首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Directional selection for heavier pupa weight in Tribolium castaneum was practiced for 18 generations in two replicates of an inbred line, each separately maintained in small population cages for more than 90 generations. Mutational variance was estimated in two ways, based on Hill's (1982a) prediction equation for response to directional selection where an equilibrium state between effective population size and variation created by new mutation is assumed. Estimates of mutational variance based on response to selection in a selected population and from a sire-offspring regression analysis in an unselected control population were in strong agreement within each replicate population. Significant differences between the two replicates were observed. Estimates of the ratio of mutational variance to environmental variance ranged from 0.0002 to 0.0012, depending upon the assumptions made about effective population sizes maintained in the two replicate lines. Estimates of realized heritability from the 18 generations of selection were 0.23±0.02 and 0.12±0.02 in the two replicates. The results support the hypothesis that mutation may have played a significant role in supplying useful genetic variation for long-continuing response to selection for this trait in experiments reported earlier.  相似文献   

2.
Summary The effect of simulated opposing natural selection on the response to mass selection for 18-day pupa weight of Tribolium castaneum was studied for 10 generations of selection. Natural selection was simulated in replicated treatment lines by imposing a negative relationship between mid-parent genetic value for pupa weight and fertility. Responses to selection and realized heritabilities were smaller (P < 0.05 and P < 0.10, respectively) for the treatment lines than for control lines under selection for pupa weight only. One treatment, line E3G1, reached an intermediate selection plateau by generation 10, and responded linearly to 4 generations of artificial selection after natural selection had been discontinued. Possible explanations for the different behaviors of the replicate lines E3G1 and E3G2 were also discussed.  相似文献   

3.
We report our studies of the effect of inbreeding on the response to selection for increased pupal weight in the flour beetle, Tribolium castaneum. We also report the effects of inbreeding and selection for pupal weight on the heritable variation in fitness and fitness components. We created replicate and independent inbred lines with F-values of 0.00, 0.375, and 0.672, by 0, 2, and 5 generations, respectively, of brother-sister mating of adult beetles from an outbred stock population. Subsequently, we imposed artificial within-family selection for increased pupal weight in each of 15 inbred lines for eight generations; each line had its own paired, unselected control. We compared the response to selection across the three levels of inbreeding with theoretical expectation, and investigated the effects of inbreeding and selection on fitness variation among families within all 30 selected and control lines. Among-line variation in pupal weight increased with increased inbreeding prior to selection but diminished with directional selection. Inbreeding reduced the realized heritability of pupal weight concordant with quantitative predictions of additive theory. Mean fitness, measured in several ways, declined with inbreeding and declined further with selection. In contrast, the genetic variation for fitness in the inbred and selected lines lines equalled or exceeded that of the outbred controls. Our results suggest that inbreeding and selection may affect traits in different ways depending on the relative amounts of additive and nonadditive genetic variation.  相似文献   

4.
Two replications of a complete diallel cross experiment were performed among four partially inbred lines of mice. These inbred lines originated from a random-bred ICR strain and were produced by 12 generations of full sibbing (F congruent to 92%). Individual body weight was recorded for each animal at 12, 21, 42 and 56 days of age. Body weight gain traits were examined for intervals 12-21, 21-42 and 42-56 days. Simultaneous least squares analyses of inbred and linecrossed groups were used. Sex differences were highly significant for all traits. Replicate differences were significant but made a small contribution to the total variation. Inbred lines differed greatly. Crosses showed growth trends similar to their contemporary maternal and paternal inbreds. Heterosis was highly significant for all traits except 21-day weight. Inbreds were heavier at 12 days of age, but linecrossed progeny were superior to inbreds for all postweaning weights. General combining ability was highly significant for 12- and 56-day weights and 21-42-day gain. Specific combining ability was highly significant for 21-day weight, 12-21- and 42-56-day gain. Significant maternal effects were found for all individual weights but not for 12-21- and 21-42-day gain. Residual reciprocal effects were significant for all traits. Estimated variances among linecrossed groups contained a large maternal component, a fluctuating additive genetic component and consistent non-additive genetic influence on all growth parameters measured.  相似文献   

5.
Stabilizing Selection for Pupa Weight in TRIBOLIUM CASTANEUM   总被引:2,自引:2,他引:0       下载免费PDF全文
Ninety-five generations of stabilizing selection for pupa weight in Tribolium castaneum resulted in a significant decrease in phenotypic variance, moderate reductions in additive genetic variance, but only slight changes in heritability for the trait. Sterility was significantly lower and the average number of live progeny per fertile mating was significantly higher in populations where stabilizing selection was practiced as compared with random selected populations. The results indicate that more genetic variability is being maintained than would be expected unless a fraction of the genes have a heterozygote advantage on the fitness scale. The reduction in phenotypic variance indicated that the populations with stablizing selection became somewhat more buffered against environmental sources of variation over the course of the experiment.  相似文献   

6.
Summary Mass selection for increased body weight gain from 21 to 42 days of age was practiced for 12 generations in four replicate lines of ICR-albino mice. Response to selection averaged 0.56±0.03 g. per generation. This response represented an increase of 7.0 genetic standard deviation units and 3.4 phenotypic standard deviation units in 12 generations. The realized heritability pooled over the four replicates was 0.24±0.02. Sizable positive correlated responses were found for 42 and 56-day weight and gain from 42 to 56 days. Much smaller positive correlated responses were noted for 12-day litter weight and 12-day individual weight. Neither litter size nor weaning weight were significantly altered by selection for increased postweaning gain. Reproductive efficiency measured as percent fertile matings declined significantly in the selected lines.Supported in part by a grant from the Virginia Agricultural Foundation.Published with the approval of the Director of the Research Division, Virginia Polytechnic Institute and State University.  相似文献   

7.
P. D. Keightley  M. J. Evans    W. G. Hill 《Genetics》1993,135(4):1099-1106
To assess the potential to generate quantitative genetic variation by insertional mutagenesis in a vertebrate, lines of mice in which many provirus vector inserts segregated at a low initial frequency on an inbred background (insert lines) were subjected to divergent artificial selection on body weight at 6 weeks and responses and heritability estimates compared to control lines lacking inserts. Heritability estimates were more than 1.5 times greater in the insert lines than in the controls, but because the phenotypic variance was substantially higher in the insert lines the genetic variance was about 3 times greater. Realized heritability estimates tended to be lower than heritabilities estimated by an animal model which utilizes information in covariances between all relatives in the data set. A surprisingly large response to selection occurred in the inbred control line. Insert lines were about 20% less fertile than controls. Division of the selection lines into inbred sublines in the later generations of the experiment revealed substantially greater variation among sublines of the insert lines than among the controls. Heritabilities were similar to typical estimates for the trait in outbred populations. In conclusion, there was clear evidence of extra variation deriving from inserts, which has yet to be attributed to individual genes.  相似文献   

8.
Summary The correlated responses in male and female sterility to 50 generations of individual selection for pupa weight in Tribolium were analyzed. Two replicate lines (S-lines) were selected for heavier pupa weight and stabilizing selection for pupa weight was practiced in two replicate control lines (C-lines). There was close agreement between replicates in both sets of lines for direct and correlated responses. The rate of inbreeding has been constant for all lines (approximately 0.5% per generation).Regression of generation means for pupa weight on generation of selection indicated a significant linear regression in the direct response for both lines. The linear increases of 46 and 55 g. per generation in the S-lines accounted for 98% of the variation among generations and the linear decreases of 5 and 10 g. per generation in the C-lines accounted for 70–90% of the variation in the generation means.Maximum likelihood estimators were used to calculate the frequency of male and female sterility for each generation and line. Average sterility in the base population ranged from about 4 to 12% for both sexes. Polynomial regressions of percent sterility on generation of selection showed that quadratic and higher order regressions were occasionally significant but accounted for a relatively small fraction of the total variation. In the two S-line replicates, linear regression coefficients of percent sterility on generation number were 0.16±.09 and 0.20±.07 for males and 0.72±.08 and 0.54±.08 for females, suggesting a larger correlated response in female than in male sterility. In the C-lines, linear regression coefficients were 0.02±.08 and –.12±.05 for males in the two replicates and –.05±.05 and –.05±.05 for females. Estimates of realized genetic correlations between pupa weight and sterility in the S-lines ranged from 0.04 to 0.14 for males and from 0.14 to 0.37 for females when the heritability of sterility was allowed to take on values from 0.05 to 0.25.Supported by NSF Grants G-1238 and GB-5987, NIH Grant GM-16074 and NIH Fellowship 1 FO2 GM4 5130-01.  相似文献   

9.
The incorporation of exotic germ plasm into breeding populations can broaden and diversify the genetic base of adapted genotypes. To more effectively utilize the genetic resources existing in Sorghum bicolor (L.) Moench, a rapid and efficient method of incorporating exotic genotypes into adapted populations is needed. Therefore, this study was conducted to compare the effectiveness of backcrossing to a broad-based population versus backcrossing to an inbred line for developing improved lines from adapted x exotic crosses. A wild sorghum, a cultivated landrace, and a converted sorghum line were crossed to an inbred line (CK60) and a broad-based population (KP9B). After two generations of backcrossing to the respective adapted parent, 50 F2 lines were derived from each of the backcross generations of every mating and evaluated at three test environments. Backcrossing to an inbred line (CK60) gave fewer high-yielding segregates and generated less genetic variation than backcrossing to a population (KP9B). Also, the number of agronomically acceptable lines derived from each CK60 mating was fewer than that derived from the corresponding mating with KP9B. Overall, the use of a broad-based population as an adapted recurrent parent for introgressing exotic genotypes may provide good opportunities for developing suitable inbred lines from adapted x exotic backcrosses.Contribution no. 93-499-J from the Kansas Agricultural Experiment Station  相似文献   

10.
The role of development in the evolution of postponed senescence is poorly understood despite the existence of a major gerontological theory connecting developmental rate to aging. We investigate the role of developmental rate in the laboratory evolution of aging using 24 distinct populations of Drosophila melanogaster. We have found a significant difference between the larval developmental rates of our Drosophila stocks selected for early (B) and late-life (O) fertility. This larval developmental time difference of approximately 12% (O > B) has been stable for at least 5 yr, occurs under a wide variety of rearing conditions, responds to reverse selection, and is shown for two other O-like selection treatments. Emerging adults from lines with different larval developmental rates show no significant differences in weight at emergence, thorax length, or starvation resistance. Long-developing lines (O, CO, and CB) have greater survivorship from egg to pupa and from pupa to adult, with and without strong larval competition. Crosses between slower developing populations, and a variety of other lines of evidence, indicate that neither mutation accumulation nor inbreeding depression are responsible for the extended development of our late-reproduced selection treatments. These results stand in striking contrast to other recent studies. We argue that inbreeding depression and inadvertent direct selection in other laboratories' culture regimes explain their results. We demonstrate antagonistic pleiotropy between developmental rate and preadult viability. The absence of any correlation between longevity and developmental time in our stocks refutes the developmental theory of aging.  相似文献   

11.
《Animal behaviour》1988,36(4):1180-1189
Male fruitflies from stocks from two localities were artificially selected for defence of a food area against intruding males. Both stocks showed a rapid replicable response to selection over a few generations, indicating considerable genetic variation for territorial success in the base populations. Crosses between lines indicate directional dominance for increased territorial success and no maternal or paternal effects. Selected males escalated relatively more frequently against territory residents than control males, and won relatively more escalated encounters. There was no correlated response in body weight. In the presence of territories, selected males had a higher mating success with inseminated females than control males, but did not differ in mating speed. Indirect selection for territorial success was carried out by allowing flies to mate in the presence of different types of resources. After 21–26 generations, males from lines held in cages with discrete resources where territories could be established had greater territorial success than males from lines held in cages with one large resource. This genetic divergence in response to resource type is consistent with the heritable variation in territorial success and mating success of territorial males.  相似文献   

12.
Many studies have documented the existence of genotype-environment interaction (GEI) for traits closely related to fitness in natural populations. A type of GEI that is commonly observed is changes in the fitness ranking of genetic groups (families, clones, or inbred lines) in different environments. We refer to such changes in ranking as crossing of reaction norms for fitness. A common interpretation of crossing of reaction norms for fitness is that selection favors different alleles in the different environments (i.e., that “trade-offs” exist). If this is the case, selection could maintain genetic variation, and even lead to reproductive isolation between subpopulations using different environments. Even if the same alleles are favored in every environment, however, deleterious mutations that vary in the magnitude of their effect depending on environment could cause reaction norms for fitness to cross. If deleterious mutations with environment-dependent effects are responsible for maintaining much of the variation leading to crossing of reaction norms for fitness in natural populations, it should be possible to observe crossing of reaction norms for fitness among otherwise genetically identical lines bearing newly arisen spontaneous mutations. We examined the contribution of new mutations to GEI for fitness in Drosophila melanogaster. Eighteen lines were derived from a common, highly inbred base stock, and maintained at a population size of 10 pairs for over 200 generations, to allow them to accumulate spontaneous mutations. Because of the small population size of the lines, selection against mildly deleterious mutations should have been relatively ineffective. The lines were tested for productivity (number of surviving adult progeny from a standard number of parents) in five different environmental treatments, comprising different food media, temperatures, and levels of competition. The lines showed highly significant GEI for productivity, owing largely to considerable changes in ranking in the different environments. We conclude that mutations that are deleterious on average, but whose quantitative effects depend on environment, could be responsible for maintaining much of the variation leading to crossing of reaction norms for fitness that has been observed in samples of D. melanogaster from the wild.  相似文献   

13.
Summary Triple-testcross experiments were used to analyze epistatic contributions to larva weight, pupa weight, pupa width and adult weight in Tribolium castaneum. Seven diverse inbred lines and the F1. produced by crossing the two tester lines were examined for indications of epistasis. Larva weight was the only trait for which no significant epistasis was detected. There was significant epistasis for pupa weight in three of the inbred lines; for pupa width in four of the inbred lines; for adult weight in five of the inbred lines. Only one inbred line and the F1 line failed to exhibit significant epistasis for any trait. Each inbred line had a unique pattern of epistasis, suggesting that a number of different loci were contributing to the detected epistasis.This paper (No. 76-5-158) is published with the approval of the Director of the Kentucky Agricultural Experiment Station.  相似文献   

14.
J D Fry  S L Heinsohn  T F Mackay 《Genetics》1998,148(3):1171-1188
If genetic variation for fitness traits in natural populations ("standing" variation) is maintained by recurrent mutation, then quantitative-genetic properties of standing variation should resemble those of newly arisen mutations. One well-known property of standing variation for fitness traits is inbreeding depression, with its converse of heterosis or hybrid vigor. We measured heterosis for three fitness traits, pre-adult viability, female fecundity, and male fertility, among a set of inbred Drosophilia melanogaster lines recently derived from the wild, and also among a set of lines that had been allowed to accumulate spontaneous mutations for over 200 generations. The inbred lines but not the mutation-accumulation (MA) lines showed heterosis for pre-adult viability. Both sets of lines showed heterosis for female fecundity, but heterosis for male fertility was weak or absent. Crosses among a subset of the MA lines showed that they were strongly differentiated for male fertility, with the differences inherited in autosomal fashion; the absence of heterosis for male fertility among the MA lines was therefore not caused by an absence of mutations affecting this trait. Crosses among the inbred lines also gave some, albeit equivocal, evidence for male fertility variation. The contrast between the results for female fecundity and those for male fertility suggests that mutations affecting different fitness traits may differ in their average dominance properties, and that such differences may be reflected in properties of standing variation. The strong differentiation among the MA lines in male fertility further suggests that mutations affecting this trait occur at a high rate.  相似文献   

15.
Summary Bi-directional selection was carried out in coisogenic stocks with and without mobilised P element transposons to determine whether P elements induce quantitative genetic variation for inebriation time in Drosophila. There was significant response to 11 generations of selection in both pairs of replicates of bi-directional selection from an isogenic base stock in which P elements had been mobilised. Conversely, there was no significant response to 11 generations of identical selection in the control lines derived from a relatively inbred line lacking P elements. Thus, P elements have induced quantitative genetic variation for inebriation time.  相似文献   

16.
During mass rearing, adaptation of biological control agents to the rearing environment is a potential problem. Using the parasitoid wasp Trichogramma pretiosum, the performance of 26 highly inbred lines, five composite ‘populations’ (created from the inbred lines) and one insectary‐reared population was compared using fertility life tables. Of the composite populations, three were created with maximal and identical genetic variation as a mixture of all 26 inbred lines, but these were then reared for a different number of generations (2, 6 or 17) before their performance was measured. The remaining two composite populations were created based on the performance of the individual inbred lines: one was a combination of two inbred lines with a high intrinsic rate of natural increase (rm), ‘high rm’; and the other was a combination of two lines with a ‘low rm’. High and low rm populations were reared for two generations prior to testing. Parameters measured were fertility, longevity and sex ratio. We found no difference between the maximally variable population reared for two generations and the ‘high rm’ population (rm = 0.285 and 0.282, respectively). ‘Low rm’ was the population with the lower performance (rm = 0.255). Genetically variable population reared for two generations for 48 h produced significantly more offspring than the populations reared for 6 and 17 generations. Hybrid population derived from the high‐rm lines did significantly better than that derived from the low‐rm lines. Low‐performance populations become more male based than high performance at 48 h. The potential benefits to improve population's performance using inbred lines for mass rearing are discussed.  相似文献   

17.
R. Goodwill 《Genetics》1975,79(2):219-229
Triple-testcross experiments (Kearsey and Jinks 1968) were employed to investigate the mode of gene action affecting pupa weight in Tribolium castaneum. Their experimental design involves two inbred lines, the F1 progeny and a segregating population derived from the cross of the inbred lines. In the present experiments, four segregating populations were used. These populations included the F2 generation, a select line (SEL) and two relaxed select lines (RSI and RSII). In addition, all possible reciprocal crosses were made among the RSI, RSII, and SEL populations. It was observed that: (1) additive, dominant and epistatic gene effects all made significant contributions to the pupa weight of the progeny from all four segregating populations; (2) there was no evidence of either accumulation of epistasis as a result of selection in the SEL population or decline in epistasis as a result of removing selection pressure from the RSI and RSII populations; and (3) significant negative heterosis and maternal effects contributed to the pupa weight of the crossbred progeny of the RSI, RSII and SEL populations.  相似文献   

18.
We have tested the hypothesis that genetic differences among conspecific populations may result in diverse responses to selection, using natural populations of Drosophila melanogaster. Selection for ethanol tolerance in a tube measuring knockdown resistance was imposed on five West Coast populations. In 24 generations the selected lines increased their mean knockdown times, on average, by a factor of 2.7. An initially weak latitudinal cline was steepened by selection. The two southernmost populations showed the same increases in the selected character, but differed consistently in their correlated responses in characters related to ethanol tolerance. This result indicates that the populations responded to selection by different genetic changes. Selection decreased female body weight and increased resistance to acetone, suggesting components of the response unrelated to ethanol metabolism. The Adhs allele was favored by selection in all populations at the onset, but increased in frequency only in the selected lines of the southernmost population. There was a correlation between latitude and Adh frequency changes, suggesting that fitnesses of the Adh alleles were dependent on the genetic background. Genetic background also had a large effect on the loss of fitness due to selection. Genetic drift between replicate lines caused more variation in selection response than initial genetic differences between populations. This result demonstrates the importance of genetic drift in divergence among natural populations undergoing uniform selection, since the effective population sizes approached those of small natural populations. Drift caused greater divergence between selected replicates than control replicates. Implications of this result for the genetic model of selection response are discussed.  相似文献   

19.
Summary Reciprocal sets of homozygous inbred backcross lines were developed by crossing two pure line varieties (Baart 46 and Ramona) of Triticum aestivum L., followed by two backcrosses to each of the two parent varieties, and six to eight generations of selfing. Data on each inbred backcross line was obtained from twelve plots (from replications in three years). Five genes were responsible for over 95% of the genetic variation for heading date. These genes had pleiotropic effects on plant height that were proportional to their effects on heading date. Two additional genes had detectable effects on plant height. The genes with a measurable effect on height accounted for 90% of the genetic variation in the Baart 46 genetic background. One gene affected seed weight. In the Ramona background, this gene accounted for 80% of the genetic variation in seed weight and 16% of the genetic variation in seed yield. Two genes, responsible for the earliest and latest heading date classes, had large pleiotropic effects on seed yield. They accounted for 60% of the genetic variation in yield. One gene, with no effect on heading date, caused a detectable reduction in yield of 23% in the Baart 46 inbred backcross lines. This gene had no apparent effect in the Ramona genetic background. Quantitative trait genes are sparsely distributed in the genome: fewer than one in four chromosome arms carries a gene with a detectable effect. Gene effects on quantitative traits are not small and similar. The distribution of 22 gene effects for heading date and height is slightly skewed to the right: as the magnitude of effect increases, the frequency of genes having the effect decreases.  相似文献   

20.
The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号