首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular signal-regulated kinase 7 (ERK7) shares significant sequence homology with other members of the ERK family of signal transduction proteins, including the signature TEY activation motif. However, ERK7 has several distinguishing characteristics. Unlike other ERKs, ERK7 has been shown to have significant constitutive activity in serum-starved cells, which is not increased further by extracellular stimuli that typically activate other members of the mitogen-activated protein kinase (MAPK) family. On the other hand, ERK7's activation state and kinase activity appear to be regulated by its ability to utilize ATP and the presence of its extended C-terminal region. In this study, we investigated the mechanism of ERK7 activation. The results suggest that 1) MAPK kinase (MEK) inhibitors do not suppress ERK7 kinase activity; 2) intramolecular autophosphorylation is sufficient for activation of ERK7 in the absence of an upstream MEK; and 3) multiple regions of the C-terminal domain of ERK7 regulate its kinase activity. Taken together, these results indicate that autophosphorylation is sufficient for ERK7 activation and that the C-terminal domain regulates its kinase activity through multiple interactions.  相似文献   

2.
The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated (“hyperphosphorylated”) in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration.  相似文献   

3.
PLZF(promyelocytic leukaemia zinc finger protein)是一种重要的转录抑制因子,它由位于N端的BTB结构域和C端的锌指结构域构成。鉴于目前对于锌指结构域的立体结构还不是十分清楚,对其进行了高效表达和提纯。为了表达PLZF蛋白的锌指结构域,在其编码序列的5'端加上起始密码ATG后插入到表达载体PET-11a的多克隆位点。构建好的表达质粒转化到BL21 (DE3)大肠杆菌内并用IPTG诱导表达,发现重组蛋白主要以不溶性的包涵体形式在胞内表达。用含有SDS变性剂的缓冲液溶解包涵体后,采用凝胶过滤方法将重组蛋白纯化到纯度达96%以上。对纯化后的蛋白质用反透析的方法进行复性,然后用DNA结合实验进行活性分析,发现复性后的蛋白质具有特异的DNA结合活性,这为进一步研究PLZF蛋白锌指结构域的立体结构打下了重要基础。  相似文献   

4.
The nucleotide receptor P2X7 has been shown to modulate LPS-induced macrophage production of numerous inflammatory mediators. Although the C-terminal portion of P2X7 is thought to be essential for multiple receptor functions, little is known regarding the structural motifs that lie within this region. We show here that the P2X7 C-terminal domain contains several apparent protein-protein and protein-lipid interaction motifs with potential importance to macrophage signaling and LPS action. Surprisingly, P2X7 also contains a conserved LPS-binding domain. In this report, we demonstrate that peptides derived from this P2X7 sequence bind LPS in vitro. Moreover, these peptides neutralize the ability of LPS to activate the extracellular signal-regulated kinases (ERK1, ERK2) and to promote the degradation of the inhibitor of kappaB-alpha isoform (IkappaB-alpha) in RAW 264.7 macrophages. Collectively, these data suggest that the C-terminal domain of P2X7 may directly coordinate several signal transduction events related to macrophage function and LPS action.  相似文献   

5.
We examined the importance of alternative versions of a region near the ATP binding site of Drosophila myosin heavy chain for muscle mechanical properties. Previously, we exchanged two versions of this region (encoded by alternative exon 7s) between the indirect flight muscle myosin isoform (IFI) and an embryonic myosin isoform (EMB) and found, surprisingly, that in vitro solution actin-activated ATPase rates were increased (higher Vmax) by both exon exchanges. Here we examined the effect of increased ATPase rate on indirect flight muscle (IFM) fiber mechanics and Drosophila locomotion. IFM expressing EMB with the exon 7a domain replaced by the IFM specific exon 7d domain (EMB-7d) exhibited 3.2-fold greater maximum oscillatory power (Pmax) and 1.5-fold greater optimal frequency of power generation (fmax) versus fibers expressing EMB. In contrast, IFM expressing IFI with the exon 7d region replaced by the EMB exon 7a region (IFI-7a), showed no change in Pmax, fmax, step response, or isometric muscle properties compared to native IFI fibers. A slight decrement in IFI-7a flight ability was observed, suggesting a negative influence of the increased ATPase rate on Drosophila locomotion, perhaps due to energy supply constraints. Our results show that exon 7 plays a substantial role in establishing fiber speed and flight performance, and that the limiting step that sets ATPase rate in Drosophila myosin has little to no direct influence in setting fmax for fast muscle fiber types.  相似文献   

6.
7.
ERK7 is a unique member of the extracellular signal-regulated kinase (ERK) subfamily of MAP kinases. Although ERK7 shares a TEY motif in the activation loop of the kinase, it displays constitutive activation, nuclear localization, and growth inhibitory properties that are regulated by its C-terminal domain. Because ERK7 is expressed at low levels compared with ERK2 and its activity is dependent upon its expression level, we investigated the mechanism by which ERK7 expression is regulated. We now show that ERK7 expression is regulated by ubiquitination and rapid proteosomal turnover. Furthermore, both the kinase domain and the C-terminal tail are independently degraded at a rate comparable with that of the intact protein. Analysis of a series of chimeras between ERK2 and ERK7 reveal that the N-terminal 20 amino acids of the kinase domain are a primary determinant of ERK7 degradation. Fusion of the N-terminal 20 amino acids is both necessary and sufficient to cause proteolytic degradation of both ERK2 and green fluorescent protein. Finally, ERK7 is stabilized by an N-terminal mutant of Cullin-1 suggesting that ERK7 is ubiquitinated by the Skip1-Cullin-F box complex. These results indicate that ERK7 is a highly regulated enzyme whose cellular expression and kinase activation level is tightly controlled by the ubiquitin-proteosome pathway.  相似文献   

8.
The Drosophila melanogaster ovarian tumor (otu) gene encodes two novel protein isoforms that are required at multiple stages of oogenesis. We have examined the activity of a set of C-terminal truncation Otu proteins as well as a GFP-tagged Otu (Otu-GFP). These experiments have shown that a putative Tudor domain in the central region of the large Otu isoform and a separate domain in the C-terminal region are required for regulation of cyst formation and oocyte maturation, respectively. We also present evidence that a portion of Otu co-fractionates with mRNA/protein complexes (mRNPs) and show that Otu-GFP associates with cytoplasmic aggregates at periphery of the nucleus at an intermediate stage of oogenesis. This study substantially clarifies the relationship between Otu structure and function and reveals new clues about interacting components.  相似文献   

9.
We have analyzed the functional effect of site-directed mutations and deletions in the copper-binding domain of ATP7B (the copper transporting P-type ATPase defective in Wilson disease) using a yeast complementation assay. We have shown that the sixth copper-binding motif alone is sufficient, but not essential, for normal ATP7B function. The N-terminal two or three copper-binding motifs alone are not sufficient for ATP7B function. The first two or three N-terminal motifs of the copper-binding domain are not equivalent to, and cannot replace, the C-terminal motifs when placed in the same sequence position with respect to the transmembrane channel. From our data, we propose that the copper-binding motifs closest to the channel are required for the copper-transport function of ATP7B. We propose that cooperative copper binding to the copper-binding domain of ATP7B is not critical for copper transport function, but that cooperative copper binding involving the N-terminal two or three copper-binding motifs may be involved in initiating copper-dependent intracellular trafficking. Our data also suggest a functional difference between the copper-binding domains of ATP7A and ATP7B.  相似文献   

10.
11.
Wilson’s disease (WD) is characterized by accumulation of high levels of copper in liver due to malfunction of copper transporter ATP7B which is central for copper homeostasis. Here we report for the first time that mesenchymal stem cells (MSC) derived from bone marrow express detectable levels of ATP7B. The role of ATP7B overexpression for MSC survival and selection in high copper was investigated. Hepatoma cell line HepG2 that has a high intrinsic expression of ATP7B served as a control. Using retroviral vector a significant higher expression level of ATP7B could be achieved in MSCs. Whereas copper treatment resulted in cell death in untransduced MSCs, viability assays demonstrated a unique copper resistance of ATP7B overexpressing MSCs that outcompeted HepG2. In long-term cell culture stable transgene expression for up to 9 weeks was shown for ATP7B overexpressing MSCs which rapidly overgrew untransduced cells. Our findings suggest that ATP7B overexpression provides an important selection advantage to MSCs in high copper microenvironments, and may represent novel cell transplants for therapy of WD.  相似文献   

12.
13.
14.
15.
16.
Synaptotagmin (Syt) constitutes a large family of putative membrane trafficking proteins that share a short extracellular domain, a single N-terminal transmembrane domain, and C-terminal tandem C2 domains. In this study, I identified and characterized a novel member of the Syt family (named Syt XV-a) in the mouse, the rat, and humans. Although Syt XV-a protein has a short hydrophobic region at the very end of the N terminus (i.e., lacks a putative extracellular domain), biochemical and cellular analyses have indicated that the short hydrophobic region (amino acids 5-22) is sufficient for producing type I membrane topology in cultured cells, the same as in other Syt family proteins. Unlike other Syt isoforms, however, the mouse and human Syt XV have an alternative splicing isoform that lacks the C-terminal portion of the C2B domain (named Syt XV-b). Since the expression of Syt XV-a/b mRNA was mainly found in non-neuronal tissues (e.g., lung and testis) and Syt XV-a C2 domains lack Ca(2+)-dependent phospholipid binding activity, Syt XV-a is classified as a non-neuronal, Ca(2+)-independent Syt.  相似文献   

17.
The ERKs are a subfamily of the MAPKs that have been implicated in cell growth and differentiation. By using the rat ERK7 cDNA to screen a human multiple tissue cDNA library, we identified a new member of the ERK family, ERK8, that shares 69% amino acid sequence identity with ERK7. Northern analysis demonstrates that ERK8 is present in a number of tissues with maximal expression in the lung and kidney. Fluorescence in situ hybridization localized the ERK8 gene to chromosome 8, band q24.3. Expression of ERK8 in COS cells and bacteria indicates that, in contrast to constitutively active ERK7, ERK8 has minimal basal kinase activity and a unique substrate profile. ERK8, which contains two SH3-binding motifs in its C-terminal region, associates with the c-Src SH3 domain in vitro and co-immunoprecipitates with c-Src in vivo. Co-transfection with either v-Src or a constitutively active c-Src increases ERK8 activation indicating that ERK8 can be activated downstream of c-Src. ERK8 is also activated following serum stimulation, and the extent of this activation is reduced by pretreatment with the specific Src family inhibitor PP2. The ERK8 activation by serum or Src was not affected by the MEK inhibitor U0126 indicating that activation of ERK8 does not require MEK1, MEK2, or MEK5. Although most closely related to ERK7, the relatively low sequence identity, minimal basal activity, and different substrate profile identify ERK8 as a distinct member of the MAPK family that is activated by an Src-dependent signaling pathway.  相似文献   

18.
A protein family including the recently identified PIMT/Tgs1 (PRIP-interacting protein with methyltransferase domain/trimethylguanosine synthase) was identified by searching databases for homologues of a newly identified Drosophila protein with RNA-binding activity and methyltransferase domain. Antibodies raised against a short peptide of the mammalian homologue show a 90-kDa isoform expressed specifically in rat brain and testis and a 55-kDa form expressed ubiquitously. In HeLa cells, the larger isoform of the protein is nuclear and associated with a 600-kDa complex, while the smaller isoform is mainly cytoplasmic and co-localizes to the tubulin network. Inhibition of PIMT/Tgs1 expression by siRNA in HeLa cells resulted in an increase in the percentage of cells in G2/M phases. In yeast two-hybrid and in vitro GST pull down experiments, the conserved C-terminal region of PIMT/Tgs1 interacted with the WD domain containing EED/WAIT-1 that acts as a polycomb-type repressor in the nucleus and also binds to integrins in the cytoplasm. Our experiments, together with earlier data, indicate that isoforms of the PIMT/Tgs1 protein with an RNA methyltransferase domain function both in the nucleus and in the cytoplasm and associate with both elements of the cytoskeletal network and nuclear factors known to be involved in gene regulation.  相似文献   

19.
Hepatocellular carcinoma is one of the most fatal cancers worldwide. Propofol is an intravenous anesthetic extensively used in clinical. Herein, we tested the anticancer activity of propofol on hepatocellular carcinoma, along with the internal molecular mechanism related to lncRNA DiGeorge syndrome critical region gene 5 (DGCR5). Followed by propofol stimulation, hepatocellular carcinoma Huh-7 and HepG2 cell viability, proliferation, migration, invasion, and apoptosis were tested, respectively. Then, DGCR5 expression levels in hepatocellular carcinoma tissues and cells were measured. sh-DGCR5 was transfected to silence DGCR5 expression. Subsequently, the influence of DGCR5 silence on propofol caused Huh-7 and HepG2 cell viability loss, proliferation inhibition, migration and invasion suppression, apoptosis induction, as well as Raf1/ERK1/2 and Wnt/β-catenin pathways inactivation were assessed, respectively. We discovered that propofol declined Huh-7 and HepG2 cell viability, proliferation, migration and invasion, but increased cell apoptosis. DGCR5 had a relatively lower expression level in hepatocellular carcinoma tissues and cells. Propofol elevated DGCR5 expression in Huh-7 and HepG2 cells. Increased expression of DGCR5 was connected with the anticancer activity of propofol on Huh-7 and HepG2 cells. Besides, propofol repressed Raf1/ERK1/2 and Wnt/β-catenin pathways through elevating DGCR5 expression. In conclusion, the anticancer activity of propofol on hepatocellular carcinoma was verified in this study. Propofol repressed hepatocellular carcinoma Huh-7 and HepG2 cell growth and metastasis at least by elevating DGCR5 and hereafter inactivating Raf1/ERK1/2 and Wnt/β-catenin pathways.  相似文献   

20.
Glioblastoma (GBM) is the most lethal brain tumor in adults. Radiation, together with temozolomide is the standard treatment, but nevertheless, relapse occurs in nearly all cases. Understanding the mechanisms underlying radiation resistance may help to find more effective therapies. After radiation treatment, ATP is released into the tumor microenvironment where it binds and activates purinergic P2 receptors, mainly of the P2X7 subtype. Two main P2X7 splice variants, P2X7A and P2X7B, are expressed in most cell types, where they associate with distinct biochemical and functional responses. GBM cells widely differ for the level of P2X7 isoform expression and accordingly for sensitivity to stimulation with extracellular ATP (eATP). Irradiation causes a dramatic shift in P2X7 isoform expression, with the P2X7A isoform being down- and the P2X7B isoform up-modulated, as well as extensive cell death and overexpression of stemness and senescence markers. Treatment with P2X7 blockers during the post-irradiation recovery potentiated irradiation-dependent cytotoxicity, suggesting that P2X7B activation by eATP generated a trophic/growth-promoting stimulus. Altogether, these data show that P2X7A and B receptor isoform levels are inversely modulated during the post-irradiation recovery phase in GBM cells.Subject terms: Senescence, CNS cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号