首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The DNA genome of the orthopteran entomopoxvirus (EPV) isolated from Melanoplus sanguinipes was released from the virus by treatment with proteinase K and sodium dodecyl sulfate (SDS). The average length of the virus DNA molecule was determined by electron microscopy to be 62.8 μm, corresponding to a molecular weight of 124.3 × 106 daltons (80 kb). The buoyant density of Melanoplus EPV DNA in cesium chloride was calculated to be 1.678 g/cm3, which corresponds to a base ratio of 18.6 mole% guanine + cytosine.  相似文献   

2.
Relationships between the structure of transfecting complexes of histone H1 and DNA and their transfection efficiency were studied. Transfection activity proved to be connected to complex aggregates. Low speed centrifugation of the complexes resulted in loss of the transfection activity. The complexes/aggregates were active with high efficiency in a broad range of weight input ratios r i (0.1<r i<30). Using atomic force microscopy (AFM), the complexes were imaged at negative, nearly electroneutral and positive charge conditions. Electroneutral complexes at r i=1 showed a multitude of different complex forms. Fibrillar, network-like and branched structures were frequently present in one complex. Strongly positive charged complexes had a toroidal appearance. All these different forms contributed to the high transfection efficiency. Cellular uptake is supposed to be by phagocytosis.  相似文献   

3.
    
DNA replication is a key biological process that involves different protein complexes whose assembly is rigorously regulated in a successive order. One of these complexes is a replicative hexameric helicase, the MCM complex, which is essential for the initiation and elongation phases of replication. After the assembly of a double heterohexameric MCM2-7 complex at replication origins in G1, the 2 heterohexamers separate from each other and associate with Cdc45 and GINS proteins in a CMG complex that is capable of unwinding dsDNA during S phase. Here, we have reconstituted and characterized the purified human MCM2-7 (hMCM2-7) hexameric complex by co-expression of its 6 different subunits in insect cells. The conformational variability of the complex has been analyzed by single particle electron microscopy in the presence of different nucleotide analogs and DNA. The interaction with nucleotide stabilizes the complex while DNA introduces conformational changes in the hexamer inducing a cylindrical shape. Our studies suggest that the assembly of GINS and Cdc45 to the hMCM2-7 hexamer would favor conformational changes on the hexamer bound to ssDNA shifting the cylindrical shape of the complex into a right-handed spiral conformation as observed in the CMG complex bound to DNA.  相似文献   

4.
    
Studies of DNA condensation have opened new perspectives in biotechnology and medicine. DNA condensation induced by polyamines or trivalent metal ions in vitro at room temperature has been investigated in detail. Our recent studies have demonstrated Mg2+-mediated formation of DNA condensates during the PCR. In this study, we report the unique morphology and fine structure of PCR-generated condensed DNA particles using electron and atomic force microscopy. The principal morphologies of studied DNA condensates are 3D particles of micrometer dimensions, oval microdisks of nanometer thickness, filaments, and compact nano-sized particles. SEM examinations have revealed a new structural type of spherical and elliptical 3D microparticles formed by numerous definitely oriented microdisks and their segments. AFM revealed a granular structure of the microdisk surface and the smallest nano-sized disks and thinnest nanofibrils – that appear to be the primary products of DNA condensation during the PCR. We suggest that the formation of DNA nanofibrils and nanodisks in PCR occurs due to Mg2+ – mediated intermolecular (lateral) and intramolecular condensation of ssDNA. Aggregation of elementary nanodisks in the course of thermal PCR cycles, occurring both by magnesium cations and via complementary interactions, give a rise to large nano-sized aggregates and more complex microparticles.  相似文献   

5.
Generation and physicochemical properties of complexes formed by high-molecular thymus DNA and plasmid DNA with synthetic polymers of (dimethyl amino)ethyl methacrylate, (diethyl amino)ethyl methacrylate, and poly(vinyl amine) were studied in solutions of different ionic strength using low-gradient viscometry, electrophoresis, circular dichroism, spectrophotometry, and dynamic light scattering. The complexes were tested for toxicity with T98G cell cultures. Condensation of DNA was shown to occur when the ratio of charged groups in the polycations and DNA exceeded unity. This condensation manifested itself as an increase in the optical density of DNA solutions. Condensation-associated changes in the dimensions of DNA molecules were determined, and phase diagrams of DNA-polycation systems were analyzed in the presence of NaCl. MTT analysis revealed no toxicity of these complexes.  相似文献   

6.
    
Avidin, the basic biotin-binding glycoprotein from chicken egg white, is known to interact with DNA, whereas streptavidin, its neutral non-glycosylated bacterial analog, does not. In the present study we investigated the DNA-binding properties of avidin. Its affinity for DNA in the presence and absence of biotin was compared with that of other positively charged molecules, namely the protein lysozyme, the cationic polymers polylysine and polyarginine and an avidin derivative with higher isoelectric point (pI approximately 11) in which most of the lysine residues were converted to homoarginines. Gel-shift assays, transmission electron microscopy and dynamic light scattering experiments demonstrated an unexpectedly strong interaction between avidin and DNA. The most pronounced gel-shift retardation occurred with the avidin-biotin complex, followed by avidin alone and then guanidylated avidin. Furthermore, ultrastructural and light-scattering studies showed that avidin assembles on the DNA molecule in an organized manner. The assembly leads to the formation of nanoparticles that are about 50-100 nm in size (DNA approximately 5 kb) and have a rod-like or toroidal shape. In these particles the DNA is highly condensed and one avidin is bound to each 18 +/- 4 DNA base pairs. The complexes are very stable even at high dilution ([DNA] =10 pM) and are not disrupted in the presence of buffers or salt (up to 200 mM NaCl). The other positively charged molecules also condense DNA and form particles with a globular shape. However, in this case, these particles disassemble by dilution or in the presence of low salt concentration. The results indicate that the interaction of avidin with DNA may also occur under physiological conditions, further enhanced by the presence of biotin. This DNA-binding property of avidin may thus shed light on a potentially new physiological role for the protein in its natural environment.  相似文献   

7.
8.
利用透射电子显微镜(TEM)和原子力显微镜(AFM)观察流感病毒(H1N1),探讨AFM在病毒形态研究中的应用,为病毒形态学研究提供一种新型、简便、快捷的工具.TEM采用磷钨酸负染方法,AFM采用轻敲模式在大气常温下扫描成像,并对主要指标长度(直径)、Ra、Rq等进行测量.两种方法最终得到相似的形态学结果,流感病毒呈球状、丝状,并有一些形状介于两者之间.TEM提供了流感病毒二维图像,可见钉状突起,AFM则呈现了流感病毒三维图像,且可见病毒表面有凹凸不平的特征和边缘有齿轮状的突起,同时获得表面粗糙度等可以量化指标.与TEM观察相比,原子力显微镜是一种制样简单、观察直观的新型病毒形态学研究工具,其表征参数可以作为病毒形态学研究的量化指标.  相似文献   

9.
10.
The minichromosome maintenance (MCM) proteins are essential for replication initiation and elongation in eukarya and archaea. There are six MCM proteins in eukaryotes, and MCM complexes are believed to unwind DNA during chromosomal DNA replication. However, the mechanism and structure of the MCM complexes are not known. Only one MCM is found in the archaeon Methanothermobacter thermautotrophicus (mtMCM), and this provides a simpler system for study. The crystal structure of a mtMCM N-terminal fragment has been solved, but surprisingly only subtle structural changes were seen between the wild-type protein and one having a mutation corresponding to the yeast MCM5 bob1 mutation. The bob1 mutation bypasses the phosphorylation required for activation of MCM in yeast. We have used electron microscopy and three-dimensional reconstruction to examine a number of different fragments of mtMCM, and can visualize a large conformational change within the N-terminal fragment. This offers new insight into the conformational dynamics of MCM and the phosphorylation-bypass phenotype in yeast.  相似文献   

11.
    
Eukaryotic DNA replication requires the coordinated activity of the multi-subunit DNA polymerases: Pol α, Pol δ and Pol . The conserved catalytic and regulatory B subunits associate in a constitutive heterodimer that represents the functional core of all three replicative polymerases. Here, we combine X-ray crystallography and electron microscopy (EM) to describe subunit interaction and 3D architecture of heterodimeric yeast Pol α. The crystal structure of the C-terminal domain (CTD) of the catalytic subunit bound to the B subunit illustrates a conserved mechanism of accessory factor recruitment by replicative polymerases. The EM reconstructions of Pol α reveal a bilobal shape with separate catalytic and regulatory modules. Docking of the B–CTD complex in the EM reconstruction shows that the B subunit is tethered to the polymerase domain through a structured but flexible linker. Our combined findings provide a structural template for the common functional architecture of the three major replicative DNA polymerases.  相似文献   

12.
    
BACKGROUND: The theoretical state diagram for semi-flexible macromolecules such as DNA predicts that a tightly wound toroid can be a stable structure. Experimentally, toroids roughly 100 nm in diameter are routinely observed for DNA in the presence of multivalent cations at low DNA concentration. Theory also predicts toroids can form between non-DNA semi-flexible polymers and multivalent counterions. This phenomenon provides a means to co-package DNA with functionalized anionic polymers to create gene delivery systems. METHODS AND RESULTS: We show using electron microscopy that non-DNA polymers (polylysine, polyglutamic acid, and dextran sulfate) form toroids when mixed with multi- or polyvalent ions of opposite charge. The non-DNA toroids are similar in diameter to ones made with DNA. The results using dextran sulfate, a semi-flexible polymer, are explained by current theory. However, theory predicts that high flexibility in polypeptides should discourage their incorporation into stable toroids. To explain these latter observations we propose that charge neutralization facilitates secondary structure formation, which confers stiffness, thereby allowing stable toroids for the polypeptides studied. We measured the secondary structure of the toroid-forming polypeptides using circular dichroism (CD). The CD spectrum indicates the polypeptides undergo transitions from non-ordered structures (random coil) to ordered secondary structures (either alpha-helix or beta-sheet) upon charge neutralization which supports the hypothesis. The type of secondary structure is dependent on the type of multivalent counterion used to form the toroids. Formation of the polypeptide toroids confers resistance to heat denaturation of the resulting polypeptide secondary structure. The CD spectrum of DNA in a toroid also is changed from that of uncomplexed DNA, but all of the counterions used to form DNA toroids created structures with similar CD spectra in the DNA region (250-290 nm). CONCLUSIONS: The toroid structure obtained using DNA is observed in other semi-flexible non-DNA polymers such as dextran sulfate, and also in flexible polymers such as polylysine and polyglutamic acid upon charge neutralization with multivalent counterions. In the flexible polymers we propose that this phenomenon is due to induction of secondary structure upon charge neutralization, which decreases polymer flexibility, i.e. increases polymer stiffness, to enable toroid formation. These results have significant implications for the co-assembly of non-DNA anionic polymers with DNA to create nanoscopic gene carriers.  相似文献   

13.
    
Self-association of ClpB (a mixture of 95- and 80-kDa subunits) has been studied with gel filtration chromatography, analytical ultracentrifugation, and electron microscopy. Monomeric ClpB predominates at low protein concentration (0.07 mg/mL), while an oligomeric form is highly populated at >4 mg/mL. The oligomer formation is enhanced in the presence of 2 mM ATP or adenosine 5'-O-thiotriphosphate (ATPgammaS). In contrast, 2 mM ADP inhibits full oligomerization of ClpB. The apparent size of the ATP- or ATPgammaS-induced oligomer, as determined by gel filtration, sedimentation velocity and electron microscopy image averaging, and the molecular weight, as determined by sedimentation equilibrium, are consistent with those of a ClpB hexamer. These results indicate that the oligomerization reactions of ClpB are similar to those of other Hsp100 proteins.  相似文献   

14.
Summary— This review has been collectively written. The contribution of the authors is mentioned for each part. References have been grouped at the end of the review. The objective of this review is to outline the principle of the method for electron microscopy, to emphasize the major applications and recent developments of this technique for DNA detection and finally to compare this technique with some other methods of DNA detection.  相似文献   

15.
Morphogenesis of bacteriophage P22 involves the packaging of double-stranded DNA into a preassembled procapsid. DNA is translocated by a powerful virally encoded molecular motor called terminase, which comprises large (gp2, 499 residues) and small (gp3, 162 residues) subunits. While gp2 contains the phosphohydrolase and endonuclease activities of terminase, the function of gp3 may be to regulate specific and nonspecific modes of DNA recognition as well as the enzymatic activities of gp2. Electron microscopy shows that wild-type gp3 self-assembles into a stable and monodisperse nonameric ring. A three-dimensional reconstruction at 18 Å resolution provides the first glimpse of P22 terminase architecture and implies two distinct modes of interaction with DNA—involving a central channel of 20 Å diameter and radial spikes separated by 34 Å. Electromobility shift assays indicate that the gp3 ring binds double-stranded DNA nonspecifically in vitro via electrostatic interactions between the positively charged C-terminus of gp3 (residues 143-152) and phosphates of the DNA backbone. Raman spectra show that nonameric rings formed by subunits truncated at residue 142 retain the subunit fold despite the loss of DNA-binding activity. Difference density maps between gp3 rings containing full-length and C-terminally truncated subunits are consistent with localization of residues 143-152 along the central channel of the nonameric ring. The results suggest a plausible molecular mechanism for gp3 function in DNA recognition and translocation.  相似文献   

16.
We present here the first detailed biochemical analysis of an archaeal restriction enzyme. PspGI shows sequence similarity to SsoII, EcoRII, NgoMIV and Cfr10I, which recognize related DNA sequences. We demonstrate here that PspGI, like SsoII and unlike EcoRII or NgoMIV and Cfr10I, interacts with and cleaves DNA as a homodimer and is not stimulated by simultaneous binding to two recognition sites. PspGI and SsoII differ in their basic biochemical properties, viz. stability against chemical denaturation and proteolytic digestion, DNA binding and the pH, MgCl(2) and salt-dependence of their DNA cleavage activity. In contrast, the results of mutational analyses and cross-link experiments show that PspGI and SsoII have a very similar DNA binding site and catalytic center as NgoMIV and Cfr10I (whose crystal structures are known), and presumably also as EcoRII, in spite of the fact that these enzymes, which all recognize variants of the sequence -/CC-GG- (/ denotes the site of cleavage), are representatives of different subgroups of type II restriction endonucleases. A sequence comparison of all known restriction endonuclease sequences, furthermore, suggests that several enzymes recognizing other DNA sequences also share amino acid sequence similarities with PspGI, SsoII and EcoRII in the region of the presumptive active site. These results are discussed in an evolutionary context.  相似文献   

17.
Summary— Trypanosoma brucei brucei, a protozoan parasite of wild and domestic animals in Africa, is related to the pathogenic agent of human sleeping sickness. Four H1 histone proteins were isolated from nuclei of procyclic culture forms and cleaved with proteases. Amino acid sequence analysis of purified fragments indicated the presence of variants which displayed sequence identities as compared to the C-terminal domain of human H1. Substitutions of amino acids and posttranslational modifications of the histones in iT b brucei H1 may influence protein conformation and histone-histone as well as histone-DNA interactions in the chromatin of the parasite. Digestion of soluble chromatin with immobilized trypsin at low and high ionic strengths indicated an internal localization of H1 in the condensed chromatin. The influence of histone H1 of T b brucei on the compaction pattern of the chromatin was investigated by dissociation and reconstitution experiments. Electron microscopy revealed that trypanosome H1 was able to induce condensation of the chromatin of the parasite and of rat liver into dense tangles. After dephosphorylation of H1, 30 nm fibers were induced in rat liver chromatin, while the resulting fibers were distinctly thinner in T b brucei. It can be concluded that the absence of 30 nm fibers in T b brucei chromatin cannot be explained by the divergent variants and posttranslational phosphorylations of H1 only but rather by the influence of both, the divergent core histones, previously described, and H1 properties.  相似文献   

18.
    
Bharath MM  Chandra NR  Rao MR 《Proteins》2002,49(1):71-81
In eukaryotes, histone H1 promotes the organization of polynucleosome filaments into chromatin fibers, thus contributing to the formation of an important structural framework responsible for various DNA transaction processes. The H1 protein consists of a short N-terminal \"nose,\" a central globular domain, and a highly basic C-terminal domain. Structure prediction of the C-terminal domain using fold recognition methods reveals the presence of an HMG-box-like fold. We recently showed by extensive site-directed and deletion mutagenesis studies that a 34 amino acid segment encompassing the three S/TPKK motifs, within the C-terminal domain, is responsible for DNA condensing properties of H1. The position of these motifs in the predicted structure corresponds exactly to the DNA-binding segments of HMG-box-containing proteins such as Lef-1 and SRY. Previous analyses have suggested that histone H1 is likely to bend DNA bound to the C-terminal domain, directing the path of linker DNA in chromatin. Prediction of the structure of this domain provides a framework for understanding the higher order of chromatin organization.  相似文献   

19.
We have examined the changes in physical properties of aqueous solutions of the plasmid pUC18 that take place on the addition of the cationic oligopeptide penta-arginine. An increase in sedimentation rate and static light scattering, and changes in the nucleic acid CD spectrum all suggest that this ligand acts to condense the plasmid. Dynamic light scattering suggests the hydrodynamic radii of the condensate particles are a few micrometers, ca. 50-fold larger than that of the monomeric plasmid. Condensation of the plasmid also produces a ca. 100-fold decrease in the strand break yield produced by gamma irradiation. This extensive protection against reactive intermediates in the bulk of the solution implies that condensed plasmid DNA may offer a model system with which to study the direct effect of ionizing radiation (ionization of the DNA itself). The use of peptide ligands as condensing agents in this application is attractive because the derivatives of several amino acids (particularly tryptophan and tyrosine) have been shown to modify the radiation chemistry of DNA extensively.  相似文献   

20.
    
Jiang W  Zhang B  Yin J  Liu L  Wang L  Liu C 《Biopolymers》2008,89(12):1154-1169
Proteinaceous aggregates rich in copper, zinc superoxide dismutase (SOD1) have been found in both in vivo and in vitro models. We have shown that double-stranded DNA that acts as a template accelerates the in vitro formation of wild-type SOD1 aggregates. Here, we examined the polymorphism of templated-SOD1 aggregates generated in vitro upon association with DNA under different conditions. Electron microscopy imaging indicates that this polymorphism is capable of being manipulated by the shapes, structures, and doses of the DNAs tested. The nanometer- and micrometer-scale aggregates formed under acidic conditions and under neutral conditions containing ascorbate fall into three classes: aggregate monomers, oligomeric aggregates, and macroaggregates. The aggregate monomers observed at given DNA doses exhibit a polymorphism that is markedly corresponded to the coiled shapes of linear DNA and structures of plasmid DNA. On the other hand, the regularly branched structures observed under both atomic force microscopy and optical microscope indicate that the DNAs tested are simultaneously condensed into a nanoparticle with a specific morphology during SOD1 aggregation, revealing that SOD1 aggregation and DNA condensation are two concurrent phenomena. The results might provide the basis of therapeutic approaches to suppress the formation of toxic protein oligomers or aggregates by screening the toxicity of the protein aggregates with various sizes and morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号