首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular distribution and properties of four aldehyde dehydrogenase isoenzymes (I-IV) identified in 2-acetylaminofluorene-induced rat hepatomas and three aldehyde dehydrogenases (I-III) identified in normal rat liver are compared. In normal liver, mitochondria (50%) and microsomal fraction (27%) possess the majority of the aldehyde dehydrogenase, with cytosol possessing little, if any, activity. Isoenzymes I-III can be identified in both fractions and differ from each other on the basis of substrate and coenzyme specificity, substrate K(m), inhibition by disulfiram and anti-(hepatoma aldehyde dehydrogenase) sera, and/or isoelectric point. Hepatomas possess considerable cytosolic aldehyde dehydrogenase (20%), in addition to mitochondrial (23%) and microsomal (35%) activity. Although isoenzymes I-III are present in tumour mitochondrial and microsomal fractions, little isoenzyme I or II is found in cytosol. Of hepatoma cytosolic aldehyde dehydrogenase activity, 50% is a hepatoma-specific isoenzyme (IV), differing in several properties from isoenzymes I-III; the remainder of the tumour cytosolic activity is due to isoenzyme III (48%). The data indicate that the tumour-specific aldehyde dehydrogenase phenotype is explainable by qualitative and quantitative changes involving primarily cytosolic and microsomal aldehyde dehydrogenase. The qualitative change requires the derepression of a gene for an aldehyde dehydrogenase expressed in normal liver only after exposure to potentially harmful xenobiotics. The quantitative change involves both an increase in activity and a change in subcellular location of a basal normal-liver aldehyde dehydrogenase isoenzyme.  相似文献   

2.
Human liver aldehyde dehydrogenase isozymes E1 and E2 (EC 1.2.1.3) are both completely and irreversibly inactivated by bromoacetophenone (2-bromo-1-phenylethanone). Steady-state kinetics with both acetophenone and chloroacetophenone indicated interaction with the same enzyme form as the aldehyde substrate. Saturation kinetics with chloroacetophenone and bromoacetophenone indicated interaction at a specific site on the enzyme surface and gave a dissociation constant similar to that from steady-state kinetics, suggesting that the same processes were being observed by both methods and that the active site may be involved. Protection against inactivation was afforded by chloral and NAD together. Stoichiometry of inactivation showed the first 2 equiv per tetramer to abolish the majority of catalytic activity; 4 equiv inactivated both isozymes with complete loss of esterase, NAD-stimulated esterase, and dehydrogenase activities. Peptide mapping of enzyme modified with [carbonyl-14C]bromoacetophenone of CNBr digests (E1) and tryptic digests (E1 and E2) showed one peptide to be preferentially labeled. The above results together with the similarity of bromoacetophenone to the substrate benzaldehyde suggest bromoacetophenone may react with a residue in the active site of aldehyde dehydrogenase. Amino acid analysis of the labeled E1 tryptic fragment indicated reaction with a different peptide from that with which iodoacetamide reacts.  相似文献   

3.
Rat liver alcohol dehydrogenase was purified and four isoenzyme forms, demonstrated by starch gel electrophoresis, were separated by O-(carboxymethyl)-cellulose chromatography. Each of the isoenzymes had a distinct isoelectric point. All isoenzymes were active with both ethanol (or acetaldehyde) and steroid substrates, and had similar Michaelis-Menten constants for each of the substrates and coenzymes studied. The three isoenzymes with the lowest migration toward the cathode exhibited the same pH optimum of 10.7 for ethanol oxidation, a greater activity with 5 beta-androstan-3 beta-ol-17-one than with ethanol as a substrate, and an unchanged electrophoretic mobility following storage in the presence of 100 microM dithiothreitol. By contrast the isoenzyme with the highest mobility toward the cathode exhibited a pH optimum of 9.5 for ethanol oxidation, a low steroid/ethanol ratio of activity, and converted to the migrating pattern of the two isoenzymes with intermediate mobility when stored. The similarities between the isoenzymes of rat liver alcohol dehydrogenase differ considerably from differences in substrate specificity exhibited by isoenzymes of horse liver alcohol dehydrogenase.  相似文献   

4.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

5.
The substrate 16-methylene estra-1,3,5(10)-triene-3,17 beta-diol (16-methylene estradiol-17 beta) and its enzyme-generated alkylating product, 3-hydroxy-16-methylene estra-1,3,5(10)-triene-17-one (16-methylene estrone), were synthesized to study the 17 beta- and 20 alpha-hydroxysteroid dehydrogenase activities which coexist in homogeneous enzyme purified from human placental cytosol. 16-Methylene estradiol, an excellent substrate (Km = 8.0 microM; Vmax = 2.8 mumol/mg/min) when enzymatically oxidized to 16-methylene estrone in the presence of NAD+ (256 microM), inactivates simultaneously the 17 beta- and 20 alpha-activities in a time-dependent and irreversible manner following pseudo-first order kinetics (t1/2 = 1.0 h, 100 microM, pH 9.2). 16-Methylene estradiol does not inactivate the enzyme in the absence of NAD+. 16-Methylene estrone (Km = 2.7 microM; Vmax = 2.9 mumol/mg/min) is an affinity alkylator (biomolecular rate constant k'3 = 63.3 liters/mol-s, pH 9.2; KI = 261 microM; k3 = 8.0 X 10(-4) S-1, pH 7.0) which also simultaneously inhibits both activities in an irreversible time-dependent manner (at 25 microM; t1/2 = 7.2 min, pH 9.2; t1/2 = 2.7 h, pH 7.0). Substrates (estradiol-17 beta, estrone, and progesterone) protect against inhibition of enzyme activity by 16-methylene estrone and 16-methylene estradiol. Affinity radioalkylation studies using 16-methylene [6,7-3H]estrone demonstrate that 1 mol of alkylator binds per mol of inactivated enzyme dimer. Thus, 16-methylene estradiol functions as a unique substrate for the enzymatic generation of a powerful affinity alkylator of 17 beta,20 alpha-hydroxysteroid dehydrogenase and should be a useful pharmacological tool.  相似文献   

6.
Soluble lactate dehydrogenase (EC 1.1.1.27) extracted from brain, skeletal and cardiac muscle and liver of rats, and purified isoenzymes LDH-1 and LDH-5, were incubated with sodium deoxycholate. Deoxycholate almost totally inactivated isoenzyme LDH-5 (A4), whereas it left isoenzyme LDH-1 (B4) unaffected. Tissue lactate dehydrogenase was inactivated to different degrees depending on the origin of the enzyme. Electrophoretic isoenzyme studies of tissue lactate dehydrogenase showed the loss of activity to be quantitatively related to the overall percentage of subunit A distributed among the homotetramer LDH-5 and the heterotetramers LDH-2, LDH-3 and LDH-4. It was concluded that subunit A of lactate dehydrogenase interacts selectively with deoxycholate, irrespective of its association with subunit B. Distinct changes in electrophoretic mobilities of deoxycholate-treated isoenzymes strongly indicated an indiscriminate binding of deoxycholate by all LDH isoenzymes, probably through hydrophobic interactions. The results suggest that the inactivation of the enzyme is non-competitive, but the basis of the selectivity of deoxycholate towards subunit A is not known at present.  相似文献   

7.
Two isozymes (E1 and E2) of human aldehyde dehydrogenase (EC 1.2.1.3) were purified to homogeneity 13 years ago and a third isozyme (E3) with a low Km for gamma-aminobutyraldehyde only recently. Comparison with a variety of substrates demonstrates that substrate specificity of all three isozymes is broad and similar. With straight chain aliphatic aldehydes (C1-C6) the Km values of the E3 isozyme are identical with those of the E1 isozyme. All isozymes dehydrogenate naturally occurring aldehydes, 5-imidazoleacetaldehyde (histamine metabolite) and acrolein (product of beta-elimination of oxidized polyamines) with similar catalytic efficiency. Differences between the isozymes are in the Km values for aminoaldehydes. Although all isozymes can dehydrogenate gamma-aminobutyraldehyde, the Km value of the E3 isozyme is much lower: the same appears to apply to aldehyde metabolites of cadaverine, agmatine, spermidine, and spermine for which Km values range between 2-18 microM and kcat values between 0.8-1.9 mumol/min/mg. Thus, the E3 isozyme has properties which make it suitable for the metabolism of aminoaldehydes. The physiological role of E1 and E2 isozymes could be in dehydrogenation of aldehyde metabolites of monoamines such as 3,4-dihydroxyphenylacetaldehyde or 5-hydroxyindoleacetaldehyde; the catalytic efficiency with these substrates is better with E1 and E2 isozymes than with E3 isozyme. Isoelectric focusing of liver homogenates followed by development with various physiological substrates together with substrate specificity data suggest that aldehyde dehydrogenase (EC 1.2.1.3) is the only enzyme in the human liver capable of catalyzing dehydrogenation of aldehydes arising via monoamine, diamine, and plasma amine oxidases. Although the enzyme is generally considered to function in detoxication, our data suggest an additional function in metabolism of biogenic amines.  相似文献   

8.
1. Differentiation and maturation of rabbit bone-marrow erythroid cells was accompanied by a 15-fold decrease in lactate dehydrogenase activity from approx. 0.1pmol of NADH utilized/min per cell in basophilic cells to 0.007 pmol of NADH/min per cell in reticulocytes. 2. In early cells, cell division takes place with a corresponding decrease in cell volume, but the concentration of lactate dehydrogenase remains almost constant. 3. When cell division ceases, qualitative as well as quantitative changes in the lactate dehydrogenase isoenzyme pattern become apparent and reticulocytes were found to contain almost exclusively the H4 isoenzyme, whereas early erythroblasts contained also the M4 and hybrid isoenzymes. 4. Extracts from a lysosome-enriched subcellular fraction of bone-marrow erythroid cells specifically degraded the M4 isoenzyme in vitro, but the H4 form was stable. It is suggested that lysosomal enzymes are involved in bringing about the observed changes in lactate dehydrogenase isoenzyme patterns in vivo.  相似文献   

9.
1. Subcellular fractionation of rat, guinea pig and human livers showed that aldehyde dehydrogenase metabolizing gamma-aminobutyraldehyde was exclusively localized in the cytoplasmic fraction in all three mammalian species. 2. Total gamma-aminobutyraldehyde activity of aldehyde dehydrogenase was found to be ca 0.41, 0.3 and 0.24 mumol NADH min-1 g-1 tissue, respectively in rat, guinea pig and human liver, with more than 95% of activity in the cytoplasm. 3. Partially purified cytoplasmic isozyme from rat liver showed similar chromatographic behavior and kinetic properties to the E3 isozyme isolated from human liver. 4. The rat isozyme was insensitive to disulfiram (40 microM) and to magnesium (160 microM) and had Km values of 5 microM (pH 7.4) for gamma-aminobutyraldehyde, 7.5 microM (pH 9.0) for propionaldehyde and 4 microM (pH 7.4) for NAD.  相似文献   

10.
SH-reagents: tetraethylthiuram disulphide (TETD), 5,5'-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (p-ChMB), N-ethylmaleimide (NEM) were studied for their effect on the aldehyde dehydrogenase activity of mitochondrion (isoenzymes I and II) and microsome (isoenzyme II) fractions of the rat liver. TETD is established to inhibit isoenzyme I and isoenzyme II activity of mitochondrial aldehyde dehydrogenase by 100 and 50%, respectively, and the microsomal enzyme activity by 20%. DTNB and NEM inhibit 30-50% of the activity in two isoforms of mitochondrial aldehyde dehydrogenase having no effect on the enzymic activity in microsomes; p-ChMB inhibits completely the activity of the enzyme under study both in the mitochondrial and microsomal fractions. A conclusion is drawn that SH-groups are very essential for manifestation of the catalytic activity in the NAD+-dependent aldehyde dehydrogenase from mitochondrial and microsomal fractions.  相似文献   

11.
The conversion of pheromonal aldehydes to carboxylic acids in vitro in tissue extracts of Heliothis virescens is catalyzed by both aldehyde dehydrogenase and aldehyde oxidase enzymes. The aldehyde-oxidizing activity in antennae, heads, legs, and hemolymph from male and female moths was examined by radiochromatographic and spectroscopic assays. First, the enzymatic activity was measured in the presence or absence of added NAD+ using either (Z)-9-tetradecenal or (Z)-11-hexadecenal as tritiated substrate. Second, substrate specificity was determined spectroscopically by (i) indirect measurement of the AO-released hydrogen peroxide through the coupled AO-horseradish peroxidase reaction and by (ii) direct measurement of the ALDH-produced NADH. Both aldehyde-oxidizing activities were associated with soluble enzymes in the antennal extracts, and these enzymes degraded pheromone and nonpheromonal aldehydes. Both AO and ALDH activities were present in male and female tissues. AO activity was exhibited primarily in the antennal extracts and to a lesser degree in the leg extracts. Moreover, ALDH activity was distributed in the antenna, head, and leg extracts. A vinyl ketone analog of (Z)-11-hexadecenal preferentially inhibited the ALDH activity over the AO activity.  相似文献   

12.
Betaine aldehyde dehydrogenase has been purified to homogeneity from rat liver mitochondria. The properties of betaine aldehyde dehydrogenase were similar to those of human cytoplasmic E3 isozyme in substrate specificity and kinetic constants for substrates. The primary structure of four tryptic peptides was also similar; only two substitutions, at most, per peptide were observed. Thus, betaine aldehyde dehydrogenase is not a specific enzyme, as formerly believed; activity with betaine aldehyde is a property of aldehyde dehydrogenase (EC 1.2.1.3), which has broad substrate specificity. Up to the present time the enzyme was thought to be cytoplasmic in mammals. This report establishes, for the first time, mitochondrial subcellular localization for aldehyde dehydrogenase, which dehydrogenates betaine aldehyde, and its colocalization with choline dehydrogenase. Betaine aldehyde dehydrogenation is an important function in the metabolism of choline to betaine, a major osmolyte. Betaine is also important in mammalian organisms as a major methyl group donor and nitrogen source. This is the first purification and characterization of mitochondrial betaine aldehyde dehydrogenase from any mammalian species.  相似文献   

13.
Aldehyde dehydrogenase (ALDH, EC 1.2.1.3) of the human prostate was the subject of investigation in this study. The possible physiological role of aldehyde dehydrogenase in the human prostate might be to detoxify aldehydes arising from the oxidation of the polyamines via monoamine or diamine oxidases. The specific activity of the enzyme with 1 mM propionaldehyde as substrate and 0.5 mM NAD at pH 7.4 in the control normal prostates and prostates afflicted with the disease, benign prostatic hyperplasia (BPH), was 26.06 +/- 2.96 and 5.17 +/- 0.48 nmol/g prostate per min, respectively. When 100 microM gamma-aminobutyraldehyde was used as a substrate, the specific activity in the normal controls and prostates with benign prostatic hyperplasia was 19.80 +/- 1.33 and 2.95 +/- 2.46 nmol/g prostate per min, respectively. Upon isoelectric focusing of the extracts of the control prostates when the gels were developed for aldehyde dehydrogenase activity, there were three aldehyde dehydrogenase activity bands visible, pI 4.9 (mitochondrial), 5.4 (cytosolic) and about 6.0-6.5, on the IEF gels developed with gamma-aminobutyraldehyde as a substrate. With the extracts of prostates with benign prostatic hyperplasia the pI 4.9 band was significantly reduced, the pI 5.4 band enhanced and the approx. pI 6.0 band was not detectable on the IEF gels with propionaldehyde as a substrate. There was no detectable aldehyde dehydrogenase activity in the extract of the prostate with cancer on IEF gels nor in the activity assays with propionaldehyde or gamma-aminobutyraldehyde as substrates.  相似文献   

14.
The E and S isoenzymes of horse liver alcohol dehydrogenase differ by 10 amino acid residues, but only the S isoenzyme is active on 3 beta-hydroxysteroids. This functional difference was correlated to the differences in structures of the isoenzymes by characterizing a series of chimeric enzymes, which could represent intermediates in the evolution of catalytic activity. Deletion of Asp-115 from the E isoenzyme created the E/D115 delta enzyme that is active on steroids. The deletion alters the substrate binding pocket by moving Leu-116, which sterically hinders binding of steroids in the E isoenzyme. A chimeric enzyme (ESE) that has four changes in or near the substrate binding pocket (T94I/R101S/F110L/D115 delta) was 15-30-fold more catalytically efficient (V/Km) on uncharged steroids than was the E/D115 delta enzyme. Molecular modeling suggests that the substitutions at residues 94 and 110 indirectly affect the activity on steroids. ESE enzyme was 6-fold more active than the S isoenzyme on neutral steroids, due to substitutions not in the substrate binding pocket. The K366E and the Q17E/A43T/A59T substitutions in the S isoenzyme gave 2-fold increases in V/Km on steroids, which together can account for the changes observed with the ESE enzyme. The enzymes that are active on steroids did not bind 2,2,2-trifluoroethanol as tightly and were catalytically less efficient than the E isoenzyme with small alcohols. However, these enzymes were two to three and four to five orders of magnitude more efficient with 1-hexanol and 5 beta-androstane-3 beta,17 beta-diol, respectively, than with ethanol. These results demonstrate that several residues not directly participating in substrate binding or chemical catalysis contribute to catalytic efficiency.  相似文献   

15.
Gibbons BJ  Hurley TD 《Biochemistry》2004,43(39):12555-12562
Formamides are aldehyde analogues that have demonstrated potent and selective inhibition of human alcohol dehydrogenase isoenzymes. The alphaalpha, beta(1)beta(1), gamma(2)gamma(2), and sigmasigma isoforms have all been found to be strongly inhibited by substituted formamides. In this paper, the structure of the alphaalpha isoform of human alcohol dehydrogenase complexed with N-cyclopentyl-N-cyclobutylformamide was determined by X-ray crystallography to 2.5 A resolution, the beta(1)beta(1) isoform of human alcohol dehydrogenase complexed with N-benzylformamide and with N-heptylformamide was determined to 1.6 and 1.65 A resolution, respectively, and the structure of the gamma(2)gamma(2) isoform complexed with N-1-methylheptylformamide was determined to 1.45 A resolution. These structures provide the first substrate-level view of the local structural differences that give rise to the individual substrate preferences shown by these highly related isoenzymes. Consistent with previous work, the carbonyl oxygen of the inhibitors interacts directly with the catalytic zinc and the hydroxyl group of Thr48 (Ser48 for gamma(2)gamma(2)) of the enzyme. The benzene ring of N-benzylformamide and the carbon chains of N-heptylformamide and N-1-methylheptylformamide interact with the sides of the hydrophobic substrate pocket whose size and shape is dictated by residue exchanges between the beta(1)beta(1) and gamma(2)gamma(2) isoenzymes. In particular, the exchange of Ser for Thr at position 48 and the exchange of Val for Leu at position 141 in the gamma(2)gamma(2) isoenzyme create an environment with stereoselectivity for the R-enantiomer of the branched N-1-methylheptylformamide inhibitor in this isoenzyme. The primary feature of the alphaalpha isoform is the Ala for Phe93 exchange that enlarges the active site near the catalytic zinc and creates the specificity for the branched N-cyclopentyl-N-cyclobutylformamide inhibitor, which shows the greatest selectivity for this unique isoenzyme of any of the formamide inhibitors.  相似文献   

16.
A method involving affinity chromatography on the yellow dye Remazol Brilliant Gelb GL to highly purify the cytoplasmic isoenzyme of glucose-6-phosphate dehydrogenase from pea shoots is described. Purification is at least 6000-fold. The specific activity of the purified enzyme is 185 mumol NADP reduced/min per mg protein. The preparation was free from any contamination of chloroplastic isoenzyme. The purified enzyme retains its activity in the presence of reducing agents which, in contrast, inactivate the chloroplast enzyme. The state of activity of the cytoplasmic and the chloroplastic isoenzyme in illuminated or darkened pea leaves was investigated using specific antibodies. While upon illumination the chloroplastic isoenzyme was inactivated by 80 to 90%, we could not find any change in activity of the cytoplasmic glucose-6-phosphate dehydrogenase. ATP, ADP, NAD, NADH, and various sugar phosphates do not inhibit the enzyme activity. Only NADPH is a strong competitive inhibitor with respect to NADP, suggesting that the enzyme is regulated by feedback inhibition by one of its products. Mg2+ ions have no influence on the activity of the enzyme. The molecular weight has found to be 240,000 for the native enzyme and 60,000 for the subunit. Throughout the purification procedure the enzyme was very unstable unless NADP was present in the buffer.  相似文献   

17.
A method is presented for the preparation of human heart lactate dehydrogenase (l-lactate-NAD(+) oxidoreductase; EC 1.1.1.27) isoenzyme 1; this involves the use of polyacrylamide-gel electrophoresis as a preparative step. The yield was about 10% with a final specific activity of 220 units/mg of protein, one unit being defined as the amount of enzyme catalysing the oxidation of 1mumol of NADH/min at 25 degrees C, in the presence of 0.33mm-pyruvate. The crystalline preparation contained less than 2% of the other isoenzymes, was homogeneous in the ultracentrifuge and showed only a trace of protein contamination on polyacrylamide-gel electrophoresis. Some properties of the crystalline isoenzyme are reported; E(1%) (1cm)=13.2 at 280nm, s(0) (20,w)=7.43S, pI=4.6, and the apparent K(m) for pyruvate=1.02x10(-4)m. The human isoenzyme and the isoenzyme from pig heart differ with respect to amino acid composition, electrophoretic mobility and solubility. It is possible that these differences do not involve the active site, or sites, but are due to changes in amino acid residues elsewhere in the molecule. The importance of purified human LDH-1 isoenzyme with regard to enzyme radioimmunoassay is emphasized.  相似文献   

18.
Bromoacetophenone (2-bromo-1-phenylethanone) has been characterized as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) [MacKerell, MacWright & Pietruszko (1986) Biochemistry 25, 5182-5189], and has been shown to react specifically with the Glu-268 residue [Abriola, Fields, Stein, MacKerell & Pietruszko (1987) Biochemistry 26, 5679-5684] with an apparent inactivation stoichiometry of two molecules of bromoacetophenone per molecule of enzyme. The specificity of bromoacetophenone for reaction with Glu-268, however, is not absolute, owing to the extreme reactivity of this reagent. When bromo[14C]acetophenone was used to label the human cytoplasmic E1 isoenzyme radioactively and tryptic fragmentation was carried out, peptides besides that containing Glu-268 were found to have reacted with reagent. These peptides were purified by h.p.l.c. and analysed by sequencing and scintillation counting to quantify radioactive label in the material from each cycle of sequencing. Reaction of bromoacetophenone with the aldehyde dehydrogenase molecule during enzyme activity loss occurs with two residues, Glu-268 and Cys-302. The activity loss, however, appears to be proportional to incorporation of label at Glu-268. The large part of incorporation of label at Cys-302 occurs after the activity loss is essentially complete. With both Glu-268 and Cys-302, however, the incorporation of label stops after one molecule of bromoacetophenone has reacted with each residue. Reaction with other residues continues after activity loss is complete.  相似文献   

19.
The pinocytic uptake of 125I-labelled porcine lactate dehydrogenase isoenzymes H4 and M4 by 17.5-day rat visceral yolk sac incubated in vitro was saturable and binding obeyed Michaelis-Menten kinetics. The uptake characteristics of the two isoenzymes were very similar. For the H4 and the M4 isoenzymes, the dissociation constants of the protein-plasma-membrane complex were 0.62 microM and 0.84 microM respectively, and the maximum rates of uptake 0.13 and 0.26 nmol/mg of yolk-sac protein per h respectively. These findings contrast with those from studies in vivo, which show the M4 form is taken up by rat liver sinusoidal cells at a much higher rate than the H4 form, and point to different recognition systems for the adsorptive pinocytosis of simple non-conjugate proteins in yolk-sac epithelial cells and liver sinusoidal cells. Competition experiments indicate that binding of the H4 isoenzyme to the yolk-sac cells is restricted to hydrophobic interactions, whereas the binding of the M4 isoenzyme involves hydrophobic as well as positively charged sites on the protein molecules.  相似文献   

20.
Horse liver alcohol dehydrogenase occurs as isoenzymes: E is active on ethanol but not steroids; S is active on ethanol and steroids. The cDNAs for these isoenzymes were cloned; both were 1.8-kilobase long and contained complete coding sequences. Both enzymes were expressed in Escherichia coli, and the purified proteins had properties similar to those of the natural enzymes. The amino acid sequence deduced from the open reading frame of the E-type cDNA agreed with the amino acid sequence of the E isoenzyme determined by protein sequencing and x-ray crystallography. When compared with the E-type cDNA, the coding region of the S-type cDNA contains 24 substitutions and 3 deletions, giving rise to an amino acid sequence for the S. isoenzyme that differs from that of the E isoenzyme at 10 positions: nine conservative substitutions and one deletion, of Asp-115. These changes can be accommodated in the three-dimensional structure of the E isoenzyme, and models of the E and S isoenzymes complexed with a 3 beta-hydroxy-5 beta-steroid were built. The modeling shows that Leu-116 apparently sterically hinders binding of steroids in the E isoenzyme, and deletion in the S isoenzyme of Asp-115 moves Leu-116 and relieves the hindrance. The human gamma and rat liver enzymes are also active on steroids, but they have a different constellation of amino acid residues in the substrate pocket. Thus, there are multiple bases for the activity on steroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号