共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarcoplasmic reticulum vesicles were preloaded with either 45Ca2+ or unlabeled Ca2+. 45Ca2+ efflux and influx were determined in the presence and absence of acetylphosphate. Phosphorylation of the membrane-bound (Ca2+,Mg2+)-ATPase by [32P]acetylphosphate was also determined. The rate of efflux with acetylphosphate was considerably higher than that without acetylphosphate. When the acetylphosphate concentration was greatly reduced by diluting the reaction mixture after the start of the reaction, the rate of the efflux decreased markedly. These results demonstrate the acceleration of 45Ca2+ efflux by acetylphosphate. This acetylphosphate-induced efflux required external Ca2+. The external Ca2+ concentration giving half-maximum activation of efflux was 3.8 microM. The Ca2+ concentration dependence of the efflux coincided with that of phosphorylation. When the acetylphosphate concentration was varied, the rate of acetylphosphate-induced efflux changed approximately in proportion to the phosphoenzyme concentration. These and other findings show that acetylphosphate-induced 45Ca2+ efflux represents Ca2+-Ca2+ exchange (between the external medium and the internal medium) mediated by the phosphoenzyme and further demonstrate the direct dissociation of Ca2+ from the Ca2+-bound phosphoenzyme to the external medium in Ca2+-Ca2+ exchange. 相似文献
2.
Sarcoplasmic reticulum vesicles were preloaded with either 45Ca2+ or unlabeled Ca2+. The unidirectional Ca2+ efflux and influx, together with Ca2+-dependent ATP hydrolysis and phosphorylation of the membrane-bound (Ca2+, Mg2+)-ATPase, were determined in the presence of ATP and ADP. The Ca2+ efflux depended on ATP (or ADP or both). It also required the external Ca2+. The Ca2+ concentration dependence of the efflux was similar to the Ca2+ concentration dependences of Ca2+ influx, Ca2+-dependent ATP hydrolysis, and phosphoenzyme formation. The rate of the efflux was approximately in proportion to the concentration of the phosphoenzyme up to 10 microM Ca2+. These results and other findings indicate that the Ca2+ efflux represents the Ca2+-Ca2+ exchange (between the external medium and the internal medium) mediated by the phosphoenzyme. In the range of 0.6-5.2 microM Mg2+, no appreciable Ca2+-Ca2+ exchange was detected although phosphoenzyme formation occurred to a large extent. Elevation of Mg2+ in the range 5.2 microM-4.8 mM caused a remarkable activation of the exchange, whereas the amount of the phosphoenzyme only approximately doubled. The kinetic analysis shows that this activation results largely from the Mg2+-induced acceleration of an exchange between the bound Ca2+ of the phosphoenzyme and the free Ca2+ in the internal medium. It is concluded that Mg2+ is essential for the exposure of the bound Ca2+ of the phosphoenzyme to the internal medium. 相似文献
3.
P-O bond destabilization accelerates phosphoenzyme hydrolysis of sarcoplasmic reticulum Ca2+ -ATPase
The phosphate group of the ADP-insensitive phosphoenzyme (E2-P) of sarcoplasmic reticulum Ca2+ -ATPase (SERCA1a) was studied with infrared spectroscopy to understand the high hydrolysis rate of E2-P. By monitoring an autocatalyzed isotope exchange reaction, three stretching vibrations of the transiently bound phosphate group were selectively observed against a background of 50,000 protein vibrations. They were found at 1194, 1137, and 1115 cm(-1). This information was evaluated using the bond valence model and empirical correlations. Compared with the model compound acetyl phosphate, structure and charge distribution of the E2-P aspartyl phosphate resemble somewhat the transition state in a dissociative phosphate transfer reaction; the aspartyl phosphate of E2-P has 0.02 A shorter terminal P-O bonds and a 0.09 A longer bridging P-O bond that is approximately 20% weaker, the angle between the terminal P-O bonds is wider, and -0.2 formal charges are shifted from the phosphate group to the aspartyl moiety. The weaker bridging P-O bond of E2-P accounts for a 10(11)-10(15)-fold hydrolysis rate enhancement, implying that P-O bond destabilization facilitates phosphoenzyme hydrolysis. P-O bond destabilization is caused by a shift of noncovalent interactions from the phosphate oxygens to the aspartyl oxygens. We suggest that the relative positioning of Mg2+ and Lys684 between phosphate and aspartyl oxygens controls the hydrolysis rate of the ATPase phosphoenzymes and related phosphoproteins. 相似文献
4.
5.
To identify the functional unit of Ca(2+)-ATPase in the sarcoplasmic reticulum, we assessed Ca(2+)-transport activities occurring on sarcoplasmic reticulum membranes with different combinations of active and inactive Ca(2+)-ATPase molecules. We prepared heterodimers, consisting of a native Ca(2+)-ATPase molecule and a Ca(2+)-ATPase molecule inactivated by FITC labelling, by fusing vesicles loaded with each type of Ca(2+)-ATPase. The heterodimers exhibited neither Ca(2+) transport nor ATP hydrolysis, suggesting that Ca(2+) transport by the Ca(2+)-ATPase requires an interaction between functional Ca(2+)-ATPase monomers. This finding implies that the functional unit of the Ca(2+)-ATPase is a dimer. 相似文献
6.
The functional consequences of a series of point mutations in transmembrane segment M1 of sarcoplasmic reticulum Ca2+-ATPase were analyzed in steady-state and transient kinetic experiments examining the partial reaction steps involved in Ca2+ interaction and phosphoenzyme turnover. Arginine or leucine substitution of Glu51, Glu55, or Glu58, located in the N-terminal third of M1, did not affect these functions. Arginine or leucine substitution of Asp59, located right at the bend of M1 seen in the crystal structure of the thapsigargin-bound form, caused a 10-fold increase of the rate of Ca2+ dissociation toward the cytoplasmic side. Mutation of Leu60 to alanine or proline and of Val62 to alanine also enhanced Ca2+ dissociation, whereas an 11-fold reduction of the rate of Ca2+ dissociation was observed upon alanine substitution of Leu65, thus providing evidence for a relation of the middle part of M1 to a gating mechanism controlling the dissociation of occluded Ca2+ from its membranous binding sites. Moreover, phosphoenzyme processing was affected by some of the latter mutations, in particular leucine substitution of Asp59, and alanine substitution of Leu65 accelerated the transition to ADP-insensitive phosphoenzyme and blocked its dephosphorylation, thus demonstrating that this part of M1, besides being important in Ca2+ interaction, furthermore, is a critical element in the long range signaling between the transmembrane domain and the cytoplasmic catalytic site. 相似文献
7.
Sarcoplasmic reticulum Ca2+-ATPase solubilized by the nonionic detergent octaethylene glycol monododecyl ether was studied by molecular sieve high-performance liquid chromatography (HPLC) and analytical ultracentrifugation. Significant irreversible aggregation of soluble Ca2+-ATPase occurred within a few hours in the presence of less than or equal to 50 microM Ca2+. The aggregates were inactive and were primarily held together by hydrophobic forces. In the absence of reducing agent, secondary formation of disulfide bonds occurred. The stability of the inactive dimer upon dilution permitted unambiguous assignment of its elution position and sedimentation coefficient. At high Ca2+ concentration (500 microM), monomeric Ca2+-ATPase was stable for several hours. Reversible self-association induced by variation in protein, detergent, and lipid concentrations was studied by large-zone HPLC. The association constant for dimerization of active Ca2+-ATPase was found to be 10(5)-10(6) M-1 depending on the detergent concentration. More detergent was bound to monomeric than to dimeric Ca2+-ATPase, even above the critical micellar concentration of the detergent. Binding of Ca2+ and vanadate as well as ATP-dependent phosphorylation was studied in monomeric and in reversibly associated dimeric preparations. In both forms, two high-affinity Ca2+ binding sites per phosphorylation site existed. The delipidated monomer purified by HPLC was able to form ADP-insensitive phosphoenzyme and to bind ATP and vanadate simultaneously. These results suggest that formation of Ca2+-ATPase oligomers in the membrane is governed by nonspecific forces (low affinity) and that each polypeptide chain constitutes a functional unit. 相似文献
8.
Didier Dulon Daniel Bréthes Jean Chevallier 《Journal of bioenergetics and biomembranes》1987,19(5):505-514
The dependence of the Ca2+-ATPase activity of sarcoplasmic reticulum vesicles upon the intravesicular concentration of calcium accumulated after active uptake was studied. The internal calcium concentration was modified by addition of the ionophore A23187 at the steady state of accumulation. About half of the calcium accumulated could be released at low ionophore concentration without any concomitant activation of the Ca2+-ATPase. This population of calcium might consist of calcium free in the lumen of the vesicles or bound to the bilayer at sites which do not interact with the ATPase activity. At higher concentrations of ionophore (above 1.75 nmol A23187/mg protein) the release of calcium activated this enzyme. This phenomenon was independent of the extravesicular calcium concentration and might be explained by assuming second species of calcium ions bound to the inner side of the membrane and in close functional interaction with the Ca2+-ATPase. 相似文献
9.
R Miras M Cuillel P Catty F Guillain E Mintz 《Protein expression and purification》2001,22(2):299-306
We describe here a protocol to prepare milligrams of active and stable heterologous sarcoplasmic reticulum Ca(2+)-ATPase (Serca1a). Serca1a was tagged with 6 histidines at its C-terminal end and overexpressed using the baculovirus-Sf9 system. In a first trial, Serca1a accounted for 24% of membrane proteins, 95% of which were inactive. Glucose in the culture medium reduced the production of Serca1a to 3 to 5% of membrane proteins and all Serca1a was active. Seventy-five percent of active Serca1a was solubilized by C(12)E(8) in the presence of phosphatidylcholine under conditions avoiding denaturation. Purification by Ni(2+)-nitrilo-triacetic acid affinity chromatography was tried, but only 3% of active Serca1a remained bound to the column, as if the His-tag were not accessible. Yields of 43% were reached by purification on reactive red 120 columns when eluting with 2 M NaCl. The purity was about 25% and Serca1a was stable for at least 1 week at 0 degrees C. Typically, 500 ml of culture medium produced 3 mg of active Serca1a and 1 mg of purified active Serca1a allowing measurements of phosphoenzyme (2 nmol/mg) or Ca(2+) affinity (2 microM at pH 7). 相似文献
10.
Ca 2+ uptake in reconstituted sarcoplasmic reticulum vesicles 总被引:3,自引:0,他引:3
The reconstitution of functional sarcoplasmic reticulum vesicles capable of Ca2+ transport has been achieved. Sarcoplasmic reticulum vesicles are first solubilized with deoxycholate and then reassembled into membranous vesicles by removal of the detergent using dialysis. The Ca2+ pump protein can, by itself, be reconstituted to form membranous vesicles capable of energized Ca2+ binding and uptake. The lipid content of the reconstituted vesicles is about the same as that of the original sarcoplasmic reticulum vesicles. The reconstituted vesicles have an elevated ATPase activity. Ca2+ binding and uptake in the presence of ATP are restored to about 25% and 50%, respectively. 相似文献
11.
Reaction mechanism of (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles. II. (ATP, ADP)-dependent Ca2+-Ca2+ exchange across the membranes 总被引:1,自引:0,他引:1
Sarcoplasmic reticulum vesicles were preloaded with unlabeled CaCl2, and 45Ca2+ incorporation into the vesicles was determined by adding 45CaCl2 to the external medium in the presence of ATP and ADP. In the absence of added MgCl2, the steady state rate of the (ATP, ADP)-dependent 45Ca2+ incorporation was extremely low, being in good agreement with that of the Ca2+-dependent ATP hydrolysis which was catalyzed by the membrane-bound (Ca2+, Mg2+)-ATPase. In contrast, it was greatly increased by addition of MgCl2 and became much higher than the steady state rate of the Ca2+-dependent ATP hydrolysis. The kinetic analysis of the results gave support to the probability that the MgCl2 addition markedly shifted the equilibrium of the reaction of Caout . EP and Cain . EP represent phosphoenzymes with bound Ca2+ which is exposed to the external medium and to the internal medium, respectively). 相似文献
12.
During Ca(2+) transport by sarcoplasmic reticulum Ca(2+)-ATPase, the conformation change of ADP-sensitive phosphoenzyme (E1PCa(2)) to ADP-insensitive phosphoenzyme (E2PCa(2)) is followed by rapid Ca(2+) release into the lumen. Here, we find that in the absence of K(+), Ca(2+) release occurs considerably faster than E1PCa(2) to E2PCa(2) conformation change. Therefore, the lumenal Ca(2+) release pathway is open to some extent in the K(+)-free E1PCa(2) structure. The Ca(2+) affinity of this E1P is as high as that of the unphosphorylated ATPase (E1), indicating the Ca(2+) binding sites are not disrupted. Thus, bound K(+) stabilizes the E1PCa(2) structure with occluded Ca(2+), keeping the Ca(2+) pathway to the lumen closed. We found previously (Yamasaki, K., Wang, G., Daiho, T., Danko, S., and Suzuki, H. (2008) J. Biol. Chem. 283, 29144-29155) that the K(+) bound in E2P reduces the Ca(2+) affinity essential for achieving the high physiological Ca(2+) gradient and to fully open the lumenal Ca(2+) gate for rapid Ca(2+) release (E2PCa(2) → E2P + 2Ca(2+)). These findings show that bound K(+) is critical for stabilizing both E1PCa(2) and E2P structures, thereby contributing to the structural changes that efficiently couple phosphoenzyme processing and Ca(2+) handling. 相似文献
13.
Eduardo M. R. Reis Carolyn W. Slayman Sergio Verjovski-Almeida 《Bioscience reports》1996,16(2):107-113
In recent years, expression of rabbit sarcoplasmic reticulum (SR) Ca2+-ATPase in heterologous systems has been a widely used strategy to study altered enzymes generated by site-directed mutagenesis. Various eukaryotic expression systems have been tested, all of them yielding comparable amounts of recombinant protein. However, the relatively low yield of recombinant protein obtained so far suggests that novel purification techniques will be required to allow further characterization of this enzyme based on direct ligand-binding measurements. 相似文献
14.
Sarcoplasmic reticulum Ca2+-ATPase solubilized in monomeric form by nonionic detergent was reacted with CrATP in the presence of 45Ca2+. A Ca2+-occluded complex formed, which was stable during high performance liquid chromatography in the presence of excess non-radioactive Ca2+. The elution position corresponded to monomeric Ca2+-ATPase. It is concluded that a single Ca2+-ATPase polypeptide chain provides the full structural basis for Ca2+ occlusion. 相似文献
15.
Microcrystalline arrays of Ca2+-transporting ATPase (EC 3.6.1.38) develop in detergent-solubilized sarcoplasmic reticulum upon exposure to 10-20 mM CaCl2 at pH 6.0 for several weeks at 2 degrees C, in a crystallization medium that preserves the ATPase activity for several months. Of 48 detergents tested, optimal crystallization was obtained with Brij 36T, Brij 56, and Brij 96 at a detergent:protein weight ratio of 4:1 and with octaethylene glycol dodecyl ether at a ratio of 2:1. Similar Ca2+-induced crystalline arrays were obtained with the purified or delipidated Ca2+-ATPase of sarcoplasmic reticulum but at lower detergent:protein ratios. The crystals are stabilized by fixation with glutaraldehyde and persist even after the removal of phospholipids by treatment with phospholipases A or C and by extraction with organic solvents. The crystals obtained so far can be used only for electron microscopy, but ongoing experiments suggest that under similar conditions large ordered arrays may develop that are suitable for x-ray diffraction analysis. 相似文献
16.
Characterization and expression of the rat heart sarcoplasmic reticulum Ca2+-ATPase mRNA 总被引:3,自引:0,他引:3
Sarcoplasmic reticulum Ca2+-ATPase cDNA clones have been isolated from an adult rat heart cDNA library and the nucleotide sequence of the Ca2+-ATPase mRNA determined. The sequence has an open reading frame of 997 codons. It is identical to a cDNA isolated from a rat stomach cDNA library and 90% isologous to the rabbit and human slow/cardiac cDNAs. Nuclease S1 mapping analysis indicates that this sequence corresponds to the main Ca2+-ATPase mRNA present in heart and in slow skeletal muscle and that it is expressed in various proportions in smooth and non-muscle tissues, together with another isoform which differs from the cardiac form in the sequence of its 3'-end. 相似文献
17.
The molecular environment of Ca2+ translocating sites of skeletal muscle sarcoplasmic reticulum (SR) (Ca2+ + Mg2+)-ATPase has been studied by pulsed-laser excited luminescence of Eu3+ used as a Ca2+ analogue. Interaction of Eu3+ with SR was characterized by investigating its effect on partial reactions of the Ca2+ transport cycle. In native SR vesicles, Eu3+ was found to inhibit Ca2+ binding, phosphoenzyme formation, ATP hydrolysis activity and Ca2+ uptake in parallel fashion. The non-specific binding of Eu3+ to acidic phospholipids associated with the enzyme was prevented by purifying (Ca2+ + Mg2+)-ATPase and exchanging the endogenous lipids with a neutral phospholipid, dioleoylglycerophosphocholine. The results demonstrate that the observed inhibition of Ca2+ transport by Eu3+ is due to its binding to Ca2+ translocating sites. The 7F0----5D0 transition of Eu3+ bound to these sites was monitored. The non-Lorentzian nature of the excitation profile and a double-exponential fluorescence decay revealed the heterogeneity of the two sites. Measurement of fluorescence decay rates in H2O/D2O mixture buffers further distinguished the sites. The number of water molecules in the first co-ordination sphere of Eu3+ bound at transport sites were found to be 4 and 1.5. Addition of ATP reduced these numbers to zero and 0.6. These data show that the calcium ions in translocating sites are well enclosed by protein ligands and are further occluded down to zero or one water molecule of solvation during the transport process. 相似文献
18.
Yamasaki K Wang G Daiho T Danko S Suzuki H 《The Journal of biological chemistry》2008,283(43):29144-29155
Tyr(122)-hydrophobic cluster (Y122-HC) is an interaction network formed by the top part of the second transmembrane helix and the cytoplasmic actuator and phosphorylation domains of sarcoplasmic reticulum Ca(2+)-ATPase. We have previously found that Y122-HC plays critical roles in the processing of ADP-insensitive phosphoenzyme (E2P) after its formation by the isomerization from ADP-sensitive phosphoenzyme (E1PCa(2)) (Wang, G., Yamasaki, K., Daiho, T., and Suzuki, H. (2005) J. Biol. Chem. 280, 26508-26516). Here, we further explored kinetic properties of the alanine-substitution mutants of Y122-HC to examine roles of Y122-HC for Ca(2+) release process in E2P. In the steady state, the amount of E2P decreased so that of E1PCa(2) increased with increasing lumenal Ca(2+) concentration in the mutants with K(0.5) 110-320 microm at pH 7.3. These lumenal Ca(2+) affinities in E2P agreed with those estimated from the forward and lumenal Ca(2+)-induced reverse kinetics of the E1PCa(2)-E2P isomerization. K(0.5) of the wild type in the kinetics was estimated to be 1.5 mM. Thus, E2P of the mutants possesses significantly higher affinities for lumenal Ca(2+) than that of the wild type. The kinetics further indicated that the rates of lumenal Ca(2+) access and binding to the transport sites of E2P were substantially slowed by the mutations. Therefore, the proper formation of Y122-HC and resulting compactly organized structure are critical for both decreasing Ca(2+) affinity and opening the lumenal gate, thus for Ca(2+) release from E2PCa(2). Interestingly, when K(+) was omitted from the medium of the wild type, the properties of the wild type became similar to those of Y122-HC mutants. K(+) binding likely functions via producing the compactly organized structure, in this sense, similarly to Y122-HC. 相似文献
19.
Champeil P Menguy T Tribet C Popot JL le Maire M 《The Journal of biological chemistry》2000,275(25):18623-18637
Amphipols are short-chain amphipathic polymers designed to keep membrane proteins soluble in aqueous solutions. We have evaluated the effects of the interaction of amphipols with sarcoplasmic reticulum Ca(2+)-ATPase either in a membrane-bound or a soluble form. If the addition of amphipols to detergent-solubilized ATPase was followed by removal of detergent, soluble complexes formed, but these complexes retained poor ATPase activity, were not very stable upon long incubation periods, and at high concentrations they experienced aggregation. Nevertheless, adding excess detergent to diluted detergent-free ATPase-amphipol complexes incubated for short periods immediately restored full activity to these complexes, showing that amphipols had protected solubilized ATPase from the rapid and irreversible inactivation that otherwise follows detergent removal. Amphipols also protected solubilized ATPase from the rapid and irreversible inactivation observed in detergent solutions if the ATPase Ca(2+) binding sites remain vacant. Moreover, in the presence of Ca(2+), amphipol/detergent mixtures stabilized concentrated ATPase against inactivation and aggregation, whether in the presence or absence of lipids, for much longer periods of time (days) than detergent alone. Our observations suggest that mixtures of amphipols and detergents are promising media for handling solubilized Ca(2+)-ATPase under conditions that would otherwise lead to its irreversible denaturation and/or aggregation. 相似文献
20.
In this article the morphology of sarcoplasmic reticulum, classification of Ca(2+)-ATPase (SERCA) isoenzymes presented in this membrane system, as well as their topology will be reviewed. The focus is on the structure and interactions of Ca(2+)-ATPase determined by electron and X-ray crystallography, lamellar X-ray and neutron diffraction analysis of the profile structure of Ca(2+)-ATPase in sarcoplasmic reticulum multilayers. In addition, targeting of the Ca(2+)-ATPase to the sarcoplasmic reticulum is discussed. 相似文献