated with RPTPalpha D2 oxidation have implications for RPTPalpha quaternary structure and allosteric regulation of D1 phosphatase activity.  相似文献   

20.
Helix V in LacY, which abuts and crosses helix I in the N-terminal helix bundle of LacY, contains Arg144 and Trp151, two residues that play direct roles in sugar recognition and binding, as well as Cys154, which is important for conformational flexibility. In this study, paired Cys replacement mutants in helices V and I were strategically constructed with tandem factor Xa protease cleavage sites in the loop between the two helices to test cross-linking. None of the mutants form disulfides spontaneously; however, three mutants (Pro28 → Cys/Cys154, Pro28 → Cys/Val158 → Cys, and Phe29 → Cys/Val158 → Cys) exhibit cross-linking after treatment with copper/1,10-phenanthroline (Cu/Ph) or 1,1-methanediyl bismethanethiosulfonate ((MTS)2-1), 3–4 Å), and cross-linking is quantitative in the presence of ligand. Remarkably, with one mutant, complete cross-linking with (MTS)2-1 has no effect on lactose transport, whereas quantitative disulfide cross-linking catalyzed by Cu/Ph markedly inhibits transport activity. The findings are consistant with a number of previous conclusions suggesting that sugar binding to LacY causes a localized scissors-like movement between helices V and I near the point where the two helices cross in the middle of the membrane. This ligand-induced movement may act to initiate the global conformational change resulting from sugar binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号