首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulsed-field gel electrophoresis (PFGE) of linearized, full-length chromosomal DNA was used to estimate the genome sizes of three species of sulfate-reducing bacteria. Genome sizes of Desulfovibrio desulfuricans, Desulfovibrio vulgaris, and Desulfobulbus propionicus were estimated to be 3.1, 3.6, and 3.7 Mb, respectively. These values are double the genome sizes previously determined for two Desulfovibrio species by two-dimensional agarose gel electrophoresis of DNA cut with restriction enzymes. PFGE of full-length chromosomal DNA could provide a generally applicable method to rapidly determine bacterial genome size and organization. Received: 1 October 1996 / Accepted: 5 November 1996  相似文献   

2.
3.
Three species of Desulfovibrio were found to have a high degree of ribosomal ribonucleic acid homology with Desulfovibrio vulgaris. Desulfotomaculum nigrificans, which is also a sulfate-reducing anaerobe, had only 38% ribosomal ribonucleic acid homology with D. vulgaris. The homologies of six other unrelated genera were determined and found to be lower than 50%.  相似文献   

4.
The activities of pure and mixed cultures of Desulfovibrio vulgaris and Methanosarcina barkeri in the exponential growth phase were monitored by measuring changes in dissolved-gas concentration by membrane-inlet mass spectrometry. M. barkeri grown under H2-CO2 or methanol produced limited amounts of methane and practically no hydrogen from either substrate. The addition of CO resulted in a transient H2 production concomitant with CO consumption. Hydrogen was then taken up, and CH4 production increased. All these events were suppressed by KCN, which inhibited carbon monoxide dehydrogenase activity. Therefore, with both substrates, H2 appeared to be an intermediate in CO reduction to CH4. The cells grown on H2-CO2 consumed 4 mol of CO and produced 1 mol of CH4. Methanol-grown cells reduced CH3OH with H2 resulting from carbon monoxide dehydrogenase activity, and the ratio was then 1 mol of CH4 to 1 mol of CO. Only 12CH4 and no 13CH4 was obtained from 13CO, indicating that CO could not be the direct precursor of CH4. In mixed cultures of D. vulgaris and M. barkeri on lactate, an initial burst of H2 was observed, followed by a lower level of production, whereas methane synthesis was linear with time. Addition of CO to the mixed culture also resulted in transient extra H2 production but had no inhibitory effect upon CH4 formation, even when the sulfate reducer was D. vulgaris Hildenborough, whose periplasmic iron hydrogenase is very sensitive to CO. The hydrogen transfer is therefore probably mediated by a less CO-sensitive nickel-iron hydrogenase from either of both species.  相似文献   

5.
Aerotaxis of two sulphate-reducing bacteria, the freshwater strain Desulfovibrio desulfuricans CSN (DSM 9104) and the marine strain Desulfovibrio oxyclinae N13 (DSM 11498), was studied using capillary microslides, microscopy and oxygen microsensors. The bacteria formed ring-shaped bands in oxygen diffusion gradients surrounding O2 bubbles, which were placed into anoxic sulphate-free cell suspensions in capillary microslides. The radial expansion of the oxic volume by diffusion was stopped by aerobic respiration. Bands were formed by cells avoiding high O2 levels near the O2 bubble, as well as by cells entering from the surrounding anoxic zone. At the inner edge of the bands, O2 levels of up to 20% air saturation (50 μM O2) were found, while the outer edge always coincided with the oxic–anoxic interface. Ring diameters and O2 concentrations at the inner edge of the band depended on the cell density and the strain used in the suspension. Band formation did not occur in the absence of an electron donor (5 mM lactate) or when N2 gas bubbles were used. Both strains were highly motile with velocities of ≈ 32 μm s−1 during forward runs, and 7 μm s−1 during backward runs respectively. Within the bands, cells moved in circles of about 20 μm diameter, while cells outside the band exhibited straighter or only slightly bent traces. It is concluded that the capacity of respiration at high rates and the positive and negative aerotactical responses of Desulfovibrio provide an efficient strategy for removing O2 from the habitat in situations where sufficient electron donors and high cell densities are present.  相似文献   

6.
The activities of pure and mixed cultures of Desulfovibrio vulgaris and Methanosarcina barkeri in the exponential growth phase were monitored by measuring changes in dissolved-gas concentration by membrane-inlet mass spectrometry. M. barkeri grown under H2-CO2 or methanol produced limited amounts of methane and practically no hydrogen from either substrate. The addition of CO resulted in a transient H2 production concomitant with CO consumption. Hydrogen was then taken up, and CH4 production increased. All these events were suppressed by KCN, which inhibited carbon monoxide dehydrogenase activity. Therefore, with both substrates, H2 appeared to be an intermediate in CO reduction to CH4. The cells grown on H2-CO2 consumed 4 mol of CO and produced 1 mol of CH4. Methanol-grown cells reduced CH3OH with H2 resulting from carbon monoxide dehydrogenase activity, and the ratio was then 1 mol of CH4 to 1 mol of CO. Only 12CH4 and no 13CH4 was obtained from 13CO, indicating that CO could not be the direct precursor of CH4. In mixed cultures of D. vulgaris and M. barkeri on lactate, an initial burst of H2 was observed, followed by a lower level of production, whereas methane synthesis was linear with time. Addition of CO to the mixed culture also resulted in transient extra H2 production but had no inhibitory effect upon CH4 formation, even when the sulfate reducer was D. vulgaris Hildenborough, whose periplasmic iron hydrogenase is very sensitive to CO. The hydrogen transfer is therefore probably mediated by a less CO-sensitive nickel-iron hydrogenase from either of both species.  相似文献   

7.
Dissimilatory sulfite reductase (DsrAB) of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough is an 22 tetramer of 180 kDa, encoded by the dsr operon. In addition to the dsrA and dsrB genes, this operon contains a gene (dsrD) encoding a protein of only 78 amino acids. Although, the function of DsrD is currently unknown, the presence of a dsrD gene has been demonstrated in a variety of sulfate-reducing bacteria and archaea. DsrD was expressed in Escherichia coli at a very high level and purified to homogeneity. Protein blotting experiments, using antisera raised against purified DsrD, demonstrated that it is expressed constitutively in D. vulgaris and does not copurify with DsrAB. Spectroscopic analysis of DsrD indicated that it does not bind either sulfite or sulfide, the substrate and product, respectively of the reaction catalyzed by DsrAB. Thus, although the conservation of this protein and its demonstrated presence in D. vulgaris, suggest an essential function in dissimilatory sulfite reduction, this function remains to be elucidated.  相似文献   

8.
9.
10.
The cytochrome c(3) of Desulfovibrio desulfuricans and that of D. vulgaris were purified to homogeneity as judged by disc gel electrophoresis and by ultracentrifugation. Both cytochromes had an oxidation-reduction potential of -205 +/- 5 mv at pH 7.0 and showed characteristic absorption bands at 525 and 553 nm in the reduced state. The molecular weights of the two cytochromes (calculated from sedimentation and diffusion data) were similar, with values of 13,500 to 14,300 for D. desulfuricans and 13,800 to 14,700 for D. vulgaris. The two cytochromes differed in their electrophoretic properties on Geon and polyacrylamide gel electrophoresis and did not share a common precipitating antigenic determinant as judged by immunodiffusion data.  相似文献   

11.
12.
Restriction fragments of genomic DNA from Desulfovibrio salexigens (ATCC 14822) containing the structural gene coding for the flavodoxin protein were identified using the entire coding region of the gene for the Desulfovibrio vulgaris (Hildenborough) flavodoxin as a probe (Krey, G.D., Vanin, E.F., and Swenson, R.P. (1988) J. Biol. Chem. 263, 15436-15443). A 1.4-kb PstI-HindIII fragment was ultimately identified which contains an open reading frame coding for a polypeptide of 146 amino acid residues that was highly homologous to the D. vulgaris flavodoxin, sharing a sequence identity of 55%. When compared to the X-ray crystal structure of the D. vulgaris protein, the homologous regions were largely confined to those portions of the protein which are in the immediate vicinity of the flavin mononucleotide cofactor binding site. Tryptophan-60 and tyrosine-98, which reside on either side of the isoalloxazine ring of the cofactor, are conserved, as are the sequences of the polypeptide loop that interacts with the phosphate moiety of the flavin. Acidic residues forming the interface of model electron-transfer complexes with certain cytochrome c proteins are retained. The flavodoxin holoprotein is over-expressed in E. coli from the cloned gene using its endogenous promoter.  相似文献   

13.
14.
Thiosulfate reductase was purified to an almost homogeneous state from Desulfovibrio vulgaris, strain Miyazaki F, by ammonium sulfate precipitation, chromatography on DEAE-Toyopearl, Ultrogel AcA 34, and hydroxylapatite, and disc electrophoresis. The specific activity was increased 580-fold over the crude extract. The molecular weight was determined by gel filtration to be 85,000-89,000, differing from those reported for thiosulfate reductases from other Desulfovibrio strains. The enzyme had no subunit structure. When coupled with hydrogenase and methyl viologen, it stoichiometrically reduced thiosulfate to sulfite and sulfide with consumption of hydrogen. It did not reduce sulfite or trithionate. Cytochrome c3 was active as an electron donor. More than 0.75 mM thiosulfate inhibited the enzyme activity. o-Phenanthroline and 2,2'-bipyridine inhibited the enzyme and ferrous ion stimulated the reaction.  相似文献   

15.
The sulfite reductase of Desulfovibrio vulgaris, strain Miyazaki F (MF), was purified by ammonium sulfate precipitation and chromatography on DEAE-cellulose, Ultrogel AcA34, and hydroxylapatite. The molecular weight was estimated to be 180,000 by gel filtration. It had a subunit structure of α2β2; the molecular weight of the α subunit was 50,000 and that of β, 39,000. The absorption spectrum with characteristic peaks at 629 and 409 nm and the amino acid composition resembled those of the sulfite reductase from D. vulgaris, Miyazaki K. The MF enzyme reduced sulfite to trithionate, thiosulfate, and sulfide by hydrogen when coupled with a hydrogenase-methyl viologen system, like other sulfite reductases from Desulfovibrio.  相似文献   

16.
17.
During growth of ethanol plus sulfate Desulfovibrio gigas and three other Desulfovibrio strains tested contained high NAD-dependent alcohol dehydrogenase activities and dye-linked aldehyde dehydrogenase activities. In lactate-grown cells these activities were lower or absent. In D. gigas an NADH dehydrogenase activity was found which was higher during growth on ethanol than during growth on lactate. The NADH dehydrogenase activity appeared to consist of at least three different soluble enzymes. The aldehyde dehydrogenase activity in D. gigas was highest with benzylviologen as an acceptor and was strongly stimulated by potassium ions. Coenzyme A or phosphate dependency could not be shown, indicating that acetyl-CoA or acetyl phosphate are not intermediates in the conversion of acetaldehyde to acetate.In the absence of sulfate D. gigas was able to convert ethanol to acetate by means of interspecies hydrogen transfer to a methanogen. This conversion, however, did not lead to growth of the Desulfovibrio.Abbreviations DH dehydrogenase - BV2+/BV+ oxidized/reduced benzylviologen - DCPIP 2,6-dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazol-2-yl)-2,4-diphenyltetrazolium bromide - MV2+/MV+ oxidized/reduced methylviologen - PMS phenazine methosulfate  相似文献   

18.
Phospholipid Composition of Desulfovibrio Species   总被引:9,自引:7,他引:2       下载免费PDF全文
The phospholipids of Desulfovibrio desulfuricans, Norway strain, D. vulgaris, and D. gigas were examined in relationship to their qualitative and quantitative composition. D. desulfuricans and D. vulgaris exhibited an essentially identical phospholipid composition consisting of phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, and lysophosphatidylserine. Phosphatidylserine (10.9%) was present in D. desulfuricans but was not detected in D. vulgaris. D. gigas was found to contain only two phospholipids, phosphatidylethanolamine (30%) and phosphatidylglycerol (70%). An ornithine-containing lipid was detected in D. gigas which was not present in the other two Desulfovibrio species.  相似文献   

19.
20.
Thiosulfate Reductase of Desulfovibrio vulgaris   总被引:7,自引:5,他引:2       下载免费PDF全文
The thiosulfate reductase of Desulfovibrio vulgaris has been purified and some of its properties have been determined. Only one protein component was detected when the purified enzyme was subjected to polyacrylamide gel electrophoresis at pH values of 8.9, 8.0, and 7.6. In the presence of H(2), the enzyme, when coupled to hydrogenase and with methyl viologen as an electron carrier, catalyzed the reduction of thiosulfate to hydogen sulfide. The use of specifically labeled (35)S-thiosulfate revealed that the outer sulfur atom was reduced to sulfide and the inner sulfur atom was released as sulfite. Thus, the enzyme catalyzes the reductive dismutation of thiosulfate to sulfide and sulfite. The molecular weight of the enzyme was determined by sedimentation equilibrium (16,300) and amino acid analysis (15,500). The enzyme sedimented as a single, symmetrical component with a calculated sedimentation coefficient of 2.21S. Amino acid analysis revealed the presence of two half-cystine residues per mole of enzyme and a total of 128 amino acid residues. Carbohydrate and organic phosphorus analyses revealed the presence of 9.2 moles of carbohydrate and 4.8 moles of phosphate per mole of enzyme. The substrate specificity of the enzyme was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号