首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electromagnetic tracking devices are used in many biomechanics applications. Previous studies have shown that metal located within the working field of direct current electromagnetic tracking devices produces significant errors. However, the effect of sampling rate on the errors produced in a metallic environment has never been studied. In this study, the accuracy of Ascension Technologies' Flock of Birds was evaluated at sampling rates of 20, 60, 100, and 140 Hz, in the presence of both aluminum and steel. Aluminum interference caused an increase in measurement error as the sampling rate increased. Conversely, steel interference caused a decrease in measurement error as the sampling rate increased. We concluded that the accuracy of the Flock of Birds tracking system can be optimized in the presence of metal by careful choice in sampling rate.  相似文献   

2.
3.
The accuracy of determining the point of force application with piezoelectric force plates, as specified by the manufacturer, is lower than needed for certain applications. The purpose of this study was to evaluate the accuracy of a commonly used plate (KISTLER type 9287) and to improve it by proposing a correction algorithm. Forces were applied to a wooden board, supported in one corner by a stylus that rested on the force plate. To determine the influence of position and magnitude of the force vector, the stylus was placed on 117 different locations, and calibrated masses were used to exert vertical forces between 0 and 2000 N. To determine the influence of loading rate, dynamic tests were performed in which a subject ran across the board. In static tests at a given stylus position with actual coordinates x (short axis) and y (long axis), it was found that the calculated coordinates x and y of the point of force application had virtually constant values at forces above 1000 N. In dynamic tests, oscillations could occur in x and y with an amplitude of more than 20 mm. When these were avoided or removed by filtering, static and dynamic tests at a given stylus position showed the same values for x and y at forces above 1000 N. Across stylus positions, the errors x-x and y-y (measured at 1600 N) ranged from -20 to +20 mm. The average over 117 points of the absolute errors magnitude of x-x and magnitude of y-y amounted to 3.5 and 6.3 mm, respectively (mean values of three plates).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hemoglobins of mouse embryos at 11.5 through 16.5 days of gestation were separated by electrophoresis on cellulose acetate and quantitated by a scanning densitometer to study the effects of two radiation-induced mutations on the expression of embryonic hemoglobin genes in mice. Normal mice produce three kinds of embryonic hemoglobins. In heterozygous α-thalassemic embryos, expression of EI (x2y2) and EII (α2y2) is deficient because the x- and α-globin genes of one of the allelic pairs of Hba on chromosome 11 was deleted or otherwise inactivated by X irradiation. Simultaneous inactivation of the x- and α-globin genes indicates that these genes must be closely linked. Reduced x- and α-chain synthesis results in an excess of y chains that associate as homotetramers. This unique y4 hemoglobin also appears in β-duplication embryos where excess y chains are produced by the presence of three rather than two functional alleles of y- and β-globin genes. In double heterozygotes, which have a single functional allele of x- and α-globin genes and three functional alleles of y- and β-globin genes, synthesis of α and non-α chains is severely imbalanced and half of the total hemoglobin is y4. Mouse y4 has a high affinity for oxygen, P50 of less than 10 mm Hg, but it lacks cooperativity so is inefficient for oxygen transport. The death of double heterozygotes in late fetal or neonatal life may be due in large part to oxygen deprivation to the tissues.  相似文献   

5.
PurposeThe aim of this study was to assess the reproducibility of patient shoulder position immobilized with a novel and innovative prototype mask (E-Frame, Engineering System).MethodsThe E-frame mask fixes both shoulders and bisaxillary regions compared with that of a commercial mask (Type-S, CIVCO). Thirteen and twelve patients were immobilized with the Type-S and E-Frame mask systems, respectively. For each treatment fraction, cone-beam CT (CBCT) images of the patient were acquired and retrospectively analyzed. The CBCT images were registered to the planning CT based on the cervical spine, and then the displacements of the acromial extremity of the clavicle were measured.ResultsThe systematic and random errors between the two mask systems were evaluated. The differences of the systematic errors between the two mask systems were not statistically significant. The mean random errors in the three directions (AP, SI and LR) were 2.7 mm, 3.1 mm and 1.5 mm, respectively for the Type-S mask, and 2.8 mm 2.5 mm and 1.4 mm, respectively for the E-Frame mask. The random error of the E-Frame masks in the SI direction was significantly smaller than that of the Type-S. The number of cases showing displacements exceeding 10 mm in the SI direction for at least one fraction was eight (61% of 13 cases) and three (25% of 12 cases) for Type-S and E-Frame masks, respectively.ConclusionsThe E-Frame masks reduced the random displacements of patient’s shoulders in the SI direction, effectively preventing large shoulder shifts that occurred frequently with Type-S masks.  相似文献   

6.
Although numerical models on the shoulder complex joint are currently available, many are impractical because of the procedural complexity coupled with limited and mere simple simulations. The present study defined the clavicle-scapula system as the "base of the humerus" in determining the position of proximal head of humerus, rendering conclusive innovation of a six degree of freedom (DOF) shoulder complex joint model. Furthermore, a complete measurement system where evaluation by calibrating the actual values via the use of an electromagnetic tracking device (ETD) was developed based on the innovated model. The special calibration method using optimizing calculation to work out the rotational center of humerus was employed and actually tested if the theoretical consideration was practically available. As a result of accuracy check experiments, the measurement error was defined within 2-3 mm, indicating sufficient accuracy in studies for human movement. Our findings strongly advocate that the benefit of this novel measurement system would contribute to studies related to shoulder movements in physiological anthropology.  相似文献   

7.
The influence of various DNA measurement errors using a commercially available scanning microdensitometer was evaluated on Feulgen-stained cytologic and histologic samples prepared from paraffin blocks containing invasive ductal breast cancers. The overall average total measurement error was 5.5% for the cytologic specimens and 10.9% for the 4 micron histologic sections. Components of the error included microscopic adjustment variation and focussing errors (3.5% and 1.1%, respectively, for both cytologic and histologic samples) and background intensity estimation errors (3.0% for the cytologic samples and 10.0% for the histologic samples). Measurements of the integrated optical density had a minimal error of 0.5% and an average error of 1.0%. Limitations due to the histologic architecture and/or heterogeneous cell population gave rise to large differences in the selection of nuclei when differently sized scanning masks were used. To improve the reproducibility, masks used should be based on the individual cell size, and background intensity values should be carefully estimated in the vicinity of the selected cells. Overall, the cytologic tumor samples were preferable to the histologic samples for static DNA measurements. It was easier to select cells suitable for measurement in the cytologic samples, and the cytologic measurements were less time consuming and produced a smaller measurement error.  相似文献   

8.
In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ± 0.0006 deg and ± 0.036 mm and ± 0.0001 deg and ± 0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between validation techniques suggests that the virtual sensitivity analysis previously performed was appropriately modeled. Thus, the virtual axis finder can be applied with a thorough understanding of its errors in a variety of test conditions.  相似文献   

9.
PurposeMeasurement-based pre-treatment verification with phantoms frequently uses gamma analysis to assess acceptable delivery accuracy. This study evaluates the sensitivity of a commercial system to simulated machine errors for three different institutions’ Volumetric Modulated Arc Therapy (VMAT) planning approaches.MethodsVMAT plans were generated for ten patients at three institutions using each institution’s own protocol (manually-planned at institution 1; auto-planned at institutions 2 and 3). Errors in Multi-Leaf Collimator (MLC) field size (FS), MLC shift (S), and collimator angle (C) of −5, −2, −1, 1, 2 and 5 mm or degrees were introduced.Dose metric constraints discriminated which error magnitudes were considered unacceptable. The smallest magnitude error treatment plans deemed clinically unacceptable (typically for a 5% dose change) were delivered to the ArcCHECK for all institutions, and with a high-dose point ion chamber measurement in 2 institutions. Error detection for different gamma analysis criteria was compared.ResultsNot all deliberately introduced VMAT plan errors were detected using a typical 3D 3%/3 mm global gamma pass rate of 95%. Considering all institutions, gamma analysis was least sensitive to negative FS errors. The most sensitive was a 2%/2 mm global analysis for institution 1, whilst for institution 2 it was 3%/3 mm global analysis. The majority of errors (58/59 for institution 1, 54/60 for institution 3) were detected using ArcCHECK and ion chamber measurements combined.ConclusionsNot all clinically unacceptable errors are detected. Combining ion chamber measurements with gamma analysis improved sensitivity and is recommended. Optimum gamma settings varied across institutions.  相似文献   

10.
基于观测数据的陆地生态系统模型参数估计有助于提高模型的模拟和预测能力,降低模拟不确定性.在已有参数估计研究中,涡度相关技术测定的净生态系统碳交换量(NEE)数据的随机误差通常被假设为服从零均值的正态分布.然而近年来已有研究表明NEE数据的随机误差更服从双指数分布.为探讨NEE观测误差分布类型的不同选择对陆地生态系统机理模型参数估计以及碳通量模拟结果造成的差异,以长白山温带阔叶红松林为研究区域,采用马尔可夫链-蒙特卡罗方法,利用2003~2005年测定的NEE数据对陆地生态系统机理模型CEVSA2的敏感参数进行估计,对比分析了两种误差分布类型(正态分布和双指数分布)的参数估计结果以及碳通量模拟的差异.结果表明,基于正态观测误差模拟的总初级生产力和生态系统呼吸的年总量分别比基于双指数观测误差的模拟结果高61~86 g C m-2 a-1和107~116 g C m-2 a-1,导致前者模拟的NEE年总量较后者低29~47 g C m-2 a-1,特别在生长旺季期间有明显低估.在参数估计研究中,不能忽略观测误差的分布类型以及相应的目标函数的选择,它们的不合理设置可能对参数估计以及模拟结果产生较大影响.  相似文献   

11.
Real-time quantification of head impacts using wearable sensors is an appealing approach to assess concussion risk. Traditionally, sensors were evaluated for accurately measuring peak resultant skull accelerations and velocities. With growing interest in utilizing model-estimated tissue responses for injury prediction, it is important to evaluate sensor accuracy in estimating tissue response as well. Here, we quantify how sensor kinematic measurement errors can propagate into tissue response errors. Using previous instrumented mouthguard validation datasets, we found that skull kinematic measurement errors in both magnitude and direction lead to errors in tissue response magnitude and distribution. For molar design instrumented mouthguards susceptible to mandible disturbances, 150–400% error in skull kinematic measurements resulted in 100% error in regional peak tissue response. With an improved incisor design mitigating mandible disturbances, errors in skull kinematics were reduced to <50%, and several tissue response errors were reduced to <10%. Applying 30\(^{\circ }\) rotations to reference kinematic signals to emulate sensor transformation errors yielded below 10% error in regional peak tissue response; however, up to 20% error was observed in peak tissue response for individual finite elements. These findings demonstrate that kinematic resultant errors result in regional peak tissue response errors, while kinematic directionality errors result in tissue response distribution errors. This highlights the need to account for both kinematic magnitude and direction errors and accurately determine transformations between sensors and the skull.  相似文献   

12.
Scapular kinematics during sports performances can be recorded using skin-mounted trackers attached to the skin overlying the acromion for continuous data collection without restricting natural motions of the subject relative to medical imaging analyses limiting its use for wide-range or high-speed motions. This study aimed to describe the existence of a directional bias in the translational and rotational errors of skin-mounted trackers using a 3D magnetic resonance imaging (3D-MRI) protocol. 3D-MRI scans of the healthy right shoulders of 19 males were acquired in 12 arm positions. The relative transformation of the scapular configuration determined to be the measurement error, as recorded by the configuration of the small cuboid imitating a skin-mounted tracker relative to the actual scapular configuration measured by the voxel-based registration. These measurement errors were expressed with either positive or negative values to describe the bias. Overall translational errors in the lateral, anterior, and superior directions were 3.7 ± 8.4 mm, 9.5 ± 6.4 mm, and 6.2 ± 4.6 mm, respectively. Overall rotational errors in protraction, upward rotation, and posterior tilt were 7.8 ± 8.4°, 0.2 ± 7.4°, and − 4.0 ± 7.5°, respectively. The skin-mounted tracker displayed a high probability of displacement in antero-superior (93% and 91%) directions and rotates in a protracting manner (82%) relative to the position of the underlying bone with the gradual nature of its change. The existence of the directional bias with its gradual change suggests a statistical predictability in measurement errors, which can be used to predict accurate scapular translation and rotation.  相似文献   

13.
Numerous techniques have been employed to monitor humeral head translation due to its involvement with several shoulder pathologies. However, most of the techniques were not validated. The objective of this study is to compare the accuracy of manual digitization and contour registration in measuring superior translation of the humeral head. Eight pairs of cadaver scapulae and humerii bones were harvested for this study. Each scapula and humerus was secured in a customized jig that allowed for control of humeral head translations and a vise that permitted rotations of the scapula about three axes. Fluoroscopy was used to take images of the shoulder bones. Scapular orientation was manipulated in different positions while the humerus was at 90° of humeral elevation in the scapular plane. Humeral head translation was measured using the two methods and was compared to the known translation. Additionally, accuracy of the contour registration method to measure 2-D scapular rotations was assessed. The range for the root mean square (RMS) error for manual digitization method was 0.27 mm - 0.43 mm and the contour registration method had a RMS error ranging from 0.18 mm - 0.40 mm. In addition, the RMS error for the scapular angle rotation using the contour registration method was 2.4°. Both methods showed acceptable errors. However, on average, the contour registration method showed lesser measurement error compared to the manual digitization method. In addition, the contour registration method was able to show good accuracy in measuring rotation that is useful in 2-D image analysis.  相似文献   

14.
Intraoperative digitization of osseous structures is an integral component of computer-assisted orthopaedic surgery. This study determined the repeatability and accuracy of predicting known radii and center locations of spherical objects for different proportions of digitized surface areas and various sphere sizes. Also, we investigated these accuracies for some relevant near-spherical osseous structures where results from full area digitizations were considered to be true. Digitizations were performed using an electromagnetic tracker with a stylus on the total and fractional surfaces of 10 hemispheres, ranging from 10 to 28 mm in radius. Repeatability was quantified by digitizing five trials of the entire surface and various fractional areas of selected hemisphere sizes. Similar trials were conducted on models of a humeral and femoral head, using the full head area as baseline and digitizing 15 and 30 mm diameter areas of the full head. Mean error for the predicted radii and center positions of the hemispheres ranged from 0.39±0.29 to 0.14±0.07 mm and 0.52±0.31 to 0.22±0.12 mm, respectively. Repeatability for the predicted radii and centers produced maximum standard deviations of 0.31 and 0.42 mm, respectively. All errors decreased as fractional area (40%, 60%, 80% and 100%) increased (p<0.05). Radius of curvature and center position errors for the humeral head model were 1.51±2.11 and 2.28±1.51 mm, respectively. These errors for the femoral head model were 3.37±4.14 and 4.25±4.14 mm, respectively. Errors resulting from the prediction of radius and center indicate that non-spherical anatomical structures are more sensitive to the digitized area, and hence digitization of the largest surface possible seems warranted.  相似文献   

15.
Joint injuries during sporting activities might be reduced by understanding the extent of the dynamic motion of joints prone to injury during maneuvers performed in the field. Because instrumented spatial linkages (ISLs) have been widely used to measure joint motion, it would be useful to extend the functionality of an ISL to measure joint motion in a dynamic environment. The objectives of the work reported by this paper were to (i) design and construct an ISL that will measure dynamic joint motion in a field environment, (ii) calibrate the ISL and quantify its static measurement error, (iii) quantify dynamic measurement error due to external acceleration, and (iv) measure ankle joint complex rotation during snowboarding maneuvers performed on a snow slope. An "elbow-type" ISL was designed to measure ankle joint complex rotation throughout its range (+/-30 deg for flexion/extension, +/-15 deg for internal/external rotation, and +/-15 deg for inversion/eversion). The ISL was calibrated with a custom six degree-of-freedom calibration device generally useful for calibrating ISLs, and static measurement errors of the ISL also were evaluated. Root-mean-squared errors (RMSEs) were 0.59 deg for orientation (1.7% full scale) and 1.00 mm for position (1.7% full scale). A custom dynamic fixture allowed external accelerations (5 g, 0-50 Hz) to be applied to the ISL in each of three linear directions. Maximum measurement deviations due to external acceleration were 0.05 deg in orientation and 0.10 mm in position, which were negligible in comparison to the static errors. The full functionality of the ISL for measuring joint motion in a field environment was demonstrated by measuring rotations of the ankle joint complex during snowboarding maneuvers performed on a snow slope.  相似文献   

16.
Zhang L  Yu G R  Luo Y Q  Gu F X  Zhang L M 《农业工程》2008,28(7):3017-3026
Model predictions can be improved by parameter estimation from measurements. It was assumed that measurement errors of net ecosystem exchange (NEE) of CO2 follow a normal distribution. However, recent studies have shown that errors in eddy covariance measurements closely follow a double exponential distribution. In this paper, we compared effects of different distributions of measurement errors of NEE data on parameter estimation. NEE measurements in the Changbaishan forest were assimilated into a process-based terrestrial ecosystem model. We used the Markov chain Monte Carlo method to derive probability density functions of estimated parameters. Our results showed that modeled annual total gross primary production (GPP) and ecosystem respiration (Re) using the normal error distribution were higher than those using the double exponential distribution by 61–86 gC m?2 a?1 and 107–116 gC m?2 a?1, respectively. As a result, modeled annual sum of NEE using the normal error distribution was lower by 29–47 gC m?2 a?1 than that using the double exponential error distribution. Especially, modeled daily NEE based on the normal distribution underestimated the strong carbon sink in the Changbaishan forest in the growing season. We concluded that types of measurement error distributions and corresponding cost functions can substantially influence the estimation of parameters and carbon fluxes.  相似文献   

17.
Marques TA 《Biometrics》2004,60(3):757-763
Line transect sampling is one of the most widely used methods for animal abundance assessment. Standard estimation methods assume certain detection on the transect, no animal movement, and no measurement errors. Failure of the assumptions can cause substantial bias. In this work, the effect of error measurement on line transect estimators is investigated. Based on considerations of the process generating the errors, a multiplicative error model is presented and a simple way of correcting estimates based on knowledge of the error distribution is proposed. Using beta models for the error distribution, the effect of errors and of the proposed correction is assessed by simulation. Adequate confidence intervals for the corrected estimates are obtained using a bootstrap variance estimate for the correction and the delta method. As noted by Chen (1998, Biometrics 54, 899-908), even unbiased estimators of the distances might lead to biased density estimators, depending on the actual error distribution. In contrast with the findings of Chen, who used an additive model, unbiased estimation of distances, given a multiplicative model, lead to overestimation of density. Some error distributions result in observed distance distributions that make efficient estimation impossible, by removing the shoulder present in the original detection function. This indicates the need to improve field methods to reduce measurement error. An application of the new methods to a real data set is presented.  相似文献   

18.
Shoulder motion is complex and significant research efforts have focused on measuring glenohumeral joint motion. Unfortunately, conventional motion measurement techniques are unable to measure glenohumeral joint kinematics during dynamic shoulder motion to clinically significant levels of accuracy. The purpose of this study was to validate the accuracy of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. We have developed a model-based tracking technique for accurately measuring in vivo joint motion from biplane radiographic images that tracks the position of bones based on their three-dimensional shape and texture. To validate this technique, we implanted tantalum beads into the humerus and scapula of both shoulders from three cadaver specimens and then recorded biplane radiographic images of the shoulder while manually moving each specimen's arm. The position of the humerus and scapula were measured using the model-based tracking system and with a previously validated dynamic radiostereometric analysis (RSA) technique. Accuracy was reported in terms of measurement bias, measurement precision, and overall dynamic accuracy by comparing the model-based tracking results to the dynamic RSA results. The model-based tracking technique produced results that were in excellent agreement with the RSA technique. Measurement bias ranged from -0.126 to 0.199 mm for the scapula and ranged from -0.022 to 0.079 mm for the humerus. Dynamic measurement precision was better than 0.130 mm for the scapula and 0.095 mm for the humerus. Overall dynamic accuracy indicated that rms errors in any one direction were less than 0.385 mm for the scapula and less than 0.374 mm for the humerus. These errors correspond to rotational inaccuracies of approximately 0.25 deg for the scapula and 0.47 deg for the humerus. This new model-based tracking approach represents a non-invasive technique for accurately measuring dynamic glenohumeral joint motion under in vivo conditions. The model-based technique achieves accuracy levels that far surpass all previously reported non-invasive techniques for measuring in vivo glenohumeral joint motion. This technique is supported by a rigorous validation study that provides a realistic simulation of in vivo conditions and we fully expect to achieve these levels of accuracy with in vivo human testing. Future research will use this technique to analyze shoulder motion under a variety of testing conditions and to investigate the effects of conservative and surgical treatment of rotator cuff tears on dynamic joint stability.  相似文献   

19.
PurposeTo study the sensitivity of an ArcCHECK dosimeter in detecting delivery errors during the delivery of Volumetric Modulated Arc Therapy (VMAT).MethodsThree types of errors in Multi Leaf Collimator (MLC) position and dose delivery were simulated separately in the delivery of five prostate and five head and neck (H&N) VMAT plans: (i) Gantry independent: a systematic shift in MLC position and variation in output to the whole arc; (ii) Gantry dependent: sag in MLC position and output variation as a function of gantry angle; (iii) Control point specific MLC and output errors introduced to only a specific number of Control Points (CP). The difference in local and global gamma (γ) pass rate between the no-error and error-simulated measurements with 2%/2 mm and 3%/3 mm tolerances was calculated to assess the sensitivity of ArcCHECK. The clinical impact of these errors was also calculated.ResultsArcCHECK was able to detect a minimum 3 mm MLC error and 3% output error for Gantry independent errors using either local or global gamma with 2%/2 mm tolerance. For the Gantry dependent error scenario a minimum 3 mm MLC error and 3% dose error was identifiable by ArcCHECK using either global or local gamma with 2%/2 mm tolerance. In errors introduced to specific CPs a MLC error of 10 mm and dose error of 100% introduced to 4CPs were detected by ArcCHECK.ConclusionArcCHECK used with either local or global gamma analysis and 2%/2 mm criteria can be confidently used in the clinic to detect errors above the stated error values.  相似文献   

20.
Errors induced by off-axis measurement of the elastic properties of bone   总被引:1,自引:0,他引:1  
Misalignment between the axes of measurement and the material symmetry axes of bone causes error in anisotropic elastic property measurements. Measurements of Poisson's ratio were strongly affected by misalignment errors. The mean errors in the measured Young's moduli were 9.5 and 1.3 percent for cancellous and cortical bone, respectively, at a misalignment angle of 10 degrees. Mean errors of 1.1 and 5.0 percent in the measured shear moduli for cancellous and cortical bone, respectively, were found at a misalignment angle of 10 degrees. Although, cancellous bone tissue was assumed to have orthotropic elastic symmetry, the possibility of the greater symmetry of transverse isotropy was investigated. When the nine orthotropic elastic constants were forced to approximate the five transverse isotropic elastic constants, errors of over 60 percent were introduced. Therefore, it was concluded that cancellous bone is truly orthotropic and not transversely isotropic. A similar but less strong result for cortical bone tissue was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号