首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Infusion of the antioxidant N-acetylcysteine (NAC) reduces fatigability in electrically evoked human muscle contraction, but due to reported adverse reactions, no studies have investigated NAC infusion effects during voluntary exercise in humans. We investigated whether a modified NAC-infusion protocol (125 mg. kg(-1). h(-1) for 15 min, then 25 mg. kg(-1). h(-1)) altered blood redox status and enhanced performance during intense, intermittent exercise. Eight untrained men participated in a counterbalanced, double-blind, crossover study in which they received NAC or saline (control) before and during cycling exercise, which comprised three 45-s bouts and a fourth bout that continued to fatigue, at 130% peak oxygen consumption. Arterialized venous blood was analyzed for glutathione status, hematology, and plasma electrolytes. NAC infusion induced no severe adverse reactions. Exercise decreased the reduced glutathione (P < 0.005) and increased oxidized glutathione concentrations (P < 0.005); NAC attenuated both effects (P < 0.05). NAC increased the rise in plasma K(+) concentration-to-work ratio (P < 0.05), indicating impaired K(+) regulation, although time to fatigue was unchanged (NAC 102 +/- 45 s; saline 107 +/- 53 s). Thus NAC infusion altered blood redox status during intense, intermittent exercise but did not attenuate fatigue.  相似文献   

2.
The production of reactive oxygen species in skeletal muscle is linked with muscle fatigue. This study investigated the effects of the antioxidant compound N-acetylcysteine (NAC) on muscle cysteine, cystine, and glutathione and on time to fatigue during prolonged, submaximal exercise in endurance athletes. Eight men completed a double-blind, crossover study, receiving NAC or placebo before and during cycling for 45 min at 71% peak oxygen consumption (VO2 peak) and then to fatigue at 92% VO2 peak. NAC was intravenously infused at 125 mg.kg(-1).h(-1) for 15 min and then at 25 mg.kg(-1).h(-1) for 20 min before and throughout exercise. Arterialized venous blood was analyzed for NAC, glutathione status, and cysteine concentration. A vastus lateralis biopsy was taken preinfusion, at 45 min of exercise, and at fatigue and was analyzed for NAC, total glutathione (TGSH), reduced glutathione (GSH), cysteine, and cystine. Time to fatigue at 92% VO2 peak was reproducible in preliminary trials (coefficient of variation 5.6 +/- 0.6%) and with NAC was enhanced by 26.3 +/- 9.1% (NAC 6.4 +/- 0.6 min vs. Con 5.3 +/- 0.7 min; P <0.05). NAC increased muscle total and reduced NAC at both 45 min and fatigue (P <0.005). Muscle cysteine and cystine were unchanged during Con, but were elevated above preinfusion levels with NAC (P <0.001). Muscle TGSH (P <0.05) declined and muscle GSH tended to decline (P=0.06) during exercise. Both were greater with NAC (P <0.05). Neither exercise nor NAC affected whole blood TGSH. Whereas blood GSH was decreased and calculated oxidized glutathione increased with exercise (P <0.05), both were unaffected by NAC. In conclusion, NAC improved performance in well-trained individuals, with enhanced muscle cysteine and GSH availability a likely mechanism.  相似文献   

3.
This study examined the effects of progressive exercise to fatigue in normoxia (N) on muscle sarcoplasmic reticulum (SR) Ca(2+) cycling and whether alterations in SR Ca(2+) cycling are related to the blunted peak mechanical power output (PO(peak)) and peak oxygen consumption (Vo(2 peak)) observed during progressive exercise in hypoxia (H). Nine untrained men (20.7 +/- 0.42 yr) performed progressive cycle exercise to fatigue on two occasions, namely during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14). Tissue extracted from the vastus lateralis before exercise and at power output corresponding to 50 and 70% of Vo(2 peak) (as determined during N) and at fatigue was used to investigate changes in homogenate SR Ca(2+)-cycling properties. Exercise in H compared with N resulted in a 19 and 21% lower (P < 0.05) PO(peak) and Vo(2 peak), respectively. During progressive exercise in N, Ca(2+)-ATPase kinetics, as determined by maximal activity, the Hill coefficient, and the Ca(2+) concentration at one-half maximal activity were not altered. However, reductions with exercise in N were noted in Ca(2+) uptake (before exercise = 357 +/- 29 micromol x min(-1) x g protein(-1); at fatigue = 306 +/- 26 micromol x min(-1) x g protein(-1); P < 0.05) when measured at free Ca(2+) concentration of 2 microM and in phase 2 Ca(2+) release (before exercise = 716 +/- 33 micromol x min(-1) x g protein(-1); at fatigue = 500 +/- 53 micromol x min(-1) x g protein(-1); P < 0.05) when measured in vitro in whole muscle homogenates. No differences were noted between N and H conditions at comparable power output or at fatigue. It is concluded that, although structural changes in SR Ca(2+)-cycling proteins may explain fatigue during progressive exercise in N, they cannot explain the lower PO(peak) and Vo(2 peak) observed during H.  相似文献   

4.
The purpose of this study was to determine whether the postponement of fatigue in subjects fed carbohydrate during prolonged strenuous exercise is associated with a slowing of muscle glycogen depletion. Seven endurance-trained cyclists exercised at 71 +/- 1% of maximal O2 consumption (VO2max), to fatigue, while ingesting a flavored water solution (i.e., placebo) during one trial and while ingesting a glucose polymer solution (i.e., 2.0 g/kg at 20 min and 0.4 g/kg every 20 min thereafter) during another trial. Fatigue during the placebo trial occurred after 3.02 +/- 0.19 h of exercise and was preceded by a decline (P less than 0.01) in plasma glucose to 2.5 +/- 0.5 mM and by a decline in the respiratory exchange ratio (i.e., R; from 0.85 to 0.80; P less than 0.05). Glycogen within the vastus lateralis muscle declined at an average rate of 51.5 +/- 5.4 mmol glucosyl units (GU) X kg-1 X h-1 during the first 2 h of exercise and at a slower rate (P less than 0.01) of 23.0 +/- 14.3 mmol GU X kg-1 X h-1 during the third and final hour. When fed carbohydrate, which maintained plasma glucose concentration (4.2-5.2 mM), the subjects exercised for an additional hour before fatiguing (4.02 +/- 0.33 h; P less than 0.01) and maintained their initial R (i.e., 0.86) and rate of carbohydrate oxidation throughout exercise. The pattern of muscle glycogen utilization, however, was not different during the first 3 h of exercise with the placebo or the carbohydrate feedings. The additional hour of exercise performed when fed carbohydrate was accomplished with little reliance on muscle glycogen (i.e., 5 mmol GU X kg-1 X h-1; NS) and without compromising carbohydrate oxidation. We conclude that when they are fed carbohydrate, highly trained endurance athletes are capable of oxidizing carbohydrate at relatively high rates from sources other than muscle glycogen during the latter stages of prolonged strenuous exercise and that this postpones fatigue.  相似文献   

5.
This study investigated the effects of prolonged exercise performed in normoxia (N) and hypoxia (H) on neuromuscular fatigue, membrane excitability, and Na+-K+ -ATPase activity in working muscle. Ten untrained volunteers [peak oxygen consumption (Vo2peak) = 42.1 +/- 2.8 (SE) ml x kg(-1) x min(-1)] performed 90 min of cycling during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14) at approximately 50% of normoxic Vo2peak. During N, 3-O-methylfluorescein phosphatase activity (nmol x mg protein(-1) x h(-1)) in vastus lateralis, used as a measure of Na+-K+-ATPase activity, decreased (P < 0.05) by 21% at 30 min of exercise compared with rest (101 +/- 53 vs. 79.6 +/- 4.3) with no further reductions observed at 90 min (72.8 +/- 8.0). During H, similar reductions (P < 0.05) were observed during the first 30 min (90.8 +/- 5.3 vs. 79.0 +/- 6.3) followed by further reductions (P < 0.05) at 90 min (50.5 +/- 3.9). Exercise in N resulted in reductions (P < 0.05) in both quadriceps maximal voluntary contractile force (MVC; 633 +/- 50 vs. 477 +/- 67 N) and force at low frequencies of stimulation, namely 10 Hz (142 +/- 16 vs. 86.7 +/- 10 N) and 20 Hz (283 +/- 32 vs. 236 +/- 31 N). No changes were observed in the amplitude, duration, and area of the muscle compound action potential (M wave). Exercise in H was without additional effect in altering MVC, low-frequency force, and M-wave properties. It is concluded that, although exercise in H resulted in a greater inactivation of Na+-K+-ATPase activity compared with N, neuromuscular fatigue and membrane excitability are not differentially altered.  相似文献   

6.
Humans who lack availability of carbohydrate fuels may provide important models for the study of physiological control mechanisms. We compared seven patients who had unavailability of muscle glycogen and blood glucose as oxidative fuels due to muscle phosphofructokinase deficiency (PFKD) with five patients who had a selective defect in long-chain fatty acid oxidation due to carnitine palmitoyltransferase deficiency (CPTD) and with six healthy subjects. Peak cycle exercise work rate, peak O2 uptake (Vo2), and arteriovenous O2 difference were markedly lower (P less than 0.001) for PFKD patients (23 +/- 6 W, 14 +/- 2 ml.min-1.kg-1, and 7.1 +/- 0.5 ml/dl, respectively) than for CPTD patients (142 +/- 33 W, 31 +/- 4 ml.min-1.kg-1, and 15.0 +/- 0.8 ml/dl, respectively) or healthy subjects (171 +/- 17 W, 36 +/- 1 ml.min-1.kg-1, and 16.4 +/- 0.7 ml/dl, respectively). Peak cardiac output (Q) was similar (P less than 0.05) in all three groups, but the slope of increase in Q (l/min) on Vo2 (l/min) from rest to exercise (delta Q/ delta Vo2) was more than twofold greater (P less than 0.001) for PFKD patients (11.2 +/- 1.2) than for CPTD patients (4.6 +/- 0.6) and healthy subjects (4.6 +/- 0.2). Increasing availability of blood-borne oxidative substrates capable of metabolically bypassing the defect at phosphofructokinase (by fasting plus prolonged moderate exercise to increase plasma free fatty acids or by iv lactate infusion) increased peak work rate, Vo2, and arteriovenous O2 difference, lacked consistent effect on peak Q, and normalized delta Q/ delta Vo2 in PFKD patients. The results extend our previous observations in patients with a block in muscle glycogen but not blood glucose oxidation due to phosphorylase deficiency and imply that specific unavailability of muscle glycogen as an oxidizable fuel is primarily responsible for abnormal muscle oxidative metabolism and associated exercise intolerance and exaggerated delta Q/ delta Vo2 in muscle PFKD. The findings also endorse the concept that factors closely linked with muscle oxidative phosphorylation participate in regulating delta Q/ delta Vo2, likely via activation of metabolically sensitive muscle afferents.  相似文献   

7.
We tested the hypothesis that O(2) uptake (Vo(2)) kinetics at the onset of heavy exercise would be altered in a state of muscle fatigue and prior metabolic acidosis. Eight well-trained cyclists completed two identical bouts of 6-min cycling exercise at >85% of peak Vo(2) separated by three successive bouts of 30 s of sprint cycling. Not only was baseline Vo(2) elevated after prior sprint exercises but also the time constant of phase II Vo(2) kinetics was faster (28.9 +/- 2.4 vs. 22.2 +/- 1.7 s; P < 0.05). CO(2) output (Vco(2)) was significantly reduced throughout the second exercise bout. Subsequently Vo(2) was greater at 3 min and increased less after this after prior sprint exercise. Cardiac output, estimated by impedance cardiography, was significantly higher in the first 2 min of the second heavy exercise bout. Normalized integrated surface electromyography of four leg muscles and normalized mean power frequency were not different between exercise bouts. Vo(2) and Vco(2) kinetic responses to heavy exercise were markedly altered by prior multiple sprint exercises.  相似文献   

8.
Parra et al. (Acta Physiol. Scand 169: 157-165, 2000) showed that 2 wk of daily sprint interval training (SIT) increased citrate synthase (CS) maximal activity but did not change "anaerobic" work capacity, possibly because of chronic fatigue induced by daily training. The effect of fewer SIT sessions on muscle oxidative potential is unknown, and aside from changes in peak oxygen uptake (Vo(2 peak)), no study has examined the effect of SIT on "aerobic" exercise capacity. We tested the hypothesis that six sessions of SIT, performed over 2 wk with 1-2 days rest between sessions to promote recovery, would increase CS maximal activity and endurance capacity during cycling at approximately 80% Vo(2 peak). Eight recreationally active subjects [age = 22 +/- 1 yr; Vo(2 peak) = 45 +/- 3 ml.kg(-1).min(-1) (mean +/- SE)] were studied before and 3 days after SIT. Each training session consisted of four to seven "all-out" 30-s Wingate tests with 4 min of recovery. After SIT, CS maximal activity increased by 38% (5.5 +/- 1.0 vs. 4.0 +/- 0.7 mmol.kg protein(-1).h(-1)) and resting muscle glycogen content increased by 26% (614 +/- 39 vs. 489 +/- 57 mmol/kg dry wt) (both P < 0.05). Most strikingly, cycle endurance capacity increased by 100% after SIT (51 +/- 11 vs. 26 +/- 5 min; P < 0.05), despite no change in Vo(2 peak). The coefficient of variation for the cycle test was 12.0%, and a control group (n = 8) showed no change in performance when tested approximately 2 wk apart without SIT. We conclude that short sprint interval training (approximately 15 min of intense exercise over 2 wk) increased muscle oxidative potential and doubled endurance capacity during intense aerobic cycling in recreationally active individuals.  相似文献   

9.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

10.
To investigate the effects of intermittent heavy exercise (HE) on sarcoplasmic reticulum (SR) maximal Ca2+-ATPase activity (Vmax) and Ca2+ uptake, a continuous two-stage standardized cycling test was performed before and after HE by untrained men [peak aerobic power (Vo -->Vo2 peak) = 42.9 +/- 2.7 ml. kg-1 x min-1]. The HE consisted of 16 bouts of cycling performed for 6 min each hour at 90% Vo2 peak. Tissue was obtained from the vastus lateralis by needle biopsy before and during each cycle test. Before HE, reductions (P < 0.05 micromol. g protein-1x min-1) of 16 and 31% were observed in Vmax and Ca2+ uptake, respectively, after 40 min of the standardized test. Resting Vmax and Ca2+ uptake were depressed (P < 0.05) by 19 and 30%, respectively, when measured 36-48 h after HE. During the standardized test, after HE, Vmax increased (P < 0.05) by 20%, whereas no change was observed in Ca2+ uptake. The HE protocol resulted in small increases (P < 0.05) and decreases (P < 0.05) in sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2a and SERCA1 expression, respectively, as determined by Western blotting techniques. These results indicate that SR Ca2+-sequestering function in response to a prolonged exercise test depends on prior activity status, such that rested muscles exhibit a decrease and prior exercised muscles, an increase in Ca2+-ATPase activity. Moreover, it appears that changes in SERCA content can occur in response to a sustained session of intermittent exercise.  相似文献   

11.
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+ regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 +/- 1.2% maximal O2 uptake (mean +/- SE) continued until fatigue in eight healthy subjects (maximal O2 uptake of 3.93 +/- 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+ release rate induced by 4 chloro-m-cresol, and Ca2+ uptake rate. Cycling time to fatigue was 72.18 +/- 6.46 min. Muscle 3-O-MFPase activity (nmol.min(-1).g protein(-1)) fell from rest by 6.6 +/- 2.1% at 10 min (P <0.05), by 10.7 +/- 2.3% at 45 min (P <0.01), and by 12.6 +/- 1.6% at fatigue (P <0.01), whereas 3[H]ouabain binding site content was unchanged. Ca2+ release (mmol.min(-1).g protein(-1)) declined from rest by 10.0 +/- 3.8% at 45 min (P <0.05) and by 17.9 +/- 4.1% at fatigue (P < 0.01), whereas Ca2+ uptake rate fell from rest by 23.8 +/- 12.2% at fatigue (P=0.05). However, the decline in muscle 3-O-MFPase activity, Ca2+ uptake, and Ca2+ release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+ release, and Ca2+ uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+ transport processes may be important factors in fatigue during prolonged exercise in humans.  相似文献   

12.
Nitric oxide synthase (NOS) inhibition has been shown in humans to attenuate exercise-induced increases in muscle glucose uptake. We examined the effect of infusing the NO precursor L-arginine (L-Arg) on glucose kinetics during exercise in humans. Nine endurance-trained males cycled for 120 min at 72+/-1% Vo(2 peak) followed immediately by a 15-min "all-out" cycling performance bout. A [6,6-(2)H]glucose tracer was infused throughout exercise, and either saline alone (Control, CON) or saline containing L-Arg HCL (L-Arg, 30 g at 0.5 g/min) was confused in a double-blind, randomized order during the last 60 min of exercise. L-Arg augmented the increases in glucose rate of appearance, glucose rate of disappearance, and glucose clearance rate (L-Arg: 16.1+/-1.8 ml.min(-1).kg(-1); CON: 11.9+/- 0.7 ml.min(-1).kg(-1) at 120 min, P<0.05) during exercise, with a net effect of reducing plasma glucose concentration during exercise. L-Arg infusion had no significant effect on plasma insulin concentration but attenuated the increase in nonesterified fatty acid and glycerol concentrations during exercise. L-Arg infusion had no effect on cycling exercise performance. In conclusion, L-Arg infusion during exercise significantly increases skeletal muscle glucose clearance in humans. Because plasma insulin concentration was unaffected by L-Arg infusion, greater NO production may have been responsible for this effect.  相似文献   

13.
Muscle glycogenolytic flux and lactate accumulation during exercise are lower after 3-7 days of "short-term" aerobic training (STT) in men (e.g., Green HJ, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S, and Farrance B. J Appl Physiol 72: 484-491, 1992). We hypothesized that 5 days of STT would attenuate pyruvate production and the increase in muscle tricarboxylic acid cycle intermediates (TCAI) during exercise, because of reduced flux through the reaction catalyzed by alanine aminotransferase (AAT; pyruvate + glutamate <--> 2-oxoglutarate + alanine). Eight women [22 +/- 1 yr, peak oxygen uptake (Vo2 peak) = 40.3 +/- 4.6 ml. kg-1. min-1] performed seven 45-min bouts of cycle exercise at 70% Vo2 peak over 9 days (1 bout/day; rest only on days 2 and 8). During the first and last bouts, biopsies (vastus lateralis) were obtained at rest and after 5 and 45 min of exercise. Muscle glycogen concentration was approximately 50% higher at rest after STT (493 +/- 38 vs. 330 +/- 20 mmol/kg dry wt; P 相似文献   

14.
We compared in human skeletal muscle the effect of absolute vs. relative exercise intensity on AMP-activated protein kinase (AMPK) signaling and substrate metabolism under normoxic and hypoxic conditions. Eight untrained males cycled for 30 min under hypoxic conditions (11.5% O(2), 111 +/- 12 W, 72 +/- 3% hypoxia Vo(2 peak); 72% Hypoxia) or under normoxic conditions (20.9% O(2)) matched to the same absolute (111 +/- 12 W, 51 +/- 1% normoxia Vo(2 peak); 51% Normoxia) or relative (to Vo(2 peak)) intensity (171 +/- 18 W, 73 +/- 1% normoxia Vo(2 peak); 73% Normoxia). Increases (P < 0.05) in AMPK activity, AMPKalpha Thr(172) phosphorylation, ACCbeta Ser(221) phosphorylation, free AMP content, and glucose clearance were more influenced by the absolute than by the relative exercise intensity, being greatest in 73% Normoxia with no difference between 51% Normoxia and 72% Hypoxia. In contrast to this, increases in muscle glycogen use, muscle lactate content, and plasma catecholamine concentration were more influenced by the relative than by the absolute exercise intensity, being similar in 72% Hypoxia and 73% Normoxia, with both trials higher than in 51% Normoxia. In conclusion, increases in muscle AMPK signaling, free AMP content, and glucose disposal during exercise are largely determined by the absolute exercise intensity, whereas increases in plasma catecholamine levels, muscle glycogen use, and muscle lactate levels are more closely associated with the relative exercise intensity.  相似文献   

15.
The effects of exercise and diet on sarcoplasmic reticulum Ca(2+)-cycling properties in female vastus lateralis muscle were investigated in two groups of women following four different conditions. The conditions were 4 days of a low-carbohydrate (Lo CHO) and glycogen-depleting exercise plus a Lo CHO diet (Ex + Lo CHO) (experiment 2) and 4 days of normal CHO (Norm CHO) and glycogen-depleting exercise plus Norm CHO (Ex + Norm CHO) (experiment 1). Peak aerobic power (Vo2peak)) was 38.1 +/- 1.4 (SE); n = 9 and 35.6 +/- 1.4 ml.kg(-1).min(-1); n = 9, respectively. Sarcoplasmic reticulum properties measured in vitro in homogenates (micromol.g protein(-1).min(-1)) indicated exercise-induced reductions (P < 0.05) in maximal Ca(2+)-ATPase activity (0 > 30, 60 min > fatigue), Ca(2+) uptake (0 > 30 > 60 min, fatigue), and Ca(2+) release, both phase 1 (0, 30 > 60 min, fatigue) and phase 2 (0 > 30, 60 min, fatigue; 30 min > fatigue) in Norm CHO. Exercise was without effect in altering the Hill slope (n(H)), defined as the slope of relationship between Ca(2+)-ATPase activity and Ca(2+) concentration. No differences were observed between Norm CHO and Ex+Norm CHO. Compared with Norm CHO, Lo CHO resulted in a lower (P < 0.05) Ca(2+) uptake, phase 1 Ca(2+) release (30 min), and n(H). Ex + Lo CHO resulted in a greater (P < 0.05) Ca(2+) uptake and n(H) compared with Lo CHO. The results demonstrate that Lo CHO alone can disrupt SR Ca(2+) cycling and that, with the exception of Ca(2+) release, a glycogen-depleting session of exercise before Lo CHO can reverse the effects.  相似文献   

16.
This study investigated the effects of prolonged exercise, with and without glucose supplementation, on metabolism and sarcoplasmic reticulum (SR) Ca(2+)-handling properties in working vastus lateralis muscle. Fifteen untrained volunteers [peak O(2) consumption (Vo(2peak)) = 3.45 +/- 0.17 l/min; mean +/- SE] cycled at approximately 60% Vo(2peak) on two occasions, during which they were provided with either an artificially sweetened placebo beverage (NG) or a 6% glucose (G) beverage (~1.00 g carbohydrate/kg body mass). Beverage supplementation started at 30 min of exercise and continued every 15 min thereafter. SR Ca(2+) handling, metabolic, and substrate responses were assessed in tissue extracted from the vastus lateralis at rest, after 30 min and 90 min of exercise, and at fatigue in both conditions. Plasma glucose during G was 15-23% higher (P < 0.05) than those observed during NG following 60 min of exercise until fatigue. Cycle time to fatigue was increased (P < 0.05) by approximately 19% during G (137 +/- 7 min) compared with NG (115 +/- 6 min). Prolonged exercise reduced (P < 0.05) maximal Ca(2+)-ATPase activity (-18.4%), SR Ca(2+) uptake (-27%), and both Phase 1 (-22.2%) and Phase 2 (-34.2%) Ca(2+)-release rates during NG. The exercise-induced reductions in SR Ca(2+)-cycling properties were not altered during G. The metabolic responses to exercise were all unaltered by glucose supplementation, since no differences in respiratory exchange ratios, carbohydrate and lipid oxidation rates, and muscle metabolite and glycogen contents were observed between NG and G. These results indicate that the maintenance of blood glucose homeostasis by glucose supplementation is without effect in modifying the muscle metabolic, endogenous glycogen, or SR Ca(2+)-handling responses.  相似文献   

17.
Alpha-ketoisocaproic acid (KIC) is the product of the transamination of the indispensable amino acid leucine, which is the first step in the complete degradation of leucine. To determine the effects of intense exercise on muscle and blood levels of KIC, 7 male volunteers performed cycle exercise to exhaustion. After pedaling at an intensity of 90 W for 3 min, the load was increased by 60 W every 3 min until volitional fatigue. Muscle biopsies were obtained prior to and immediately after exercise and rapidly frozen for later determination of KIC. During exercise, blood lactate levels increased as expected, while plasma KIC levels did not change. Following exercise, plasma KIC levels rose significantly with peak values occurring 15 min after exercise and did not return to pre-exercise values until 60 min after exercise. In contrast, muscle KIC levels increased during exercise from a pre-exercise mean of 49.4 +/- 4.1 mumol X kg-1 wet wt to 78.1 +/- 6.5 mumol X kg-1 after exercise, an average increase of 48% (P less than 0.05). These data indicate that during intense exercise, leucine transamination in muscle may continue at a faster rate than the decarboxylation of KIC. In addition, plasma levels of KIC did not reflect the intracellular accumulation of KIC during exercise, suggesting a delay in the diffusion of KIC from muscle.  相似文献   

18.
The hypothesis that fatigue during prolonged exercise arises from insufficient intramuscular glycogen, which limits tricarboxylic acid cycle (TCA) activity due to reduced TCA cycle intermediates (TCAI), was tested in this experiment. Seven endurance-trained men cycled at approximately 70% of peak O(2) uptake (Vo(2 peak)) until exhaustion with low (LG) or high (HG) preexercise intramuscular glycogen content. Muscle glycogen content was lower (P < 0.05) at fatigue than at rest in both trials. However, the increase in the sum of four measured TCAI (>70% of the total TCAI pool) from rest to 15 min of exercise was not different between trials, and TCAI content was similar after 103 +/- 15 min of exercise (2.62 +/- 0.31 and 2.59 +/- 0.28 mmol/kg dry wt for LG and HG, respectively), which was the point of volitional fatigue during LG. Subjects cycled for an additional 52 +/- 9 min during HG, and although glycogen was markedly reduced (P < 0.05) during this period, no further change in the TCAI pool was observed, thus demonstrating a clear dissociation between exercise duration and the size of the TCAI pool. Neither the total adenine nucleotide pool (TAN = ATP + ADP + AMP) nor IMP was altered compared with rest in either trial, whereas creatine phosphate levels were not different when values measured at fatigue were compared with those measured after 15 min of exercise. These data demonstrate that altered glycogen availability neither compromises TCAI pool expansion nor affects the TAN pool or creatine phosphate or IMP content during prolonged exercise to fatigue. Therefore, our data do not support the concept that a decrease in muscle TCAI during prolonged exercise in humans compromises aerobic energy provision or is the cause of fatigue.  相似文献   

19.
The hypothesis tested was that disturbances in the sarcoplasmic reticulum (SR) Ca2+-cycling responses to exercise would associate with muscle glycogen reserves. Ten untrained males [peak O2 consumption (VO2 peak) = 3.41 +/- 0.20 (SE) l/min] performed a standardized cycle test (approximately 70% VO2 peak) on two occasions, namely, following 4 days of a high (Hi CHO)- and 4 days of a low (Lo CHO)-carbohydrate diet. Both Hi CHO and Lo CHO were preceded by a session of prolonged exercise designed to deplete muscle glycogen. SR Ca2+ cycling in crude homogenates prepared from vastus lateralis samples indicated higher (P < 0.05) Ca2+ uptake (microM x g protein(-1) x min(-1)) in Hi CHO compared with Lo CHO at 30 min (2.93 +/- 0.10 vs. 2.23 +/- 0.12) and at 67 min (2.77 +/- 0.16 vs. 2.10 +/- 0.12) of exercise, the point of fatigue in Lo CHO. Similar effects (P < 0.05) were noted between conditions for maximal Ca2+-ATPase (microM x g protein(-1) x min(-1)) at 30 min (142 +/- 8.5 vs. 107 +/- 5.0) and at 67 min (130 +/- 4.5 vs. 101 +/- 4.7). Both phase 1 and phase 2 Ca2+ release were 23 and 37% higher (P < 0.05) at 30 min of exercise and 15 and 34% higher (P < 0.05), at 67 min during Hi CHO compared with Lo CHO, respectively. No differences between conditions were observed at rest for any of these SR properties. Total muscle glycogen (mmol glucosyl units/kg dry wt) was higher (P < 0.05) in Hi CHO compared with Lo CHO at rest (+36%), 30 min (+53%), and at 67 min (+44%) of cycling. These results indicate that exercise-induced reductions in SR Ca2+-cycling properties occur earlier in exercise during low glycogen states compared with high glycogen states.  相似文献   

20.
We combined tracer and arteriovenous (a-v) balance techniques to evaluate the effects of exercise and endurance training on leg triacylglyceride turnover as assessed by glycerol exchange. Measurements on an exercising leg were taken to be a surrogate for working skeletal muscle. Eight men completed 9 wk of endurance training [5 days/wk, 1 h/day, 75% peak oxygen consumption (Vo(2peak))], with leg glycerol turnover determined during two pretraining trials [45 and 65% Vo(2peak) (45% Pre and 65% Pre, respectively)] and two posttraining trials [65% of pretraining Vo(2peak) (ABT) and 65% of posttraining Vo(2peak) (RLT)] using [(2)H(5)]glycerol infusion, femoral a-v sampling, and measurement of leg blood flow. Endurance training increased Vo(2peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 mlxkg(-1)xmin(-1), P < 0.05). At rest, there was tracer-measured leg glycerol uptake (41 +/- 8 and 52 +/- 15 micromol/min for pre- and posttraining, respectively) even in the presence of small, but significant, net leg glycerol release (-68 +/- 19 and -50 +/- 13 micromol/min, respectively; P < 0.05 vs. zero). Furthermore, while there was no significant net leg glycerol exchange during any of the exercise bouts, there was substantial tracer-measured leg glycerol turnover during exercise (i.e., simultaneous leg muscle uptake and leg release) (uptake, release: 45% Pre, 194 +/- 41, 214 +/- 33; 65% Pre, 217 +/- 79, 201 +/- 84; ABT, 275 +/- 76, 312 +/- 87; RLT, 282 +/- 83, 424 +/- 75 micromol/min; all P < 0.05 vs. corresponding rest). Leg glycerol turnover was unaffected by exercise intensity or endurance training. In summary, simultaneous leg glycerol uptake and release (indicative of leg triacylglyceride turnover) occurs despite small or negligible net leg glycerol exchange, and furthermore, leg glycerol turnover can be substantially augmented during exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号