首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular modeling and site directed mutagenesis were used to analyze the structural features determining the unique inhibitor sensitivities of type-III phosphatidylinositol 4-kinase enzymes (PI4Ks). Mutation of a highly conserved Tyr residue that provides the bottom of the hydrophobic pocket for ATP yielded a PI4KIIIbeta enzyme that showed greatly reduced wortmannin sensitivity and was catalytically still active. Similar substitutions were not tolerated in the type-IIIalpha enzyme rendering it catalytically inactive. Two conserved Cys residues located in the active site of PI4KIIIalpha were found responsible for the high sensitivity of this enzyme to the oxidizing agent, phenylarsine oxide. Mutation of one of these Cys residues reduced the phenylarsine oxide sensitivity of the enzyme to the same level observed with the PI4KIIIbeta protein. In search of inhibitors that would discriminate between the closely related PI4KIIIalpha and -IIIbeta enzymes, the PI3Kgamma inhibitor, PIK93, was found to inhibit PI4KIIIbeta with significantly greater potency than PI4KIIIalpha. These studies should aid development of subtype-specific inhibitors of type-III PI4Ks and help to better understand the significance of localized PtdIns4P production by the various PI4Ks isoforms in specific cellular compartments.  相似文献   

2.
Phosphatidylinositol 4-phosphate (PI4P) regulates biosynthetic membrane traffic at multiple steps and differentially affects the surface delivery of apically and basolaterally destined proteins in polarized cells. Two phosphatidylinositol 4-kinases (PI4Ks) have been localized to the Golgi complex in mammalian cells, type III PI4Kbeta (PI4KIIIbeta) and type II PI4Kalpha (PI4KIIalpha). Here we report that PI4KIIIbeta and PI4KIIalpha localize to discrete subcompartments of the Golgi complex in Madin-Darby canine kidney (MDCK) cells. PI4KIIIbeta was enriched in early Golgi compartments, whereas PI4KIIalpha colocalized with markers of the trans-Golgi network (TGN). To understand the temporal and spatial control of PI4P generation across the Golgi complex, we quantitated the steady state distribution of a fluorescent PI4P-binding domain relative to cis/medial Golgi and TGN markers in transiently transfected MDCK cells. The density of the signal from this PI4P reporter was roughly 2-fold greater in the early Golgi compartments compared with that of the TGN. Furthermore, this ratio could be modulated in vivo by overexpression of catalytically inactive PI4KIIIbeta and PI4KIIalpha or in vitro by the PI4KIIIbeta inhibitor wortmannin. Our data suggest that both PI4KIIIbeta and PI4KIIalpha contribute to the compartmental regulation of PI4P synthesis within the Golgi complex. We discuss our results with respect to the kinetic effects of modulating PI4K activity on polarized biosynthetic traffic in MDCK cells.  相似文献   

3.
The inositol lipid and phosphate binding properties and the cellular localization of phospholipase Cdelta(4) (PLCdelta(4)) and its isolated pleckstrin homology (PH) domain were analyzed in comparison with the similar features of the PLCdelta(1) protein. The isolated PH domains of both proteins showed plasma membrane localization when expressed in the form of a green fluorescent protein fusion construct in various cells, although a significantly lower proportion of the PLCdelta(4) PH domain was membrane-bound than in the case of PLCdelta(1)PH-GFP. Both PH domains selectively recognized phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), but a lower binding of PLCdelta(4)PH to lipid vesicles containing PI(4,5)P(2) was observed. Also, higher concentrations of inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) were required to displace the PLCdelta(4)PH from the lipid vesicles, and a lower Ins(1,4,5)P(3) affinity of PLCdelta(4)PH was found in direct Ins(1,4,5)P(3) binding assays. In sharp contrast to the localization of its PH domain, the full-length PLCdelta(4) protein localized primarily to intracellular membranes mostly to the endoplasmic reticulum (ER). This ER localization was in striking contrast to the well documented PH domain-dependent plasma membrane localization of PLCdelta(1). A truncated PLCdelta(4) protein lacking the entire PH domain still showed the same ER localization as the full-length protein, indicating that the PH domain is not a critical determinant of the localization of this protein. Most important, the full-length PLCdelta(4) enzyme still showed binding to PI(4,5)P(2)-containing micelles, but Ins(1,4,5)P(3) was significantly less potent in displacing the enzyme from the lipid than with the PLCdelta(1) protein. These data suggest that although structurally related, PLCdelta(1) and PLCdelta(4) are probably differentially regulated in distinct cellular compartments by PI(4,5)P(2) and that the PH domain of PLCdelta(4) does not act as a localization signal.  相似文献   

4.
The role of specific membrane lipids in transport between endoplasmic reticulum (ER) and Golgi compartments is poorly understood. Using cell-free assays that measure stages in ER-to-Golgi transport, we screened a variety of enzyme inhibitors, lipid-modifying enzymes, and lipid ligands to investigate requirements in yeast. The pleckstrin homology (PH) domain of human Fapp1, which binds phosphatidylinositol-4-phosphate (PI(4)P) specifically, was a strong and specific inhibitor of anterograde transport. Analysis of wild type and mutant PH domain proteins in addition to recombinant versions of the Sac1p phosphoinositide-phosphatase indicated that PI(4)P was required on Golgi membranes for fusion with coat protein complex II (COPII) vesicles. PI(4)P inhibition did not prevent vesicle tethering but significantly reduced formation of soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes between vesicle and Golgi SNARE proteins. Moreover, semi-intact cell membranes containing elevated levels of the ER-Golgi SNARE proteins and Sly1p were less sensitive to PI(4)P inhibitors. Finally, in vivo analyses of a pik1 mutant strain showed that inhibition of PI(4)P synthesis blocked anterograde transport from the ER to early Golgi compartments. Together, the data presented here indicate that PI(4)P is required for the SNARE-dependent fusion stage of COPII vesicles with the Golgi complex.  相似文献   

5.
Signal transduction pathways that co-regulate a given biological process often are organized into networks by molecules that act as coincidence detectors. Phosphoinositides and the Rho-type GTPase Cdc42 regulate overlapping processes in all eukaryotic cells. However, the coincidence detectors that link these pathways into networks remain unknown. Here we show that the p21-activated protein kinase-related kinase Cla4 of yeast integrates signaling by Cdc42 and phosphatidylinositol 4-phosphate (PI4P). We found that the Cla4 pleckstrin homology (PH) domain binds in vitro to several phosphoinositide species. To determine which phosphoinositides regulate Cla4 in vivo, we analyzed phosphatidylinositol kinase mutants (stt4, mss4, and pik1). This indicated that the plasma membrane pool of PI4P, but not phosphatidylinositol 4,5-bisphosphate or the Golgi pool of PI4P, is required for localization of Cla4 to sites of polarized growth. A combination of the Cdc42-binding and PH domains of Cla4 was necessary and sufficient for localization to sites of polarized growth. Point mutations affecting either domain impaired the ability of Cla4 to regulate cell morphogenesis and the mitotic exit network (localization of Lte1). Therefore, Cla4 must retain the ability to bind both Cdc42 and phosphoinositides, the hallmark of a coincidence detector. PI4P may recruit Cla4 to the plasma membrane where Cdc42 activates its kinase activity and refines its localization to cortical sites of polarized growth. In mammalian cells, the myotonic dystrophy-related Cdc42-binding kinase possesses p21-binding and PH domains, suggesting that this kinase may be a coincidence detector of signaling by Cdc42 and phosphoinositides.  相似文献   

6.
The type I phosphatidylinositol 4-phosphate 5-kinases (PI4P5K) phosphorylate phosphatidylinositol 4-phosphate [PI(4)P] to produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. PI(4,5)P2 has been implicated in signal transduction, receptor mediated endocytosis, vesicle trafficking, cytoskeletal structure, and membrane ruffling. However, the specific type I enzymes associated with the production of PI(4,5)P2 for the specific cellular processes have not been rigorously defined. Murine PI4P5K type Ibeta (mPIP5K-Ibeta) was implicated in receptor mediated endocytosis through the isolation of a truncated and inactive form of the enzyme that blocked the ligand-dependent downregulation of the colony-stimulating factor-1 receptor. The present study shows that enforced expression of mPIP5K-Ibeta in 293T cells resulted in the accumulation of large vesicles that were linked to an endosomal pathway. Similar results were obtained after the expression of the PI(4,5)P2-binding pleckstrin homology (PH) domain of phospholipase-Cdelta (PLC-delta). Analysis of the conserved domains of mPIP5K-Ibeta led to the identification of dimerization domains in the N- and C-terminal regions. Enforced expression of the individual dimerization domains interfered with the proper subcellular localization of mPIP5K-Ibeta and the PLC-delta-PH domain and blocked the accumulation of the endocytic vesicles induced by these proteins. In addition to regulating early steps in endocytosis, these results suggest that mPIP5K-Ibeta acts through PI(4,5)P2 to regulate endosomal trafficking and/or fusion.  相似文献   

7.
Protein kinase D (PKD) regulates the fission of vesicles originating from the trans-Golgi network. We show that phosphatidylinositol 4-kinase IIIbeta (PI4KIIIbeta) - a key player in the structure and function of the Golgi complex - is a physiological substrate of PKD. Of the three PKD isoforms, only PKD1 and PKD2 phosphorylated PI4KIIIbeta at a motif that is highly conserved from yeast to humans. PKD-mediated phosphorylation stimulated lipid kinase activity of PI4KIIIbeta and enhanced vesicular stomatitis virus G-protein transport to the plasma membrane. The identification of PI4KIIIbeta as one of the PKD substrates should help to reveal the molecular events that enable transport-carrier formation.  相似文献   

8.
The causative agent of Legionnaires' disease, Legionella pneumophila, employs the intracellular multiplication (Icm)/defective organelle trafficking (Dot) type IV secretion system (T4SS) to upregulate phagocytosis and to establish a replicative vacuole in amoebae and macrophages. Legionella-containing vacuoles (LCVs) do not fuse with endosomes but recruit early secretory vesicles. Here we analyze the role of host cell phosphoinositide (PI) metabolism during uptake and intracellular replication of L. pneumophila. Genetic and pharmacological evidence suggests that class I phosphatidylinositol(3) kinases (PI3Ks) are dispensable for phagocytosis of wild-type L. pneumophila but inhibit intracellular replication of the bacteria and participate in the modulation of the LCV. Uptake and degradation of an icmT mutant strain lacking a functional Icm/Dot transporter was promoted by PI3Ks. We identified Icm/Dot-secreted proteins which specifically bind to phosphatidylinositol(4) phosphate (PI(4)P) in vitro and preferentially localize to LCVs in the absence of functional PI3Ks. PI(4)P was found to be present on LCVs using as a probe either an antibody against PI(4)P or the PH domain of the PI(4)P-binding protein FAPP1 (phosphatidylinositol(4) phosphate adaptor protein-1). Moreover, the presence of PI(4)P on LCVs required a functional Icm/Dot T4SS. Our results indicate that L. pneumophila modulates host cell PI metabolism and exploits the Golgi lipid second messenger PI(4)P to anchor secreted effector proteins to the LCV.  相似文献   

9.
In the Golgi apparatus, lipid homeostasis pathways are coordinated with the biogenesis of cargo transport vesicles by phosphatidylinositol 4-kinases (PI4Ks) that produce phosphatidylinositol 4-phosphate (PtdIns4P), a signaling molecule that is recognized by downstream effector proteins. Quantitative analysis of the intra-Golgi distribution of a PtdIns4P reporter protein confirms that PtdIns4P is enriched on the trans-Golgi cisterna, but surprisingly, Vps74 (the orthologue of human GOLPH3), a PI4K effector required to maintain residence of a subset of Golgi proteins, is distributed with the opposite polarity, being most abundant on cis and medial cisternae. Vps74 binds directly to the catalytic domain of Sac1 (K(D) = 3.8 μM), the major PtdIns4P phosphatase in the cell, and PtdIns4P is elevated on medial Golgi cisternae in cells lacking Vps74 or Sac1, suggesting that Vps74 is a sensor of PtdIns4P level on medial Golgi cisternae that directs Sac1-mediated dephosphosphorylation of this pool of PtdIns4P. Consistent with the established role of Sac1 in the regulation of sphingolipid biosynthesis, complex sphingolipid homeostasis is perturbed in vps74Δ cells. Mutant cells lacking complex sphingolipid biosynthetic enzymes fail to properly maintain residence of a medial Golgi enzyme, and cells lacking Vps74 depend critically on complex sphingolipid biosynthesis for growth. The results establish additive roles of Vps74-mediated and sphingolipid-dependent sorting of Golgi residents.  相似文献   

10.
Phosphatidylinositol 4-kinases (PI4Ks) regulate vesicle-mediated export from the Golgi apparatus via phosphatidylinositol 4-phosphate (PtdIns4P) binding effector proteins that control vesicle budding reactions and regulate membrane dynamics. Evidence has emerged from the characterization of Golgi PI4K effectors that vesicle budding and lipid dynamics are tightly coupled via a regulatory network that ensures that the appropriate membrane composition is established before a transport vesicle buds from the Golgi. An important hub of this network is protein kinase D, which regulates the activity of PI4K and several PtdIns4P effectors that control sphingolipid and sterol content of Golgi membranes. Other newly identified PtdIns4P effectors include Vps74/GOLPH3, a phospholipid flippase called Drs2 and Sec2, a Rab guanine nucleotide exchange factor (GEF). These effectors orchestrate membrane transformation events facilitating vesicle formation and targeting. In this review, we discuss how PtdIns4P signaling is integrated with membrane biosynthetic and vesicle budding machineries to potentially coordinate these crucial functions of the Golgi apparatus.  相似文献   

11.
Type III phosphatidylinositol (PtdIns) 4-kinases (PI4Ks) have been previously shown to support plasma membrane phosphoinositide synthesis during phospholipase C activation and Ca2+ signaling. Here, we use biochemical and imaging tools to monitor phosphoinositide changes in the plasma membrane in combination with pharmacological and genetic approaches to determine which of the type III PI4Ks (α or β) is responsible for supplying phosphoinositides during agonist-induced Ca2+ signaling. Using inhibitors that discriminate between the α- and β-isoforms of type III PI4Ks, PI4KIIIα was found indispensable for the production of phosphatidylinositol 4-phosphate (PtdIns4P), phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], and Ca2+ signaling in angiotensin II (AngII)-stimulated cells. Down-regulation of either the type II or type III PI4K enzymes by small interfering RNA (siRNA) had small but significant effects on basal PtdIns4P and PtdIns(4,5)P2 levels in 32P-labeled cells, but only PI4KIIIα down-regulation caused a slight impairment of PtdIns4P and PtdIns(4,5)P2 resynthesis in AngII-stimulated cells. None of the PI4K siRNA treatments had a measurable effect on AngII-induced Ca2+ signaling. These results indicate that a small fraction of the cellular PI4K activity is sufficient to maintain plasma membrane phosphoinositide pools, and they demonstrate the value of the pharmacological approach in revealing the pivotal role of PI4KIIIα enzyme in maintaining plasma membrane phosphoinositides.  相似文献   

12.
Eukaryotic protein translation elongation factor 1 alpha 2 (eEF1A2) is an oncogene that transforms mammalian cell lines and increases their tumorigenicity in nude mice. Increased expression of eEF1A2 occurs during the development of breast, ovarian, and lung cancer. Here, we report that eEF1A2 directly binds to and activates phosphatidylinositol 4-kinase III beta (PI4KIIIbeta), an enzyme that converts phosphatidylinositol to phosphatidylinositol 4-phosphate. Purified recombinant eEF1A2 increases PI4KIIIbeta lipid kinase activity in vitro, and expression of eEF1A2 in rat and human cells is sufficient to increase overall cellular phosphatidylinositol 4-kinase activity and intracellular phosphatidylinositol 4-phosphate abundance. siRNA-mediated reduction in eEF1A2 expression concomitantly reduces phosphatidylinositol 4-kinase activity. This identifies a physical and functional relationship between eEF1A2 and PI4KIIIbeta.  相似文献   

13.
Phosphatidylinositol (PtdIns) phosphate (PtdInsP) lipids are used as intracellular signposts for the recruitment and activation of peripheral membrane proteins. Whereas the distribution of most PtdInsPs is restricted to a single organelle, PtdIns(4)P is unique in that it exists in several discrete pools, and so proteins that bind PtdIns(4)P must use extra receptors to achieve a restricted localization. Here we compare the two highly related pleckstrin homology (PH) domains from Osh1p and Osh2p, yeast homologues of oxysterol-binding protein (OSBP), that target membranes using PtdIns(4)P, and in vitro bind both PtdIns(4)P and PtdIns(4,5)P2. We show that Golgi targeting is specified by an additional site on PH(Osh1), which lies on a face of the domain not previously known to interact with receptors. In contrast, PH(Osh2) does not have a demonstrable second site, and targets multiple pools of PtdInsPs, each dependent on a different PtdIns 4-kinase. This lack of a second site in PH(Osh2) allows it to be used as an unbiased reporter for altered distribution of 4-phosphorylated PtdIns. For example, in cells with excess PtdIns(4)P caused by inactivation of the phosphatase Sac1p, PH(Osh2) indicates that PtdIns(4)P accumulates on the plasma membrane, whereas other Golgi-targeted PH domains fail to detect this change.  相似文献   

14.
Proper Golgi complex function depends on the activity of Arf1, a GTPase whose effectors assemble and transport outgoing vesicles. Phosphatidylinositol 4-phosphate (PI4P) generated at the Golgi by the conserved PI 4-kinase Pik1 (PI4KIIIβ) is also essential for Golgi function, although its precise roles in vesicle formation are less clear. Arf1 has been reported to regulate PI4P production, but whether Pik1 is a direct Arf1 effector is not established. Using a combination of live-cell time-lapse imaging analyses, acute PI4P depletion experiments, and in vitro protein–protein interaction assays on Golgi-mimetic membranes, we present evidence for a model in which Arf1 initiates the final stages of Golgi maturation by tightly controlling PI4P production through direct recruitment of the Pik1-Frq1 PI4-kinase complex. This PI4P serves as a critical signal for AP-1 and secretory vesicle formation, the final events at maturing Golgi compartments. This work therefore establishes the regulatory and temporal context surrounding Golgi PI4P production and its precise roles in Golgi maturation.  相似文献   

15.
The signaling enzyme phospholipase D1 (PLD1) facilitates membrane vesicle trafficking. Here, we explore how PLD1 subcellular localization is regulated via Phox homology (PX) and pleckstrin homology (PH) domains and a PI4,5P2-binding site critical for its activation. PLD1 localized to perinuclear endosomes and Golgi in COS-7 cells, but on cellular stimulation, translocated to the plasma membrane in an activity-facilitated manner and then returned to the endosomes. The PI4,5P2-interacting site sufficed to mediate outward translocation and association with the plasma membrane. However, in the absence of PX and PH domains, PLD1 was unable to return efficiently to the endosomes. The PX and PH domains appear to facilitate internalization at different steps. The PH domain drives PLD1 entry into lipid rafts, which we show to be a step critical for internalization. In contrast, the PX domain appears to mediate binding to PI5P, a lipid newly recognized to accumulate in endocytosing vesicles. Finally, we show that the PH domain-dependent translocation step, but not the PX domain, is required for PLD1 to function in regulated exocytosis in PC12 cells. We propose that PLD1 localization and function involves regulated and continual cycling through a succession of subcellular sites, mediated by successive combinations of membrane association interactions.  相似文献   

16.
Ceramide transport from the endoplasmic reticulum to the Golgi apparatus is crucial in sphingolipid biosynthesis, and the process relies on the ceramide trafficking protein (CERT), which contains pleckstrin homology (PH) and StAR-related lipid transfer domains. The CERT PH domain specifically recognizes phosphatidylinositol 4-monophosphate (PtdIns(4)P), a characteristic phosphoinositide in the Golgi membrane, and is indispensable for the endoplasmic reticulum-to-Golgi transport of ceramide by CERT. In this study, we determined the three-dimensional structure of the CERT PH domain by using solution NMR techniques. The structure revealed the presence of a characteristic basic groove near the canonical PtdIns(4)P recognition site. An extensive interaction study using NMR and other biophysical techniques revealed that the basic groove coordinates the CERT PH domain for efficient PtdIns(4)P recognition and localization in the Golgi apparatus. The notion was also supported by Golgi mislocalization of the CERT mutants in living cells. The distinctive binding modes reflect the functions of PH domains, as the basic groove is conserved only in the PH domains involved with the PtdIns(4)P-dependent lipid transport activity but not in those with the signal transduction activity.  相似文献   

17.
Recent studies have demonstrated that PH domains specific for PI(3,4,5)P3 accumulate at the leading edge of a number of migrating cells and that PI3Ks and PTEN associate with the membrane at the front and back, respectively, of chemotaxing Dictyostelium discoideum cells. However, the dependence of chemoattractant induced changes in PI(3,4,5)P3 on PI3K and PTEN activities have not been defined. We find that bulk PI(3,4,5)P3 levels increase transiently upon chemoattractant stimulation, and the changes are greater and more prolonged in pten- cells. PI3K activation increases within 5 s of chemoattractant addition and then declines to a low level of activity identically in wild-type and pten- cells. Reconstitution of the PI3K activation profile can be achieved by mixing membranes from stimulated pi3k1-/pi3k2- cells with cytosolic PI3Ks from unstimulated cells. These studies show that significant control of chemotaxis occurs upstream of the PI3Ks and that regulation of the PI3Ks and PTEN cooperate to shape the temporal and spatial localization of PI(3,4,5)P3.  相似文献   

18.
Phospholipase C from human platelets was found to catalyze the Ca2+-dependent degradation of phosphatidylinositol (PI), phosphatidylinositol 4'-phosphate (DPI), and phosphatidylinositol 4',5'-bisphosphate (TPI) at Ca2+ concentrations from 150 microM to 5 mM. Both DPI and TPI inhibited the hydrolysis of [2-3H]inositol-labeled PI (250 microM) in a concentration-dependent manner. The use of DPI and TPI from beef brain, both of which have fatty acid compositions different from that of soybean PI, permitted an assessment of the inhibitory effect of polyphosphoinositides on the hydrolysis of PI by phospholipase C. Fatty acid analysis of the diacylglycerols formed demonstrated that DPI and TPI, when incubated in mixture with PI, were competitive substrates for PI hydrolysis. Increasing the DPI/PI ratio from 0 to 0.3 caused a shift in the degradation of PI to DPI without greatly affecting the formation of 1,2-diacylglycerol. TPI alone, or in mixture with PI, was a poor substrate for phospholipase C. Increasing the TPI/PI ratio from 0 to 0.21, on the other hand, inhibited both PI degradation (greater than or equal to 95%) and overall formation of 1,2-diacylglycerol (greater than or equal to 82%). Kinetic analysis revealed that TPI acts as a mixed-type inhibitor with a Ki of about 10 microM. The Ka for Ca2+ in PI hydrolysis was profoundly increased from 5 to 180 microM when TPI (36 microM) was included with PI (250 microM). Optimum PI degradation under these conditions was only attained when the calcium concentration approached 4 mM. Analysis of phospholipids from unstimulated human platelets from five different donors revealed DPI/PI and TPI/PI ratios of 0.42 and 0.16, respectively. These findings, combined with the observed inhibition of PI hydrolysis by TPI at a TPI/PI ratio of 0.16, would suggest that in unstimulated platelets phospholipase C activity may be inhibited by greater than or equal to 75%. Changes in 33P-prelabeled phospholipids of intact platelets upon stimulation with thrombin indicated a transient decline in 33P label of both TPI and DPI (15 s) followed by an increase in [33P]phosphatidic acid but no change in [33P]PI. The finding that DPI is selectively degraded by phospholipase C in mixture with PI at DPI/PI ratios determined to be present in unstimulated platelets indicates that DPI may be more important than PI in the formation of 1,2-diacylglycerol which is believed to serve as precursor of arachidonic acid for thromboxane biosynthesis. Furthermore, the results suggest that in human platelets TPI may serve as modulator for the formation of 1,2-diacylglycerol from inositol phospholipids.  相似文献   

19.
Phosphatidylinositol 4-kinases (PI4K) catalyze the first step in the synthesis of phosphatidylinositol 4,5-bisphosphate, an important lipid regulator of several cellular functions. Here we show that the Ca(2+)-binding protein, neuronal calcium sensor-1 (NCS-1), can physically associate with the type III PI4Kbeta with functional consequences affecting the kinase. Recombinant PI4Kbeta, but not its glutathione S-transferase-fused form, showed enhanced PI kinase activity when incubated with recombinant NCS-1, but only if the latter was myristoylated. Similarly, in vitro translated NCS-1, but not its myristoylation-defective mutant, was found associated with recombinant- or in vitro translated PI4Kbeta in PI4Kbeta-immunoprecipitates. When expressed in COS-7 cells, PI4Kbeta and NCS-1 formed a complex that could be immunoprecipitated with antibodies against either proteins, and PI 4-kinase activity was present in anti-NCS-1 immunoprecipitates. Expressed NCS-1-YFP showed co-localization with endogenous PI4Kbeta primarily in the Golgi, but it was also present in the walls of numerous large perinuclear vesicles. Co-expression of a catalytically inactive PI4Kbeta inhibited the development of this vesicular phenotype. Transfection of PI4Kbeta and NCS-1 had no effect on basal PIP synthesis in permeabilized COS-7 cells, but it increased the wortmannin-sensitive [(32)P]phosphate incorporation into phosphatidylinositol 4-phosphate during Ca(2+)-induced phospholipase C activation. These results together indicate that NCS-1 is able to interact with PI4Kbeta also in mammalian cells and may play a role in the regulation of this enzyme in specific cellular compartments affecting vesicular trafficking.  相似文献   

20.
Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a transforming gene product that is highly expressed in human tumors of the ovary, lung, and breast. eEF1A2 also stimulates actin remodeling, and the expression of this factor is sufficient to induce the formation of filopodia, long cellular processes composed of bundles of parallel actin filaments. Here, we find that eEF1A2 stimulates formation of filopodia by increasing the cellular abundance of cytosolic and plasma membrane-bound phosphatidylinositol-4,5 bisphosphate [PI(4,5)P(2)]. We have previously reported that the eEF1A2 protein binds and activates phosphatidylinositol-4 kinase III beta (PI4KIIIbeta), and we find that production of eEF1A2-dependent PI(4,5)P(2) and generation of filopodia require PI4KIIIbeta. Furthermore, PI4KIIIbeta is itself capable of activating both the production of PI(4,5)P(2) and the creation of filopodia. We propose a model for extrusion of filopodia in which eEF1A2 activates PI4KIIIbeta, and activated PI4KIIIbeta stimulates production of PI(4,5)P(2) and filopodia by increasing PI4P abundance. Our work suggests an important role for both eEF1A2 and PI4KIIIbeta in the control of PI(4,5)P(2) signaling and actin remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号