首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical Properties of Phospholipid Vesicles   总被引:1,自引:0,他引:1       下载免费PDF全文
The capacitance of the membrane of phospholipid vesicles and the electrical properties of the vesicle interior have been determined. To this end the electrical properties of phospholipid vesicles have been investigated over a frequency range extending from 1 kHz to 100 MHz. The dielectric behavior is characterized by two dispersions, one placed between 1 kHz and 1 MHz and the other between 1 and 100 MHz. The relaxational behavior at low frequencies is explained by counterion movement tangential to the vesicle surface and a reasonable value for the fixed charge of the vesicles is calculated from the dispersion magnitude. The relaxation at high frequencies is of the Maxwell-Wagner type and appears caused by the phospholipid bilayer bounding the interior phase of the vesicles. It is consistent with the existence of a closed bilayer with a capacitance of about 2 μF/cm2 and an internal phase similar to the vesicle suspending medium. There is no indication of other than normally structured water inside the small vesicles.  相似文献   

2.
Filters containing fixed negative charges were saturated with hydrophobic solvent and interposed between aqueous solutions. The capacitance of such membranes was measured in the frequency range of 0.05-30 kc. The capacitance increased with decrease in frequency. The frequency dependence of the capacitance was sensitive to nature of the cation present and to salt concentration in the aqueous solution. It is suggested that variation of membrane resistivity in the space charge region of the membrane is responsible for this phenomenon. Possible effects of the potential and counterion concentration profiles at the membrane-water interface are discussed.  相似文献   

3.
The capacitance of glycerolmonooleate and egg phosphatidylcholine bilayer membranes in the presence of NaCl solutions containing tetraphenylborate, tetraphenylarsonium or dipicrylamine ions has been measured using alternating current techniques over a wide range of frequencies (1–200 kHz). The concentrations of ions corresponded to the lower limits of conductance saturation. Similar determinations were also made with solutions containing no lipophilic ions. The experimental method used in this work requires correction of admittance measurements for the solution resistance in series with the membrane, as well as careful area determinations. In all cases membrane capacitance levels off at sufficiently high frequencies to values which are independent of frequency. The high-frequency capacitance, which is regarded as the ‘geometrical capacitance’ due to dielectric polarization, is practically unaffected by the presence of lipophilic ions. The results support the assumption made in other studies, such as in charge pulse investigations, that the adsorption of lipophilic ions at concentrations up to the saturation range does not have an important effect on the dielectric properties of bilayers.  相似文献   

4.
Simple and composite membranes have been prepared from 2% collodion solutions containing different amounts of polystyrenesulfonic acid (PSSA). Various membrane parameters such as water content, electrolyte uptake, exchange capacity, and permselectivity of these membranes have been determined. The resistance and capacitance of simple membranes have been measured as functions of both external electrolyte concentration and internal fixed charge density. The impedance characteristics of composite membranes also have been determined and discussed in terms of the resistance and capacitance characteristics of simple membranes from which the composite structures have been formed.  相似文献   

5.
Functioning of the membrane motor of the outer hair cell is tightly associated with transfer of charge across the membrane. To obtain further insights into the motor mechanism, we examined kinetics of charge transfer across the membrane in two different modes. One is to monitor charge transfer induced by changes in the membrane potential as an excess membrane capacitance. The other is to measure spontaneous flip-flops of charges across the membrane under voltage-clamp conditions as current noise. The noise spectrum of current was inverse Lorentzian, and the capacitance was Lorentzian, as theoretically expected. The characteristic frequency of the capacitance was approximately 10 kHz, and that for current noise was approximately 30 kHz. The difference in the characteristic frequencies seems to reflect the difference in the modes of mechanical movement associated with the two physical quantities.  相似文献   

6.
Summary The change in membrane capacitance and conductance of squid giant axons during hyper- and depolarizations was investigated. The measurements of capacitance and conductance were performed using an admittance bridge with resting, hyperpolarized and depolarized membranes. The duration of DC pulses is 20–40 msec and is long enough to permit the admittance measurements between 1 and 50 kHz. The amplitudes of DC pulses were varied between 0 and 40mV for both depolarization and hyperpolarization. Within these limited experimental conditions, we found a substantial increase in membrane capacitance with depolarization and a decrease with hyperpolarization. Our results indicate that the change in membrane capacitance will increase further if low frequencies are used with larger depolarizing pulses. The change in membrane capacitance is frequency dependent and it increases with decreasing frequencies. The analyses based on an equivalent circuit (vide infra) gives rise to a time constant of active membrane capacitance close to that of sodium currents. This result indicates that the observed capacitance changes may arise from sodium channels. A brief discussion is given on the nature of frequency-dependent membrane capacitance of nerve axons.  相似文献   

7.
Theoretical considerations show that the presence of the polar group regions in bimolecular lipid membranes will produce a small (2–3%) dispersion of the bimolecular lipid membrane capacitance at low frequencies (0.1–100 Hz).A dispersion in conductance will also result. Calculations are given of the resolution of phase angle and impendance amplitude required to detect this dispersion and a new measuring technique is described which can achieve this. From the experimental result presented for lecithin bimolecular lipid membranes a determination was made of the individual capacitances and conductances of both the hydrocarbon and polar groups regions. The polar group conductance was found to vary from 700 μΩ?1 · cm?2 (in 1 mM KCl) to 2000 μΩ?1 · cm?2 (in 1 M KCl).The polar group capacitances were found to be approx.30 μF · cm?2 and not systematically dependent on the concentration of the external electrolyte.  相似文献   

8.
A system consisting of any array of cylindrical, polytopic membrane proteins (or protein complexes) possessed of a permanent dipole moment and immersed in a closed, spherical phospholipid bilayer sheet is considered. It is assumed that rotation of the protein (complex) in a plane normal to the membrane, if occurring, is restricted by viscous drag alone. Lateral diffusion is assumed either to be free and random or to be partially constrained by barriers of an unspecified nature. The dielectric relaxation times calculated for membrane protein rotation in a suspension of vesicles of the above type are much longer than those observed with globular proteins in aqueous solution, and fall in the mid-to-high audio frequency range. If the long range lateral diffusion of (charged) membrane protein complexes is essentially unrestricted, as in the "fluid mosaic" membrane model, dielectric relaxation times for lateral motions will lie, except in the case of the very smallest vesicles, in the sub-audio (ELF) range. If, in contrast, the lateral diffusion of membrane protein complexes is partially restricted by "barriers" or "long-range" interactions (of unspecified nature), significant dielectric dispersions may be expected in both audio- and radio-frequency ranges, the critical (characteristic) frequencies depending upon the average distance moved before a barrier is encountered. Similar analyses are given for rotational and translational motions of phospholipids. At very low frequencies, a dispersion due to vesicle orientation might in principle also be observed; the dielectrically observable extent of this rotation will depend, inter alia, upon the charge mobility and disposition of the membrane protein complexes, as well as, of course, on the viscosity of the aqueous phase. The role of electroosmotic interactions between double layer ions (and water dipoles) and proteins raised above the membrane surface is considered. In some cases, it seems likely that such interactions serve to raise the dielectric increment, relative to that which might otherwise have been expected, of dispersions due to protein motions in membranes. Depending upon the tortuosity of the ion-relaxation pathways, such a relaxation mechanism might lead to almost any characteristic frequency, and, even in the absence of protein/lipid motions, would cause dielectric spectra to be much broader than one might expect from a simple, macroscopic treatment.  相似文献   

9.
Components of nonlinear capacitance, or charge movement, were localized in the membranes of frog skeletal muscle fibers by studying the effect of 'detubulation' resulting from sudden withdrawal of glycerol from a glycerol-hypertonic solution in which the muscles had been immersed. Linear capacitance was evaluated from the integral of the transient current elicited by imposed voltage clamp steps near the holding potential using bathing solutions that minimized tubular voltage attenuation. The dependence of linear membrane capacitance on fiber diameter in intact fibers was consistent with surface and tubular capacitances and a term attributable to the capacitance of the fiber end. A reduction in this dependence in detubulated fibers suggested that sudden glycerol withdrawal isolated between 75 and 100% of the transverse tubules from the fiber surface. Glycerol withdrawal in two stages did not cause appreciable detubulation. Such glycerol-treated but not detubulated fibers were used as controls. Detubulation reduced delayed (q gamma) charging currents to an extent not explicable simply in terms of tubular conduction delays. Nonlinear membrane capacitance measured at different voltages was expressed normalized to accessible linear fiber membrane capacitance. In control fibers it was strongly voltage dependent. Both the magnitude and steepness of the function were markedly reduced by adding tetracaine, which removed a component in agreement with earlier reports for q gamma charge. In contrast, detubulated fibers had nonlinear capacitances resembling those of q beta charge, and were not affected by adding tetracaine. These findings are discussed in terms of a preferential localization of tetracaine-sensitive (q gamma) charge in transverse tubule membrane, in contrast to a more even distribution of the tetracaine-resistant (q beta) charge in both transverse tubule and surface membranes. These results suggest that q beta and q gamma are due to different molecules and that the movement of q gamma in the transverse tubule membrane is the voltage-sensing step in excitation-contraction coupling.  相似文献   

10.
Bio-membranes as capacitors store electric energy, but their permittivity is low whereas the permittivity of surrounding solution is high. To evaluate the effective capacitance of the membrane/solution system and determine the electric energy stored within the membrane and in the solution, we estimated their electric variables using Poisson-Nernst-Planck simulations. We calculated membrane and solution capacitances from stored electric energy. The effective capacitance was calculated by fitting a six-capacitance model to charges (fixed and ion) and associated potentials, because it cannot be considered as a result of membrane and solution capacitance in series. The electric energy stored within the membrane (typically much smaller than that in the solution), depends on the membrane permittivity, but also on the external electric field, surface charge density, water permittivity and ion concentration. The effect on capacitances is more specific. Solution capacitance rises with greater solution permittivity or ion concentration, but the membrane capacitance (much smaller than solution capacitance) is only influenced by its permittivity. Interestingly, the effective capacitance is independent of membrane or solution permittivity, but rises as the ion concentration increases and surface charge becomes positive. Experimental estimates of membrane capacitance are thus not necessarily a reliable index of its surface area.  相似文献   

11.
Voltage-dependent capacitance in lipid bilayers made from monolayers.   总被引:12,自引:6,他引:6       下载免费PDF全文
Electrocompression has been measured in lipid bilayers made by apposition of two monolayers. The capacitance C(V), as a function of membrane potential, V, was found to be well described by C(V) = C(O) [1 + alpha(V + delta psi)2] where C(O) is the capacitance at V = O, alpha is the fractional increase in capacitance per square volt, and delta psi is the surface potential difference. In lipid bilayers made from monolayers alpha has a value of 0.02 V-2, which is ca. 500-fold smaller than the value found in solvent containing membranes. In asymmetric bilayers made of one neutral and one negatively charged monolayer, delta psi values were found to be those expected from independent measurements of surface charge density. If the fractional increase in capacitance found here is a good approximation to that of biological membranes, nonlinear capacitative charge displacement derived from electrostriction is expected to be less than 1% of the total gating charge displacement found in squid axons.  相似文献   

12.
Summary The white noise method of measuring membrane impedance has been applied to internodal cells ofChara corallina. Fourier analysis of a white noise transmembrane current signal and the voltage response has been used to obtain the frequency-dependent impedance of the in-series combination of the plasmalemma and tonoplast membranes. The results are similar to those of other workers who have measured membrane impedances by different techniques. At very low frequencies the equivalent capacitance of the membrane treated as an RC-circuit becomes negative, indicating a pseudoinductive effect.Membrane impedance has been measured over a range of pH values from pH 5.2 to pH 11; impedance magnitude reaches a maximum at pH 7. At interesting effect of fusicoccin at pH 11 has been observed, in which a decrease in membrane conductance occurs simultaneously with a small hyperpolarization of membrane PD.  相似文献   

13.
A theoretical analysis is made of the electrical characteristics of a membrane containing two fixed charge regions, of opposite sign, in contact. Profiles of ion concentrations, electrostatic potential, space charge density, as well as the voltage-current characteristics were obtained by numerical integration of the field equations on a computer. Comparison with the predictions of an earlier analysis of this system (Coster, 1965) shows that the latter is valid to a good approximation for membranes > 70 A in thickness. In particular the form of the electrical characteristics, including the punch-through effect, have been verified by the computer analysis. The range of useful validity of the earlier analysis, the use of Boltzmann statistics when currents are present, and variation of membrane capacitance with applied potential, are discussed in the light of the results obtained.  相似文献   

14.
《Biophysical journal》2020,118(4):813-825
Biological membranes carry fixed charges at their surfaces. These arise primarily from phospholipid headgroups. In addition, membrane proteins contribute to the surface potential with their charged residues. Membrane lipids are asymmetrically distributed. Because of this asymmetry, the net-negative charge at the inner leaflet exceeds that at the outer leaflet. Changes in surface potential are predicted to give rise to apparent changes in membrane capacitance. Here, we show that it is possible to detect changes in surface potential by an electrophysiological approach; the analysis of cellular currents relies on assuming that the electrical properties of a cell are faithfully described by a three-element circuit (i.e., the minimal equivalent circuit) comprised of two resistors and one capacitor. However, to account for changes in surface potential, it is necessary to add a battery to this circuit connected in series with the capacitor. This extended circuit model predicts that the current response to a square-wave voltage pulse harbors information, which allows for separating the changes in surface potential from a true capacitance change. We interrogated our model by investigating changes in the capacitance induced by ligand binding to the serotonin transporter and to the glycine transporters (GlyT1 and GlyT2). The experimental observations were consistent with the predictions of the extended circuit. We conclude that ligand-induced changes in surface potential (reflecting the binding event) and in true membrane capacitance (reflecting the concomitant conformational change) can be detected in real time even in instances in which they occur simultaneously.  相似文献   

15.
Electrogenic ion transport by the Na,K-ATPase was investigated in a model system of protein-containing membrane fragments adsorbed to a lipid bilayer. Transient Na+ currents were induced by photorelease of ATP from inactive caged ATP. This process was accompanied by a capacitance change of the membrane system. Two methods were applied to measure capacitances in the frequency range 1 to 6000 Hz. The frequency dependent capacitance increment, ΔC, was of sigmoidal shape and decreased at high frequencies. The midpoint frequency, f 0, depended on the ionic strength of the buffer. At 150 mm NaCl f 0 was about 200 Hz and decreased to 12 Hz at high ionic strength (1 M). At low frequencies (ff 0) the capacitance increment became frequency independent. It was, however, dependent on Na+ concentration and on the membrane potential which was generated by the charge transferred. A simple model is presented to analyze the experimental data quantitatively as a function of two parameters, the capacitance of the adsorbed membrane fragments, C P, and the potential of maximum capacitance increment, ψ 0. Below 5 mm Na+ a negative capacitance change was detected which may be assigned to electrogenic Na+ binding to cytoplasmic sites. It could be shown that the results obtained by experiments with the presented alternating current method contain the information which is determined by current-relaxation experiments with cell membranes. Received: 3 November 1997 / Revised version: 19 February 1998 / Accepted: 21 February 1998  相似文献   

16.
A method for simultaneous registration of planar bilayer lipid membrane (BLM) DC conductance G, capacitance C, surface potential difference delta phi and transversal elasticity module E is developed. C, delta phi and E are proportional to the amplitude of the first, second and third harmonics of capacitance current respectively. A comparative study of the interaction of BLM with very low density lipoproteins (VLDL), influenza virus matrix protein (M-protein) and yeast invertase was carried out. The kinetics of delta phi, E and G changes at different concentrations of VLDL, and dependence of delta phi and G on M-protein and invertase concentration was investigated. It is shown for VLDL invertase and M-protein that the changes in delta phi and E occur before the change in G. The method used permits to study peculiarities of individual stages of interaction between charge particles, supramolecular structures and lipid membranes.  相似文献   

17.
A general model for use in interpreting dielectric data obtained with bacterial endospores is developed and applied to past results for Bacillus cereus spores and new results for Bacillus megaterium spores. The latter were also subjected to a decoating treatment to yield dormant cells with damaged outer membranes that could be germinated with lysozyme. For both spore types, core ions appeared to be completely immobilized, and decoating of B. megaterium spores did not affect this extreme state of electrostasis in the core. The cortex of B. megaterium appeared to contain a high level of mobile ions, in the cortex of B. cereus. The outer membrane-coat complex of B. megaterium acted dielectrically as an insulating layer around the cortex, so that native dormant spores showed a Maxwell-Wagner dispersion over the frequency range from about 1 to 20 MHz. The decoating treatment resulted in a shift in the dispersion to frequencies below the range of observation. Increases in cell conductivity in response to increases in environmental ionic strength indicated that the coats. of B. megaterium could be penetrated by environmental ions and that they had an inherent fixed charge concentration of about 10 to 20 milliequivalents per liter. In contrast, the dispersion for B. cereus spores was very sensitive to changes in environmental ion concentration, and it appeared that some 40% of the spore volume could be penetrated by environmental ions and that these ions traversed a dielectrically effective layer, either the exosporium or the outer membrane. It appears that dormancy is associated with extreme electrostasis of core ions but not necessarily of ions in enveloping structures and that the coat-outer membrane complex is dielectrically effective but not required for maintenance of extreme electrostasis in the core.  相似文献   

18.
The separate effects of benzyl alcohol on the hydrocarbon and polar-head region capacitances and conductances of phosphatidylcholine bimolecular lipid membranes were obtained from measurements of the very low frequency impedance dispersion. It was found that the conductance of the hydrocarbon region (and, to a lesser extent, the polar-head region) increased progressively with increasing concentrations of benzyl alcohol in the external solution. The polar-head capacitance did not show a systematic dependence on the concentration of benzyl alcohol.At low concentrations of benzyl alcohol (7.5 μM) the capacitance of the hydrocarbon region was not significantly affected by the alcohol. At high concentrations (? 7.5 mM) of benzyl alcohol, however, the capacitance of this region was reduced by ≈25%. This is interpreted in terms of an increase in the thickness of this region caused by a straightening of the otherwise kinked, folded (across neighbouring molecules) and perhaps even partially interdigitated hydrocarbon tails of the phosphatidylcholine molecules. This effect of benzyl alcohol is probably closely related also to the apparent increase in the fluidity of the membrane. The effect of benzyl alcohol on the thickness of the hydrocarbon region of the membrane provides a ready insight into its mode of action as a local anaesthetic.  相似文献   

19.
Isolated segments of hamster small intestine were perfused with oxygenated salt-fluorocarbon emulsions with or without 10-25 mM glucose, alanine or leucine. Resistances of intercellular occluding junctions and of lateral spaces and the distributed capacitance of epithelial plasma membranes were estimated from steady-state transepithelial impedances at frequencies from 0.01-10 kHz. The segments were then fixed in situ with isorheic 2.5% glutaraldehyde while continuing to measure impedance. This method of fixation increased the resistance of lateral spaces but had little effect on the resistance of occluding junctions or on membrane capacitance. The large decreases of impedance induced by glucose or amino acids were preserved in fixed tissue and could therefore be correlated with changes in structure. The observed changes of impedance were interpreted as decreased resistance of occluding junctions and lateral spaces together with increased exposed surface of lateral membranes (capacitance). Glucose, alanine or leucine induced expansion of lateral intercellular spaces as seen by light and electron microscopy. Large dilatations within absorptive cell occluding junctions were revealed by electron microscopy. Freeze-fracture analysis revealed that these dilatations consisted of expansions of compartments bounded by strands/grooves. These solute-induced structural alterations were also associated with condensation of microfilaments in the zone of the perijunctional actomyosin ring, typical of enhanced ring tension. Similar anatomical changes were found in epithelia fixed in situ at 38 degrees C during luminal perfusion with glucose in blood-circulated intestinal segments of anesthetized animals. These structural changes support the hypothesis that Na-coupled solute transport triggers contraction of perijunctional actomyosin, thereby increasing junctional permeability and enhancing absorption of nutrients by solvent drag as described in the two accompanying papers.  相似文献   

20.
U. Zimmermann  R. Benz  H. Koch 《Planta》1981,152(4):352-355
The membrane are of giant algal cells of Valonia utricularis was determined electrically by using the charge-pulse technique. The membrane was charged to low voltages between 2 and 20 mV by injecting charge pulses of defined amplitude and very short duration (about 100 ns). The injected charge was calculated by measuring the current increment via a potential drop across a 10 resistance in the outer circuit and by considering the preselected charging time. The initial voltage across the membrane was calculated by extrapolation to time zero (=end of the charge pulse). From the values of the injected charge and the voltage built up initially across the membrane, the capacitance of the membrane could be calculated. Assuming that the specific capacity of the two membranes, tonoplast and plasmalemma, arranged in series was 0.5 F cm-2, the membrane area could be derived from the membrane capacity. The electrically determined membrane area agrees with the geometrically determined one to within 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号