首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The voltage-gated Na+ channel of Bacillus halodurans (NaChBac) is composed of six transmembrane segments (S1–S6), with a pore-forming region composed of segments S5 and S6 and a voltage-sensing domain composed of segments S1–S4. The S4 segment forms the core of the voltage sensor. We explored the accessibility of four arginine residues on the S4 segment of NaChBac, which are positioned at every third position from each other. These arginine residues on the S4 segment were replaced with cysteines using site-directed mutagenesis. Na+ currents were recorded using the whole-cell configuration of the patch-clamp technique. We tested the effect of the sulfhydryl reagents applied from inside and outside the cellular space in the open and closed conformations. Structural models of the voltage sensor of NaChBac were constructed based on the recently crystallized KvAP and Kv1.2 K+ channels to visualize arginine residue accessibility. Our results suggest that arginine accessibility did not change significantly between the open and closed conformations, supporting the idea of a small movement of the S4 segment during gating. Molecular modeling of the closed conformation also supported a small movement of S4, which is mainly characterized by a rotation and a tilt along the periphery of the pore. Interestingly, the second arginine residue of the S4 segment (R114) was accessible to sulfhydryl reagents from both sides of the membrane in the closed conformation and, based on our model, seemed to be at the junction of the intracellular and extracellular water crevices.  相似文献   

2.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

3.
4.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

5.
V-type Na+-ATPase from Entercoccus hirae consists of nine kinds of subunits (NtpA3, B3, C1, D1, E1−3, F1−3, G1, I1, and K10) which are encoded by the ntp operon. The amino acid sequences of the major subunits, A, B, and K (proteolipid), were highly similar to those of A, B, and c subunits of eukaryotic V-ATPases, and those of β, α, and c subunits of F-ATPases. We modeled the A and B subunits by homology modeling using the structure of β and α subunits of F-ATPase, and obtained an atomic structure of NtpK ring by X-ray crystallography. Here we briefly summarize our current models of the whole structure and mechanism of the E. hirae V-ATPase.  相似文献   

6.
This study addresses the mechanisms of oxygen-induced regulation of ion transport pathways in mouse erythrocyte, specifically focusing on the role of cellular redox state and ATP levels. Mouse erythrocytes possess Na+/K+ pump, K+-Cl and Na+-K+-2Cl cotransporters that have been shown to be potential targets of oxygen. The activity of neither cotransporter changed in response to hypoxia-reoxygenation. In contrast, the Na+/K+ pump responded to hypoxic treatment with reversible inhibition. Hypoxia-induced inhibition was abolished in Na+-loaded cells, revealing no effect of O2 on the maximal operation rate of the pump. Notably, the inhibitory effect of hypoxia was not followed by changes in cellular ATP levels. Hypoxic exposure did, however, lead to a rapid increase in cellular glutathione (GSH) levels. Decreasing GSH to normoxic levels under hypoxic conditions abolished hypoxia-induced inhibition of the pump. Furthermore, GSH added to the incubation medium was able to mimic hypoxia-induced inhibition. Taken together these data suggest a pivotal role of intracellular GSH in oxygen-induced modulation of the Na+/K+ pump activity.  相似文献   

7.
Four Na+/H+ antiporters, Mrp, TetA(L), NhaC, and MleN have so far been described in Bacillus subtilis 168. We identified an additional Na+/H+ antiporter, YvgP, from B. subtilis that exhibits homology to the cation: proton antiporter-1 (CPA-1) family. The yvgP-dependent complementation observed in a Na+(Ca2+)/H+ antiporter-defective Escherichia coli mutant (KNabc) suggested that YvgP effluxed Na+ and Li+. In addition, effects of yvgP expression on a K+ uptake-defective mutant of E. coli indicated that YvgP also supported K+ efflux. In a fluorescence-based assay of everted membrane vesicles prepared from E. coli KNabc transformants, YvgP-dependent Na+ (K+, Li+, Rb+)/H+ antiport activity was demonstrated. Na+ (K+, Li+)/H+ activity was higher at pH 8.5 than at pH 7.5. Mg2+, Ca2+ and Mn2+ did not serve as substrates but they inhibited YvgP antiport activities. Studies of yvgP expression in B. subtilis, using a reporter gene fusion, showed a significant constitutive level of expression that was highest in stationary phase, increasing as stationary phase progressed. In addition, the expression level was significantly increased in the presence of added K+ and Na+.  相似文献   

8.
A gene encoding a Na(+)/H(+) antiporter was obtained from the genome of Halobacillus aidingensis AD-6(T), which was sequenced and designated as nhaH. The deduced amino acid sequence of the gene was 91% identical to the NhaH of H. dabanensis, and shared 54% identity with the NhaG of Bacillus subtilis. The cloned gene enable the Escherichia coli KNabc cell, which lack all of the major Na(+)/H(+) antiporters, to grow in medium containing 0.2 M NaCl or 10 mM LiCl. The nhaH gene was predicted to encode a 43.5 kDa protein (403 amino acid residues) with 11 putative transmembrane regions. Everted membrane vesicles prepared from E. coli KNabc cells carrying NhaH exhibited Na(+)/H(+) as well as Li(+)/H(+) antiporter activity, which was pH-dependent with the highest activity at pH 8.0, and no K(+)/H(+) antiporter activity was detected. The deletion of hydrophilic C-terminal amino acid residues showed that the short C-terminal tail was vital for Na(+)/H(+) antiporter activity.  相似文献   

9.
10.
In the present study we investigated the effect of extracellular gadolinium on amiloride-sensitive Na+ current across Xenopus alveolar epithelium by Ussing chamber experiments and studied its direct effect on epithelial Na+ channels with the patch-clamp method. As observed in various epithelia, the short-circuit current (I sc) and the amiloride-sensitive Na+ current (I ami) across Xenopus alveolar epithelium was downregulated by high apical Na+ concentrations. Apical application of gadolinium (Gd3+) increased I sc in a dose-dependent manner (EC 50 = 23.5 µM). The effect of Gd3+ was sensitive to amiloride, which indicated the amiloride-sensitive transcellular Na+ transport to be upregulated. Benz-imidazolyl-guanidin (BIG) and p-hydroxy-mercuribenzonic-acid (PHMB) probably release apical Na+ channels from Na+-dependent autoregulating mechanisms. BIG did not stimulate transepithelial Na+ currents across Xenopus lung epithelium but, interestingly, it prevented the stimulating effect of Gd3+ on transepithelial Na+ transport. PHMB increased I sc and this stimulation was similar to the effect of Gd3+. Co-application of PHMB and Gd3+ had no additive effects on I sc. In cell-attached patches on Xenopus oocytes extracellular Gd3+ increased the open probability (NP o) of Xenopus epithelial sodium channels (ENaC) from 0.72 to 1.79 and decreased the single-channel conductance from 5.5 to 4.6 pS. Our data indicate that Xenopus alveolar epithelium exhibits Na+-dependent non-hormonal control of transepithelial Na+ transport and that the earth metal gadolinium interferes with these mechanisms. The patch-clamp experiments indicate that Gd3+ directly modulates the activity of ENaCs.  相似文献   

11.
The NADH dehydrogenase I from Escherichia coli is a bacterial homolog of the mitochondrial complex I which translocates Na+ rather than H+. To elucidate the mechanism of Na+ transport, the C-terminally truncated NuoL subunit (NuoLN) which is related to Na+/H+ antiporters was expressed as a protein A fusion protein (ProtA–NuoLN) in the yeast Saccharomyces cerevisiae which lacks an endogenous complex I. The fusion protein inserted into membranes from the endoplasmatic reticulum (ER), as confirmed by differential centrifugation and Western analysis. Membrane vesicles containing ProtA–NuoLN catalyzed the uptake of Na+ and K+ at rates which were significantly higher than uptake by the control vesicles under identical conditions, demonstrating that ProtA–NuoLN translocated Na+ and K+ independently from other complex I subunits. Na+ transport by ProtA–NuoLN was inhibited by EIPA (5-(N-ethyl-N-isopropyl)-amiloride) which specifically reacts with Na+/H+ antiporters. The cation selectivity and function of the NuoL subunit as a transporter module of the NADH dehydrogenase complex is discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The expression of genes encoding sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) was studied in the marine bacterium Vibrio harveyi and in the enterobacterium Klebsiella pneumoniae. It has been shown that such parameters as NaCl concentration, pH value, and presence of an uncoupler in the growth media do not influence significantly the level of nqr expression. However, nqr expression depends on the growth substrates used by these bacteria. Na+-NQR is highly repressed in V. harveyi during anaerobic growth, and nqr expression is modulated by electron acceptors and values of their redox potentials. The latter effect was shown to be independent of the ArcAB regulatory system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Accession number: EF394942 (Vibrio harveyi arcB gene, partial cds).  相似文献   

13.
From Bacillus subtilis cell extracts, ferredoxin-NADP+ reductase (FNR) was purified to homogeneity and found to be the yumC gene product by N-terminal amino acid sequencing. YumC is a 94-kDa homodimeric protein with one molecule of non-covalently bound FAD per subunit. In a diaphorase assay with 2,6-dichlorophenol-indophenol as electron acceptor, the affinity for NADPH was much higher than that for NADH, with Km values of 0.57 M vs >200 M. Kcat values of YumC with NADPH were 22.7 s–1 and 35.4 s–1 in diaphorase and in a ferredoxin-dependent NADPH-cytochrome c reduction assay, respectively. The cell extracts contained another diaphorase-active enzyme, the yfkO gene product, but its affinity for ferredoxin was very low. The deduced YumC amino acid sequence has high identity to that of the recently identified Chlorobium tepidum FNR. A genomic database search indicated that there are more than 20 genes encoding proteins that share a high level of amino acid sequence identity with YumC and which have been annotated variously as NADH oxidase, thioredoxin reductase, thioredoxin reductase-like protein, etc. These genes are found notably in gram-positive bacteria, except Clostridia, and less frequently in archaea and proteobacteria. We propose that YumC and C. tepidum FNR constitute a new group of FNR that should be added to the already established plant-type, bacteria-type, and mitochondria-type FNR groups.  相似文献   

14.
A membrane fraction enriched in plasma membrane (PM) vesicles was isolated from the root cells of a salt-accumulating halophyte Suaeda altissima (L.) Pall. by means of centrifugation in discontinuous sucrose density gradient. The PM vesicles were capable of generating ΔpH at their membrane and the transmembrane electric potential difference (Δψ). These quantities were measured with optical probes, acridine orange and oxonol VI, sensitive to ΔpH and Δψ, respectively. The ATP-dependent generation of ΔpH was sensitive to vanadate, an inhibitor of P-type ATPases. The results contain evidence for the functioning of H+-ATPase in the PM of the root cells of S. altissima. The addition of Na+ and Li+ ions to the outer medium resulted in dissipation of ΔpH preformed by the H+-ATPase, which indicates the presence in PM of the functionally active Na+/H+ antiporter. The results are discussed with regard to involvement of the Na+/H+ antiporter and the PM H+-ATPase in loading Na+ ions into the xylem of S. altissima roots.  相似文献   

15.
Xylanase A of Thermotoga neapolitana contains binding domains both at the N- and C-terminal ends of the catalytic domain. In the N-terminal position it contains two carbohydrate-binding modules (CBM) which belong to family 22. These CBMs bind xylan but not to cellulose. The gene encoding the mature peptide of these CBMs was fused with an alkaline active GH10 xylanase from Bacillus halodurans S7 and expressed in Escherichia coli. The (His)6 tagged hybrid protein was purified by immobilized metal affinity chromatography and characterized. Xylan binding by the chimeric protein was influenced by NaCl concentration and pH of the binding medium. Binding increased with increasing salt concentration up to 200 mM. Higher extent of binding was observed under acidic conditions. The fusion of the CBM structures enhanced the hydrolytic efficiency of the xylanase against insoluble xylan, but decreased the stability of the enzyme. The optimum temperature and pH for the activity of the xylanase did not change.  相似文献   

16.
The aim of this study was to determine the range of NaCl concentrations in the nutrient solution that allow Suaeda altissima (L.) Pall., a salt-accumulating halophyte, to maintain the upward gradient of water potential in the “medium-root-leaf” system. We evaluated the contribution of Na+ ions in the formation of water potential gradient and demonstrated that Na+ loading into the xylem is involved in this process. Plants were grown in water culture at NaCl concentrations ranging from zero to 1 M. The water potential of leaf and root cells was measured with the method of isopiestic thermocouple psychrometry. When NaCl concentration in the growth medium was raised in the range of 0–500 mM (the medium water potential was lowered accordingly), the root and leaf cells of S. altissima decreased their water potential, thus promoting the maintenance of the upward water potential gradient in the medium-root-leaf system. Growing S. altissima at NaCl concentrations f 750 mM and 1 M disordered water homeostasis and abolished the upward gradient of water potential between roots and leaves. At NaCl concentrations of 0–250 mM, the detached roots of S. altissima were capable of producing the xylem exudate. The concentration of Na+ in the exudate was 1.3 to 1.6 times higher than in the nutrient medium; the exudate pH was acidic and was lowered from 5.5 to 4.5 with the rise in the salt concentration. The results indicate that the long-distance Na+ transport and, especially, the mechanism of Na+ loading into the xylem play a substantial role in the formation of water potential gradient in S. altissima. The accumulation of Na+ in the xylem and acidic pH values of the xylem sap suggest that Na+ loading into the xylem is carried out by the Na+/H+ antiporter of the plasma membrane in parenchymal cells of the root stele.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 549–557.Original Russian Text Copyright © 2005 by Balnokin, Kotov, Myasoedov, Khailova, Kurkova, Lun’kov, Kotova.  相似文献   

17.
Yield of S-adenosylmethionine was improved significantly in recombinant Pichia pastoris by controlling NH4 + concentration. The highest production rate was 0.248 g/L h when NH4 + concentration was 450 mmol/L and no repression of cell growth was observed. Within very short induction time (47 h), 11.63 g/L SAM was obtained in a 3.7 L bioreactor.  相似文献   

18.
The cloning of cDNA and an examination of the tissue distribution of Na+/H+ exchanger 3 (NHE3) were carried out in the Japanese black salamander, Hynobius nigrescens. The cellular localization of Hynobius NHE3 was examined by in situ hybridization and immunohistochemistry during ontogeny in the nephron of the pronephros and mesonephros of the salamander. The partial amino acid sequence of Hynobius NHE3 was 81% and 72% identical to rat NHE3 and stingray NHE3, respectively. Hynobius NHE3 mRNA and protein were exclusively expressed along the late portion of the distal tubule to the anterior part of the pronephric duct of premetamorphic larvae (IY stages 43–50). NHE3 mRNA was expressed in the pronephros but not in the external gills in the larvae at the digit differentiation stage (IY stage 50). In the adult, mRNA was strongly expressed in the mesonephros but not in the ventral and dorsal skin. In juvenile and adult specimens, NHE3 immunoreactivity was observed at the apical membrane of the initial parts of the distal tubules of the mesonephric kidney. Immunohistochemical and in situ hybridization studies suggested that Na+ absorption coupled with H+ secretion via NHE3 occurred in the distal nephron of the pronephros and mesonephros. This is the first study to indicate NHE3 expression during ontogeny in amphibians. This work was supported in part by a research grant (a priority project in Science Faculty) from the University of Toyama to M.U.  相似文献   

19.
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l–1 kg–1) were acclimated to SW (980–1,000 mOsm l–1 kg–1) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l–1 kg–1. In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l–1 kg–1) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na+, Cl, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/K+-ATPase activity. Na+/K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg–1 protein h–1 and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/K+-ATPase activity was 5.6±0.8 and 9.2±0.6 mmol Pi mg–1 protein h–1, respectively. Na+/K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4±1.1 and 3.3±1.1 Pi mg–1 protein h–1, respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.  相似文献   

20.
In our previous study, it was suggested that ANP and cGMP may increase Na+ absorption in the urinary bladder of the Japanese tree frog, Hyla japonica. Thus, Na+ transport activated by ANP was investigated electrophysiologically by using a cell-attached patch-clamp technique in freshly isolated cells from the urinary bladder. A predominant channel expressed was a low conductance Na+ channel in the epithelial cells. The channel exhibited conductance for inward currents of 4.9 ± 0.2 pS, long open and closed times (c.a. 190 ms), and positive reversal potential. The channel activity was decreased under the pipette solution including 10−6 M amiloride. These characteristics were similar to those of amiloride-sensitive Na+ channels (ENaC). Addition of 10−9 M ANP activated and significantly increased the ENaC activity from 0.58 ± 0.09 to 1.47 ± 0.34. On the other hand, mean amplitudes and conductance of single channel did not change significantly after the addition of ANP. Addition of 10−5 M 8-Br-cGMP also activated the ENaC and significantly increased the channel activity from 0.56 ± 0.10 to 2.00 ± 0.33. The addition of ANP failed to activate the ENaC in the presence of 10−6 M amiloride. These results suggested that ANP and cGMP activate Na+ transport via ENaC in the epithelial cells of frog urinary bladder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号