首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The periplasmic polysulfide-sulfur transferase (Sud) protein encoded by Wolinella succinogenes is involved in oxidative phosphorylation with polysulfide-sulfur as a terminal electron acceptor. The polysulfide-sulfur is covalently bound to the catalytic Cys residue of the Sud protein and transferred to the active site of the membranous polysulfide reductase. The solution structure of the homodimeric Sud protein has been determined using heteronuclear multidimensional NMR techniques. The structure is based on NOE-derived distance restraints, backbone hydrogen bonds, and torsion angle restraints as well as residual dipolar coupling restraints for a refinement of the relative orientation of the monomer units. The monomer structure consists of a five-stranded parallel beta-sheet enclosing a hydrophobic core, a two-stranded antiparallel beta-sheet, and six alpha-helices. The dimer fold is stabilized by hydrophobic residues and ion pairs found in the contact area between the two monomers. Similar to rhodanese enzymes, Sud catalyzes the transfer of the polysulfide-sulfur to the artificial acceptor cyanide. Despite their similar functions and active sites, the amino acid sequences and structures of these proteins are quite different.  相似文献   

2.
The electron-transport chain that catalyzes nitrite respiration with formate in Wolinella succinogenes consists of formate dehydrogenase, menaquinone and the nitrite reductase complex. The latter catalyzes nitrite reduction by menaquinol and is made up of NrfA and NrfH, two c-type cytochromes. NrfA is the catalytic subunit; its crystal structure is known. NrfH belongs to the NapC/NirT family of membrane-bound c-type cytochromes and mediates electron transport between menaquinol and NrfA. It is demonstrated here by MALDI MS that four heme groups are attached to NrfH. A Delta nrfH deletion mutant of W. succinogenes was constructed by replacing the nrfH gene with a kanamycin-resistance gene cartridge. This mutant did not form the NrfA protein, probably because of a polar effect of the mutation on nrfA expression. The nrfHAIJ gene cluster was restored by integration of an nrfH-containing plasmid into the genome of the Delta nrfH mutant. The resulting strain had wild-type properties with respect to growth by nitrite respiration and nitrite reductase activity. A mutant (stopH) that contained the nrfHAIJ locus with nrfH modified by two artificial stop codons near its 5' end produced wild-type amounts of NrfA in the absence of the NrfH protein. NrfA was located exclusively in the soluble cell fraction of the stopH mutant, indicating that NrfH acts as the membrane anchor of the NrfHA complex in wild-type bacteria. The stopH mutant did not grow by nitrite respiration and did not catalyze nitrite reduction by formate, indicating that the electron transport is strictly dependent on NrfH. The NrfH protein seems to be an unusual member of the NapC/NirT family as it forms a stable complex with its redox partner protein NrfA.  相似文献   

3.
We report the structural and biophysical consequences of cysteine substitutions in the DNA-binding replication terminator protein (RTP) of Bacillus subtilis, that resulted in an optimised RTP mutant suitable for structural studies. The cysteine residue 110 was replaced with alanine, valine or serine. Protein secondary structure and stability (using circular dichroism spectropolarimetry), self-association (using analytical ultracentrifugation), and DNA-binding measurements revealed RTP.C110S to be the most similar mutant to wild-type RTP. The C110A and C110V.RTP mutants were less soluble, less stable and showed lower DNA-binding affinity. The structure of RTP.C110S, solved to 2.5A resolution using crystallographic methods, showed no major structural perturbation due to the mutation. Heteronuclear NMR spectroscopic studies revealed subtle differences in the electronic environment about the site of mutation. The study demonstrates the suitability of serine as a substitute for cysteine in RTP and the high sensitivity of protein behaviour to single amino acid substitutions.  相似文献   

4.
The Saccharomyces cerevisiae YPT1 gene codes for a ras-like, guanine nucleotide-binding protein which is essential for cell viability. The functional significance of two consecutive cysteines at the very carboxyl-terminal end of this protein and in ypt homologues of other eukaryotic species was examined. YPT1 gene mutations were generated that either led to substitutions by serine or the deletion of one or both C-terminal cysteines. The consequences of the mutations were checked in cells after replacing the wild type with the mutant genes. It was found that as long as one of the cysteines was retained, the protein was fully functional. The YPT1 protein could be labelled with [3H]palmitic acid that appeared to be bound in an ester linkage. The wild-type protein was evenly distributed between soluble and membrane-associated proteins, the palmitoylated form was predominantly in the crude membrane fraction. The mutant protein lacking the C-terminal cysteines was not palmitoylated and was exclusively found in the soluble fraction. The extension by three residues, -Val-Leu-Ser, generating a ras-typical C-terminal end, did not interfere with the mutant YPT1 protein's function although it resulted in a reduced labelling with palmitic acid.  相似文献   

5.
The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from nitrate is catalysed exclusively by periplasmic respiratory enzymes.  相似文献   

6.
Wolinella succinogenes grown with nitrate as terminal electron acceptor contains two nitrite reductases as measured with the donor viologen radical, one in the cytoplasm and the other integrated in the cytoplasmic membrane. The fumarate-grown bacteria contain only the membraneous species.The isolated membraneous enzyme consists of a single polypeptide chain (M r 63,000) carrying 4 hemeC groups and probably an iron-sulphur cluster as prosthetic groups. The enzyme amounts to about 1% of the total membrane protein.The isolated enzyme catalyses the reduction of nitrite to ammonium without accumulation of significant amounts of intermediates or alternative products. The Michaelis constant for nitrite was 0.1 mM and the turnover number of the hemeC 1.5 · 105 electrons per min at 37°C.The viologen-reactive site of the enzyme in the membrane is oriented towards the cytoplasm. When the isolated enzyme is incorporated into liposomes, the viologen-as well as the nitrite-reactive site is exposed to thooutside.The cytoplasmic membrane contains a second hemeC protein (M r 22,000) which may represent a cytochrome c.Abbreviations NQNO 2-(n-nonyl)-4-hydroxyquinoline-N-oxide - MES 2-(N-morpholino)ethanesulfonate - MOPS 3-(N-morpholino)propanesulfonate - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulfonate - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate - MK menaquinone  相似文献   

7.
PDZ domains are protein modules that mediate protein-protein interactions. Here, we present the identification and characterization of a protein similar to the recently identified PDZ-containing protein TACIP18, which we have named SITAC (similar to TACIP18). SITAC is preferentially expressed in cells of the digestive tract, associated with intracellular membranes. Despite the high degree of sequence identity between the PDZ domains of TACIP18 and those of SITAC, none of the known ligands of the former shows interaction with the latter, as judged by two-hybrid analysis. SITAC interacts with peptides containing bulky hydrophobic amino acids two positions upstream of the C-terminal residue. Surprisingly, SITAC also shows interaction with peptides ending in C, a previously unacknowledged ability of PDZ domains. The sequence -Y-X-C-COOH, bound in vitro by SITAC, is present in the member of the tetraspanin superfamily, the L6 antigen. Coimmunoprecipitation experiments show that SITAC interacts with L6A, but not with an L6A C-terminal mutant, confirming the capacity of SITAC to interact with proteins ending in C. Confocal analysis shows that the interaction between L6A and SITAC is necessary for the precise colocalization of both molecules in the same subcellular compartment. In summary, the characterization of the protein SITAC has unveiled novel sequences recognized by PDZ domains, and it suggests that L6A is a natural ligand of this PDZ protein.  相似文献   

8.
The Aβ-precursor protein (APP) intracellular domain is highly conserved and contains many potentially important residues, in particular the (682)YENPTY(687) motif. To dissect the functions of this sequence in vivo, we created an APP knock-in allele mutating Tyr(682) to Gly (Y682G). Crossing this allele to APP-like protein 2 (APLP2) knock-out background showed that mutation of Tyr(682) results in postnatal lethality and neuromuscular synapse defects similar to doubly deficient APP/APLP2 mice. Our results demonstrate that a single residue in the APP intracellular region, Tyr(682), is indispensable for the essential function of APP in developmental regulation.  相似文献   

9.
The type III sodium-dependent phosphate (NaPi) cotransporter, Pit2, is a receptor for amphotropic murine leukemia virus (A-MuLV) and 10A1 MuLV. In order to determine what is sufficient for Pit2 receptor function, a deletion mutant lacking about the middle half of the protein was made. The mutant supported entry for both viruses, unequivocally narrowing down the identification of the sequence that is sufficient to specify the receptor functions of Pit2 to its N-terminal 182 amino acids and C-terminal 170 amino acids.  相似文献   

10.
The bacterial pathogen Listeria monocytogenes survives under a myriad of conditions in the outside environment and within the human host where infections can result in severe disease. Bacterial life within the host requires the expression of genes with roles in nutrient acquisition as well as the biosynthesis of bacterial products required to support intracellular growth. A gene product identified as the substrate-binding component of a novel oligopeptide transport system (encoded by lmo0135 ) was recently shown to be required for L. monocytogenes virulence. Here we demonstrate that lmo0135 encodes a multifunctional protein that is associated with cysteine transport, acid resistance, bacterial membrane integrity and adherence to host cells. The lmo0135 gene product (designated CtaP, for c ysteine t ransport a ssociated p rotein) was required for bacterial growth in the presence of low concentrations of cysteine in vitro , but was not required for bacterial replication within the host cytosol. Loss of CtaP increased membrane permeability and acid sensitivity, and reduced bacterial adherence to host cells. ctaP deletion mutants were severely attenuated following intragastric and intravenous inoculation of mice. Taken together, the data presented indicate that CtaP contributes to multiple facets of L. monocytogenes physiology, growth and survival both inside and outside of animal cells.  相似文献   

11.
Wolinella succinogenes grows by oxidative phosphorylation with polysulfide as terminal electron acceptor and either H2 or formate as electron donor (polysulfide respiration). The function of the respiratory chains catalyzing these reactions was investigated. Proteoliposomes containing polysulfide reductase (Psr) and either hydrogenase or formate dehydrogenase isolated from the membrane fraction of Wolinella succinogenes catalyzed polysulfide respiration, provided that methyl-menaquinone-6 isolated from W. succinogenes was also present. The specific activities of electron transport were commensurate with those of the bacterial membrane fraction. Using site-directed mutagenesis, certain residues were substituted in PsrC, the membrane anchor of polysulfide reductase. Replacement of Y23, D76, Y159, D218, E225 or R305 caused nearly full inhibition of polysulfide respiration without affecting the activity of Psr, which was still bound to the membrane. These residues are predicted to be located in hydrophobic helices of PsrC, or next to them. Substitution of 13 other residues of PsrC either caused partial inhibition ofblankpolysulfide respiration or had no effect. The function of methyl-menaquinone-6, which is thought to be bound to PsrC, is discussed.  相似文献   

12.
The bacterium Wolinella succinogenes produces a nitrite reductase enzyme that can be purified to homogeneity in high yield by a combination of detergent extraction, hydroxyapatite chromatography and Mr fractionation. Nitrite reductase activity is found to be present in both a high- and a low-Mr fraction. The high-Mr fraction has been shown to consist of the low-Mr nitrite reductase enzyme associated with a hydrophobic 'binding protein'. The amino acid composition for both proteins is reported. The nitrite reductase enzyme shows spectral characteristics indicative of the presence of c-type haem groups. Measurements at 610 nm indicate the presence of some high-spin haem groups at neutral pH. This haem subgroup undergoes a pH-linked high-spin - low-spin transition at alkaline pH. Approximately two of the six haem groups present within the enzyme bind CO with low affinity (KD = 0.4 mM). The enzyme also shows a range of redox activities with various inorganic reagents. The enzyme has been shown to exhibit dithionite reductase, oxygen reductase and CO2 reductase activities.  相似文献   

13.
Ligand binding reactions and the relation between redox state and ligand binding in the hexa-heme nitrite reductase of Wolinella succinogenes have been studied using laser flash photolysis. On a picosecond time scale, a rapid excursion was observed corresponding to the breaking and reforming of an iron histidine bond. With the CO derivative, a geminate reaction was observed with a rate of 3 ns-1. On a nanosecond time scale, no slower geminate reactions were observed. For the cyanide derivative, no geminate reactions were observed at either time scale. The second order reaction of CO with the enzyme had a time course consisting of two distinct components. This time course changed in form as the enzyme came to equilibrium with CO, and the slower rebinding component was replaced by a faster rebinding component. It is suggested that CO binding enhances reduction of a heme with an unusually low redox potential and opens the structure of the active site to allow a faster second order reaction of CO. The proportion of the geminate CO reaction was unchanged, consistent with changes relatively remote from the ligand binding site. The second order reactions of cyanide also showed that redox effects influence its rebinding reaction. Adding cyanide to the CO complex of nitrite reductase showed that the two ligands have distinct heme binding sites.  相似文献   

14.
15.
The cytochrome c nitrite reductase complex (NrfHA) is the terminal enzyme in the electron transport chain catalysing nitrite respiration of Wolinella succinogenes. The catalytic subunit NrfA is a pentahaem cytochrome c containing an active site haem group which is covalently bound via the cysteine residues of a unique CWTCK motif. The lysine residue serves as the axial ligand of the haem iron. The other four haem groups of NrfA are bound by conventional haem-binding motifs (CXXCH). The nrfHAIJ locus was restored on the genome of the W. succinogenes DeltanrfAIJ deletion mutant by integration of a plasmid, thus enabling the expression of modified alleles of nrfA and nrfI. A mutant (K134H) was constructed which contained a nrfA gene encoding a CWTCH motif instead of CWTCK. NrfA of strain K134H was found to be synthesized with five bound haem groups, as judged by matrix-assisted laser-desorption/ionization (MALDI) mass spectrometry. Its nitrite reduction activity with reduced benzyl viologen was 40% of the wild-type activity. Ammonia was formed as the only product of nitrite reduction. The mutant did not grow by nitrite respiration and its electron transport activity from formate to nitrite was 5% of that of the wild-type strain. The predicted nrfI gene product is similar to proteins involved in system II cytochrome c biogenesis. A mutant of W. succinogenes (stopI) was constructed that contained a nrfHAIJ gene cluster with the nrfI codons 47 and 48 altered to stop codons. The NrfA protein of this mutant did not catalyse nitrite reduction and lacked the active site haem group, whereas the other four haem groups were present. Mutant (K134H/stopI) which contained the K134H modification in NrfA in addition to the inactivated nrfI gene had essentially the same properties as strain K134H. NrfA from strain K134H/stopI contained five haem groups. It is concluded that NrfI is involved in haem attachment to the CWTCK motif in NrfA but not to any of the CXXCH motifs. The nrfI gene is obviously dispensable for maturation of a modified NrfA protein containing a CWTCH motif instead of CWTCK. Therefore, NrfI might function as a specific haem lyase that recognizes the active site lysine residue of NrfA. A similar role has been proposed for NrfE, F and G of Escherichia coli, although these proteins share no overall sequence similarity to NrfI and belong to system I cytochrome c biogenesis, which differs fundamentally from system II.  相似文献   

16.
17.
Centrosomin is a 150 kDa centrosomal protein of Drosophila melanogaster. To study the function of Centrosomin in the centrosome, we have recovered mutations that are viable but male and female sterile (cnnmfs). We have shown that these alleles (1, 2, 3, 7, 8 and hk21) induce a maternal effect on early embryogenesis and result in the accumulation of low or undetectable levels of Centrosomin in the centrosomes of cleavage stage embryos. Hemizygous cnn females produce embryos that show dramatic defects in chromosome segregation and spindle organization during the syncytial cleavage divisions. In these embryos the syncytial divisions proceed as far as the twelfth cycle, and embryos fail to cellularize. Aberrant divisions and nuclear fusions occur in the early cycles of the nuclear divisions, and become more prominent at later stages. Giant nuclei are seen in late stage embryos. The spindles that form in mutant embryos exhibit multiple anomalies. There is a high occurrence of apparently linked spindles that share poles, indicating that Centrosomin is required for the proper spacing and separation of mitotic spindles within the syncytium. Spindle poles in the mutants contain little or no detectable amounts of the centrosomal proteins CP60, CP190 and (gamma)-tubulin and late stage embryos often do not have astral microtubules at their spindle poles. Spindle morphology and centrosomal composition suggest that the primary cause of these division defects in mutant embryos is centrosomal malfunction. These results suggest that Centrosomin is required for the assembly and function of centrosomes during the syncytial cleavage divisions.  相似文献   

18.
The Rev1-Polζ pathway is believed to be the major mechanism of translesion DNA synthesis and base damage-induced mutagenesis in eukaryotes. While it is widely believed that Rev1 plays a non-catalytic function in translesion synthesis, the role of its dCMP transferase activity remains uncertain. To determine the relevance of its catalytic function in translesion synthesis, we separated the Rev1 dCMP transferase activity from its non-catalytic function in yeast. This was achieved by mutating two conserved amino acid residues in the catalytic domain of Rev1, i.e. D467A/E468A, where its catalytic function was abolished but its non-catalytic function remained intact. In this mutant strain, whereas translesion synthesis and mutagenesis of UV radiation were fully functional, those of a site-specific 1,N6-ethenoadenine were severely deficient. Specifically, the predominant A→G mutations resulting from C insertion opposite the lesion were abolished. Therefore, translesion synthesis and mutagenesis of 1,N6-ethenoadenine require the catalytic function of the Rev1 dCMP transferase, in contrast to those of UV lesions, which only require the non-catalytic function of Rev1. These results show that the catalytic function of the Rev1 dCMP transferase is required in a lesion-specific manner for translesion synthesis and base damage-induced mutagenesis.  相似文献   

19.
20.
The activation of cyclic nucleotide-gated (CNG) channels is the final step in olfactory and visual transduction. Previously we have shown that, in addition to their activation by cyclic nucleotides, nitric oxide (NO)-generating compounds can directly open olfactory CNG channels through a redox reaction that results in the S-nitrosylation of a free SH group on a cysteine residue. To identify the target site(s) of NO, we have now mutated the four candidate intracellular cysteine residues Cys-460, Cys-484, Cys-520, and Cys-552 of the rat olfactory rCNG2 (alpha) channel into serine residues. All mutant channels continue to be activated by cyclic nucleotides, but only one of them, the C460S mutant channel, exhibited a total loss of NO sensitivity. This result was further supported by a similar lack of NO sensitivity that we found for a natural mutant of this precise cysteine residue, the Drosophila melanogaster CNG channel. Cys-460 is located in the C-linker region of the channel known to be important in channel gating. Kinetic analyses suggested that at least two of these Cys-460 residues on different channel subunits were involved in the activation by NO. Our results show that one single cysteine residue is responsible for NO sensitivity but that several channel subunits need to be activated for channel opening by NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号