首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences.  相似文献   

2.
The nucleotide sequences of the Acinetobacter calcoaceticus benABC genes encoding a multicomponent oxygenase for the conversion of benzoate to a nonaromatic cis-diol were determined. The enzyme, benzoate 1,2-dioxygenase, is composed of a hydroxylase component, encoded by benAB, and an electron transfer component, encoded by benC. Comparison of the deduced amino acid sequences of BenABC with related sequences, including those for the multicomponent toluate, toluene, benzene, and naphthalene 1,2-dioxygenases, indicated that the similarly sized subunits of the hydroxylase components were derived from a common ancestor. Conserved cysteine and histidine residues may bind a [2Fe-2S] Rieske-type cluster to the alpha-subunits of all the hydroxylases. Conserved histidines and tyrosines may coordinate a mononuclear Fe(II) ion. The less conserved beta-subunits of the hydroxylases may be responsible for determining substrate specificity. Each dioxygenase had either one or two electron transfer proteins. The electron transfer component of benzoate dioxygenase, encoded by benC, and the corresponding protein of the toluate 1,2-dioxygenase, encoded by xylZ, were each found to have an N-terminal region which resembled chloroplast-type ferredoxins and a C-terminal region which resembled several oxidoreductases. These BenC and XylZ proteins had regions similar to certain monooxygenase components but did not appear to be evolutionarily related to the two-protein electron transfer systems of the benzene, toluene, and naphthalene 1,2-dioxygenases. Regions of possible NAD and flavin adenine dinucleotide binding were identified.  相似文献   

3.
Mycobacterium sp. strain PYR-1 degrades high-molecular-weight polycyclic hydrocarbons (PAHs) primarily through the introduction of both atoms of molecular oxygen by a dioxygenase. To clone the dioxygenase genes involved in PAH degradation, two-dimensional (2D) gel electrophoresis of PAH-induced proteins from cultures of Mycobacterium sp. strain PYR-1 was used to detect proteins that increased after phenanthrene, dibenzothiophene, and pyrene exposure. Comparison of proteins from induced and uninduced cultures on 2D gels indicated that at least six major proteins were expressed (105, 81, 52, 50, 43, and 13 kDa). The N-terminal sequence of the 50-kDa protein was similar to those of other dioxygenases. A digoxigenin-labeled oligonucleotide probe designed from this protein sequence was used to screen dioxygenase-positive clones from a genomic library of Mycobacterium sp. strain PYR-1. Three clones, each containing a 5,288-bp DNA insert with three genes of the dioxygenase system, were obtained. The genes in the DNA insert, from the 5′ to the 3′ direction, were a dehydrogenase, the dioxygenase small (β)-subunit, and the dioxygenase large (α)-subunit genes, arranged in a sequence different from those of genes encoding other bacterial dioxygenase systems. Phylogenetic analysis showed that the large α subunit did not cluster with most of the known α-subunit sequences but rather with three newly described α subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. The genes from Mycobacterium sp. strain PYR-1 were subcloned and overexpressed in Escherichia coli with the pBAD/ThioFusion system. The functionality of the genes for PAH degradation was confirmed in a phagemid clone containing all three genes, as well as in plasmid subclones containing the two genes encoding the dioxygenase subunits.  相似文献   

4.
One of the major processes for aerobic biodegradation of aromatic compounds is initiated by Rieske dioxygenases. Benzoate dioxygenase contains a reductase component, BenC, that is responsible for the two-electron transfer from NADH via FAD and an iron-sulfur cluster to the terminal oxygenase component. Here, we present the structure of BenC from Acinetobacter sp. strain ADP1 at 1.5 A resolution. BenC contains three domains, each binding a redox cofactor: iron-sulfur, FAD and NADH, respectively. The [2Fe-2S] domain is similar to that of plant ferredoxins, and the FAD and NADH domains are similar to members of the ferredoxin:NADPH reductase superfamily. In phthalate dioxygenase reductase, the only other Rieske dioxygenase reductase for which a crystal structure is available, the ferredoxin-like and flavin binding domains are sequentially reversed compared to BenC. The BenC structure shows significant differences in the location of the ferredoxin domain relative to the other domains, compared to phthalate dioxygenase reductase and other known systems containing these three domains. In BenC, the ferredoxin domain interacts with both the flavin and NAD(P)H domains. The iron-sulfur center and the flavin are about 9 A apart, which allows a fast electron transfer. The BenC structure is the first determined for a reductase from the class IB Rieske dioxygenases, whose reductases transfer electrons directly to their oxygenase components. Based on sequence similarities, a very similar structure was modeled for the class III naphthalene dioxygenase reductase, which transfers electrons to an intermediary ferredoxin, rather than the oxygenase component.  相似文献   

5.
Rhodococcus strain I24 is able to convert indene into indandiol via the actions of at least two dioxygenase systems and a putative monooxygenase system. We have identified a cosmid clone from I24 genomic DNA that is able to confer the ability to convert indene to indandiol upon Rhodococcus erythropolis SQ1, a strain that normally can not convert or metabolize indene. HPLC analysis reveals that the transformed SQ1 strain produces cis-(1R,2S)-indandiol, suggesting that the cosmid clone encodes a naphthalene-type dioxygenase. DNA sequence analysis of a portion of this clone confirmed the presence of genes for the dioxygenase as well as genes encoding a dehydrogenase and putative aldolase. These genes will be useful for manipulating indene bioconversion in Rhodococcus strain I24. Received: 8 December 1998 / Received revision: 26 January 1999 / Accepted: 5 February 1999  相似文献   

6.
The cis-dihydroxylation of arenes by Rieske dearomatizing dioxygenases (RDDs) represents a powerful tool for the production of chiral precursors in organic synthesis. Here, the substrate specificity of the RDD benzoate dioxygenase (BZDO) in Ralstonia eutropha B9 whole cells was explored using quantitative 1H nuclear magnetic resonance spectroscopy (q1H-NMR). The specific activity, specific carbon uptake, and regioselectivity of the dihydroxylation reaction were evaluated in resting cell cultures for a panel of 17 monosubstituted benzoates. Two new substrates of this dioxygenase system were identified (2-methyl- and 3-methoxybenzoic acid) and the corresponding cis-diol metabolites were characterized. Higher activities were observed for benzoates with smaller substituents, predominantly at the 3-position. Elevated activities were also observed in substrates bearing greater partial charge at the C-2 position of the benzoate ring. The regioselectivity of the reaction was directly measured using q1H-NMR and found to have positive correlation with increasing substituent size. These results widen the pool of cis-diol metabolites available for synthetic applications and offer a window into the substrate traits that govern specificity for BZDO.  相似文献   

7.
Dioxygenases induced during benzoate degradation by the actinobacterium Rhodococcus wratislaviensis G10 strain degrading haloaromatic compounds were studied. Rhodococcus wratislaviensis G10 completely degraded 2 g/liter benzoate during 30 h and 10 g/liter during 200 h. Washed cells grown on benzoate retained respiration activity for more than 90 days, and a high activity of benzoate dioxygenase was recorded for 10 days. Compared to the enzyme activities with benzoate, the activity of benzoate dioxygenases was 10-30% with 13 of 35 substituted benzoate analogs. Two dioxygenases capable of cleaving the aromatic ring were isolated and characterized: protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase. Catechol inhibited the activity of protocatechuate 3,4-dioxygenase. Protocatechuate did not affect the activity of catechol 1,2-dioxygenase. A high degree of identity was shown by MALDI-TOF mass spectrometry for protein peaks of the R. wratislaviensis G10 and Rhodococcus opacus 1CP cells grown on benzoate or LB. DNA from the R. wratislaviensis G10 strain was specifically amplified using specific primers to variable regions of genes coding αand β-subunits of protocatechuate 3,4-dioxygenase and to two genes of theR. opacus 1CP coding catechol 1,2-dioxygenase. The products were 99% identical with the corresponding regions of the R. opacus 1CP genes. This high identity (99%) between the genes coding degradation of aromatic compounds in the R. wratislaviensis G10 and R. opacus 1CP strains isolated from sites of remote location (1400 km) and at different time (20-year difference) indicates a common origin of biodegradation genes of these strains and a wide distribution of these genes among rhodococci.  相似文献   

8.
Two strains of bacteria were isolated from creosote-contaminated Puget Sound sediment based on their ability to utilize naphthalene as a sole carbon and energy source. When incubated with a polycyclic aromatic hydrocarbon (PAH) compound in artificial seawater, each strain also degraded 2-methylnaphthalene and 1-methylnaphthalene; in addition, one strain, NAG-2N-113, degraded 2,6-dimethylnaphthalene and phenanthrene. Acenaphthene was not degraded when it was used as a sole carbon source but was degraded by both strains when it was incubated with a mixture of seven other PAHs. Degenerate primers and the PCR were used to isolate a portion of a naphthalene dioxygenase iron-sulfur protein (ISP) gene from each of the strains. A phylogenetic analysis of PAH dioxygenase ISP deduced amino acid sequences showed that the genes isolated in this study were distantly related to the genes encoding naphthalene dioxygenases of Pseudomonas and Burkholderia strains. Despite the differences in PAH degradation phenotype between the new strains, the dioxygenase ISP deduced amino acid fragments of these organisms were 97.6% identical. 16S ribosomal DNA-based phylogenetic analysis placed these bacteria in the gamma-3 subgroup of the Proteobacteria, most closely related to members of the genus Oceanospirillum. However, morphologic, physiologic, and genotypic differences between the new strains and the oceanospirilla justify the creation of a novel genus and species, Neptunomonas naphthovorans. The type strain of N. naphthovorans is strain NAG-2N-126.  相似文献   

9.
10.
11.
12.
Cultures of Mycobacterium sp. strain PYR-1 were dosed with anthracene or phenanthrene and after 14 days of incubation had degraded 92 and 90% of the added anthracene and phenanthrene, respectively. The metabolites were extracted and identified by UV-visible light absorption, high-pressure liquid chromatography retention times, mass spectrometry, 1H and 13C nuclear magnetic resonance spectrometry, and comparison to authentic compounds and literature data. Neutral-pH ethyl acetate extracts from anthracene-incubated cells showed four metabolites, identified as cis-1,2-dihydroxy-1,2-dihydroanthracene, 6,7-benzocoumarin, 1-methoxy-2-hydroxyanthracene, and 9,10-anthraquinone. A novel anthracene ring fission product was isolated from acidified culture media and was identified as 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid. 6,7-Benzocoumarin was also found in that extract. When Mycobacterium sp. strain PYR-1 was grown in the presence of phenanthrene, three neutral metabolites were identified as cis- and trans-9,10-dihydroxy-9,10-dihydrophenanthrene and cis-3,4-dihydroxy-3,4-dihydrophenanthrene. Phenanthrene ring fission products, isolated from acid extracts, were identified as 2,2′-diphenic acid, 1-hydroxynaphthoic acid, and phthalic acid. The data point to the existence, next to already known routes for both gram-negative and gram-positive bacteria, of alternative pathways that might be due to the presence of different dioxygenases or to a relaxed specificity of the same dioxygenase for initial attack on polycyclic aromatic hydrocarbons.  相似文献   

13.
Sphingomonas xenophaga BN6 was isolated from the river Elbe as a member of a multispecies bacterial culture which mineralized 6-aminonaphthalene-2-sulfonate. Pure cultures of strain BN6 converted a wide range of amino- and hydroxynaphthalene-2-sulfonates via a catabolic pathway similar to that described for the metabolism of naphthalene to salicylate by Pseudomonas putida NAH7 or Pseudomonas sp NCIB 9816. In contrast to the naphthalene-degrading pseudomonads, S. xenophaga BN6 only partially degraded the naphthalenesulfonates and excreted the resulting amino- and hydroxysalicylates in almost stoichiometric amounts. Enzymes that take part in the degradative pathway of the naphthalenesulfonates by strain BN6 were purified, characterized and compared with the isofunctional enzymes from the naphthalene-degrading pseudomonads. According to the enzyme structures and the catalytic constants, no fundamental differences were found between the 1,2-dihydroxynaphthalene dioxygenase or the 2′-hydroxybenzalpyruvate aldolase from strain BN6 and the isofunctional enzymes from the naphthalene-degrading pseudomonads. The limited available sequence information about the enzymes from strain BN6 suggests that they show about 40–60% sequence identity to the isofunctional enzymes from the pseudomonads. In addition to the gene for the 1,2-dihydroxynaphthalene dioxygenase, the genes for two other extradiol dioxygenases were cloned and sequenced from strain BN6 and the corresponding gene products were studied. S. xenophaga BN6 has also been used as a model organism to study the mechanism of the non-specific reduction of azo dyes under anaerobic conditions and to establish combined anaerobic/aerobic treatment systems for the degradation of sulfonated azo dyes. Furthermore, the degradation of substituted naphthalenesulfonates by mixed cultures containing strain BN6 was studied in continuous cultures and was described by mathematical models. Received 02 April 1999/ Accepted in revised form 09 July 1999  相似文献   

14.
Biotransformations with recombinant Escherichia coli expressing the genes encoding 2-nitrotoluene 2,3-dioxygenase (2NTDO) from Pseudomonas sp. strain JS42 demonstrated that 2NTDO catalyzes the dihydroxylation and/or monohydroxylation of a wide range of aromatic compounds. Extremely high nucleotide and deduced amino acid sequence identity exists between the components from 2NTDO and the corresponding components from 2,4-dinitrotoluene dioxygenase (2,4-DNTDO) from Burkholderia sp. strain DNT (formerly Pseudomonas sp. strain DNT). However, comparisons of the substrates oxidized by these dioxygenases show that they differ in substrate specificity, regiospecificity, and the enantiomeric composition of their oxidation products. Hybrid dioxygenases were constructed with the genes encoding 2NTDO and 2,4-DNTDO. Biotransformation experiments with these hybrid dioxygenases showed that the C-terminal region of the large subunit of the oxygenase component (ISPα) was responsible for the enzyme specificity differences observed between 2NTDO and 2,4-DNTDO. The small subunit of the terminal oxygenase component (ISPβ) was shown to play no role in determining the specificities of these dioxygenases.  相似文献   

15.
Mycobacterium sp. strain KMS has bioremediation potential for polycyclic aromatic hydrocarbons (PAHs), such as pyrene, and smaller ring aromatics, such as benzoate. Degradation of these aromatics involves oxidation catalyzed by aromatic ring-hydroxylating dioxygenases. Multiple genes encoding dioxygenases exist in KMS: ten genes encode large-subunits with homology to phenylpropionate dioxygenase genes, sixteen pairs of adjacent genes encode alpha- and beta-subunits of dioxygenase and two genes encode beta-subunits. These genes include orthologs of nid genes essential for degradation of multi-ring PAHs in M. vanbaalenii isolate PYR-1. The multiplicity of genes in part is explained by block duplication that results in two or three copies of certain genes on the chromosome, a linear plasmid, and a circular plasmid within the KMS genome. Quantitative real-time PCR showed that four dioxygenase beta-subunit nid genes from operons with almost identical promoter sequences otherwise unique in the genome were induced by pyrene to similar extents. No induction occurred with benzoate. Unlike isolate PYR-1, isolate KMS has an operon specifying benzoate catabolism and the expression of the alpha-subunit dioxygenase gene was activated by benzoate but not pyrene. These studies showed that isolate KMS had a genome well adapted to utilization of different aromatic compounds.  相似文献   

16.
Bacterial isolates from soils contaminated with (chlorinated) aromatic compounds, which degraded biphenyl/chlorinated biphenyls (CB) and belonged to the genera Rhodococcus and Pseudomonas, were studied. Analysis of the 16S rRNA gene sequences was used to determine the phylogenetic position of the isolates. The Rhodococcus cells were found to contain plasmids of high molecular mass (220–680 kbp). PCR screening for the presence of the bphA1 gene, a marker indicating the possibility for induction of 2,3-dioxygenase (biphenyl/toluene dioxygenase subfamily), revealed the presence of the bphA1 genes with 99–100% similarity to the homologous genes of bacteria of the relevant species in all pseudomonad and most Rhodococcus isolates. A unique bphA1 gene, which had not been previously reported for the genus, was identified in Rhodococcus sp. G10. The absence of specific amplification of the bphA1 genes in some biphenyl-degrading bacteria (Rhodococcus sp. B7b, B106a, G12a, P2kr, P2(51), and P2m), as well as in an active biphenyl degrader Rhodococcus ruber P25, indicated the absence of the genes encoding the proteins of the biphenyl/toluene dioxygenase subfamily and participation of the enzymes other than this protein family in biphenyl/CB degradation.  相似文献   

17.
18.
Summary Toluate 1,2-dioxygenase is the first enzyme of a meta-cleavage pathway for the oxidative catabolism of benzoate and substituted benzoates to Krebs cycle intermediates that is specified by TOL plasmid pWW0 of Pseudomonas putida. A collection of derivatives harbouring Tn1000 insertions and defective in toluate dioxygenase have been isolated from pPL392, a pBR322-based hybrid plasmid carrying the TOL plasmid meta-cleavage pathway operon. In parallel, a series of N-methyl-N-nitro-N-nitrosoguanidine-induced mutant plasmids defective in this enzyme activity were isolated from pNM72, a pKT231-based hybrid plasmid carrying the same operon. Pairs of mutant plasmids, consisting of one Tn1000 derivative and one nitrosoguanidine-induced derivative, were used for complementation analysis of toluate dioxygenase in Escherichia coli recA bacteria, in which the formation of 2-hydroxymuconic semialdehyde from benzoate was examined. Four cistrons for toluate 1,2-dioxygenase were thus identified. DNA fragments containing nitrosoguanidine-induced mutant cistrons plus the other meta-cleavage operon genes were cloned into pOT5, an R388-based vector, and complementation tests between different nitrosoguanidine-induced mutant cistrons were carried out in Pseudomonas putida cells, this time scoring for growth on p-toluate. This analysis also identified four cistrons. Examination of the products of these cistrons, by means of E. coli minicells containing pPL392 or its Tn1000 insertion derivatives, indicated that the first two cistrons of the operon comprise a single gene, xylX, which encodes a 57 kilodalton protein, and that the third cistron, xy/Y, encodes a 20 kilodalton protein.  相似文献   

19.
Two novel genes, rdpA and sdpA, encoding the enantiospecific α-ketoglutarate dependent dioxygenases catalyzing R,S-dichlorprop cleavage in Delftia acidovorans MC1 were identified. Significant similarities to other known genes were not detected, but their deduced amino acid sequences were similar to those of other α-ketoglutarate dioxygenases. RdpA showed 35% identity with TauD of Pseudomonas aeruginosa, and SdpA showed 37% identity with TfdA of Ralstonia eutropha JMP134. The functionally important amino acid sequence motif HX(D/E)X23-26(T/S)X114-183HX10-13R/K, which is highly conserved in group II α-ketoglutarate-dependent dioxygenases, was present in both dichlorprop-cleaving enzymes. Transposon mutagenesis of rdpA inactivated R-dichlorprop cleavage, indicating that it was a single-copy gene. Both rdpA and sdpA were located on the plasmid pMC1 that also carries the lower pathway genes. Sequencing of a 25.8-kb fragment showed that the dioxygenase genes were separated by a 13.6-kb region mainly comprising a Tn501-like transposon. Furthermore, two copies of a sequence similar to IS91-like elements were identified. Hybridization studies comparing the wild-type plasmid and that of the mutant unable to cleave dichlorprop showed that rdpA and sdpA were deleted, whereas the lower pathway genes were unaffected, and that deletion may be caused by genetic rearrangements of the IS91-like elements. Two other dichlorprop-degrading bacterial strains, Rhodoferax sp. strain P230 and Sphingobium herbicidovorans MH, were shown to carry rdpA genes of high similarity to rdpA from strain MC1, but sdpA was not detected. This suggested that rdpA gene products are involved in the degradation of R-dichlorprop in these strains.  相似文献   

20.
The objective was to understand the roles of multiple catechol dioxygenases in the type strain Sphingobium scionense WP01T (Liang and Lloyd-Jones in Int J Syst Evol Microbiol 60:413–416, 2010a) that was isolated from severely contaminated sawmill soil. The dioxygenases were identified by sequencing, examined by determining the substrate specificities of the recombinant enzymes, and by quantifying gene expression following exposure to model priority pollutants. Catechol dioxygenase genes encoding an extradiol xylE and two intradiol dioxygenases catA and clcA that are highly similar to sequences described in other sphingomonads are described in S. scionense WP01T. The distinct substrate specificities determined for the recombinant enzymes confirm the annotated gene functions and suggest different catabolic roles for each enzyme. The role of the three enzymes was evaluated by analysis of enzyme activity in crude cell extracts from cells grown on meta-toluate, benzoate, biphenyl, naphthalene and phenanthrene which revealed the co-induction of each enzyme by different substrates. This was corroborated by quantifying gene expression when cells were induced by biphenyl, naphthalene and pentachlorophenol. It is concluded that the ClcA and XylE enzymes are recruited in pathways that are involved in the degradation of chlorinated aromatic compounds such as pentachlorophenol, the XylE and ClcA enzymes will also play a role in degradation pathways that produce alkylcatechols, while the three enzymes ClcA, XylE and CatA will be simultaneously involved in pathways that generate catechol as a degradation pathway intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号