首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seven regions of the subunit of human insulin receptor (HIR) were synthesized and examined for their ability to bind radioiodinated insulin. A peptide representing one of these regions (namely, residues 655–670) exhibited a specific binding activity for insulin. In quantitative radiometric titrations, the binding curves of125I-labeled insulin to adsorbents of peptide 655–670 and of purified placental membrane were similar or superimposable. The binding of radioiodinated insulin to peptide or to membrane adsorbents was completely inhibited by unlabeled insulin, and the inhibition curves indicated that the peptide and the membrane on the adsorbents had similar affinities. Synthetic peptides that were shorter (peptide 661–670) or longer (peptide 651–670) than the region 655–670 exhibited lower insulin-binding activity. It was concluded that an insulin-binding region in the HIR subunit resides within residues 655–670. The results do not rule out the possibility that other regions of the subunit may also participate in binding of HIR to insulin, with the region described here forming a face within a larger binding site.  相似文献   

2.
The discoidin domain receptors (DDRs) are collagen binding receptor tyrosine kinases that play important roles in cell migration, invasion and adhesion. Crosstalk between growth factor signaling and components of the extracellular matrix are drivers of cellular function but the integrated signaling networks downstream of such crosstalk events have not been extensively characterized. In this report, we have employed mass spectrometry-based quantitative phosphotyrosine analysis to identify crosstalk between DDR2 and the insulin receptor. Our phosphoproteomic analysis reveals a cluster of phosphorylation sites in which collagen and insulin cooperate to enhance phosphotyrosine levels. Importantly, Y740 on the DDR2 catalytic loop was found in this cluster indicating that insulin acts to promote collagen I signaling by increasing the activity of DDR2. Furthermore, we identify two additional migration associated proteins that are candidate substrates downstream of DDR2 activation. Our data suggests that insulin promotes collagen I signaling through the upregulation of DDR2 phosphorylation which may have important consequences in DDR2 function in health and disease.  相似文献   

3.
We have tested the hypothesis that activation of the insulin receptor tyrosine kinase is due to autophosphorylation of tyrosines 1146, 1150 and 1151 within a putative autoinhibitory domain. A synthetic peptide corresponding to residues 1134–1162, with tyrosines substituted by alanine or phenylalanine, of the insulin receptor subunit was tested for its inhibitory potency and specificity towards the tyrosine kinase activity. This synthetic peptide gave inhibition of the insulin receptor tyrosine kinase autophosphorylation and phosphorylation of the exogenous substrate poly(Glu, Tyr) with an approximate IC50 of 100 M. Inhibition appeared to be independent of the concentrations of insulin or the substrate poly(Glu, Tyr) but was decreased by increasing concentrations of ATP. This same peptide also inhibited the EGF receptor tyrosine kinase but not a serine/threonine protein kinase. These results are consistent with the hypothesis that this autophosphorylation domain contains an autoinhibitory sequence. (Mol Cell Biochem120: 103–110, 1993)Abbreviations IR Insulin Receptor - SDS/PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis - CaM Calmodulin - HEPES 4-(2-Hydroxyethyl)-Piperazineethane-Sulfonic Acid - DMEM Dulbecco's Modified Eagle' Medium - PMSF Phenylmethyl-Sulfonyl Fluoride - HPLC High Performance Liquid Chromatography - PKC Protein Kinase C - PKI Inhibitory Peptide for cAMP-Kinase - CaMK II Ca2+/Calmodulin-Dependent Protein Kinase II - CaN A A Subunit of Calcineurin  相似文献   

4.
Several investigators have reported that there are both large and small insulinbinding proteins in plasma membranes; the larger protein demonstrates nonlinear Scatchard binding, and the smaller protein has linear binding. We now present evidence that the larger insulin-binding species consists of four proteins of different sizes. Rat epididymal adipocyte plasma membranes were prebound with 125I-insulin and then exposed to 1 mM disuccinimidyl suberate for 15 min at 2°C. The membranes were solubilized in 0.1% Triton X-100 and applied to a Sepharose 6B column. Peaks of radioactivity from the column were dialyzed, lyophilized, and analyzed by dodecyl-sulphate gel electrophoresis (5%, 100/1; mono/bisacrylamide). Autoradiograms of the gels were scanned with a densitometer. The Sepharose chromatogram revealed four radioactive peaks: peak 1 at column void volume; peak 2, Kav = 0.27; peak 3, Kav = 0.77; and peak 4, Kav = 1.09. Dodecyl sulphate electrophoresis of fractions in peak 2 demonstrated four bands on autoradiography; peak 1 did not enter the gel and peaks 3 and 4 ran with the dye front. Molecular weight estimates of the four insulin-binding species in peak 2 were 600, 500, 420, and 350 K. On dithiothreitol reduction each insulin-binding species yielded subunits of Mr ? 135 and 18 K. The three largest binding species demonstrated an additional 45-K dalton protein on dithiothreitol reduction, and the 500-K and 420-K binding species also yielded a 49-K dalton protein. These results suggest that the large insulin-binding protein in rat epididymal adipocytes contains several insulin-binding species, and that these insulin-binding species differ in the number of and the type of subunits they contain. In addition, it may be postulated that the nonlinear Scatchard binding associated with the larger binding protein is a consequence of the heterogeneity of the insulin-binding species in this Sepharose peak.  相似文献   

5.
Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, and exhibits many of the same physiological and pharmacological activities as curcumin and, in some systems, may exert greater antioxidant activity than curcumin. Using circulating erythrocytes as the cellular mode, the insulin-binding effect of THC and curcumin was investigated. Streptozotocin (STZ)-nicotinamide-induced male Wistar rats were used as the experimental models. THC (80 mg/kg body weight) was administered orally for 45 days. The effect of THC on blood glucose, plasma insulin and insulin binding to its receptor on the cell membrane of erythrocytes were studied. Mean specific binding of insulin was significantly lowered in diabetic rats with a decrease in plasma insulin. This was due to a significant decrease in mean insulin receptors. Erythrocytes from diabetic rats showed a decreased ability for insulin-receptor binding when compared with THC-treated diabetic rats. Scatchard analysis demonstrated that the decrease in insulin binding was accounted for by a decrease in insulin receptor sites per cell, with erythrocytes of diabetic rats having less insulin receptor sites per cell than THC-treated rats. High affinity (K d1), low affinity (K d2) and kinetic analyses revealed an increase in the average receptor affinity of erythrocytes from THC-treated rats compared with those of diabetic rats. These results suggest that acute alteration of the insulin receptor on the membranes of erythrocytes occurred in diabetic rats. Treatment with THC significantly improved specific insulin binding to the receptors, with receptor numbers and affinity binding reaching near-normal levels. Our study suggests the mechanism by which THC increases the number of total cellular insulin binding sites resulting in a significant increase in plasma insulin. The effect of THC is more prominent than that of curcumin.  相似文献   

6.
Protein L-isoaspartate (D-aspartate) O-methyltransferase is an enzyme that catalyses the repair of isoaspartyl damage in proteins. Mice lacking this enzyme (Pcmt1-/- mice) have a progressive increase in brain size compared with wild-type mice (Pcmt1+/+ mice), a phenotype that can be associated with alterations in the PI3K/Akt signal transduction pathway. Here we show that components of this pathway, including Akt, GSK3beta and PDK-1, are more highly phosphorylated in the brains of Pcmt1-/- mice, particularly in cells of the hippocampus, in comparison with Pcmt1+/+ mice. Examination of upstream elements of this pathway in the hippocampus revealed that Pcmt1-/- mice have increased activation of insulin-like growth factor-I (IGF-I) receptor and/or insulin receptor. Western blot analysis revealed an approximate 200% increase in insulin receptor protein levels and an approximate 50% increase in IGF-I receptor protein levels in the hippocampus of Pcmt1-/- mice. Higher levels of the insulin receptor protein were also found in other regions of the adult brain and in whole tissue extracts of brain, liver, heart and testes of both juvenile and adult Pcmt1-/- mice. There were no significant differences in plasma insulin levels for adult Pcmt1-/- mice during glucose tolerance tests. However, they did show higher peak levels of blood glucose, suggesting a mild impairment in glucose tolerance. We propose that Pcmt1-/- mice have altered regulation of the insulin pathway, possibly as a compensatory response to altered glucose uptake or metabolism or as an adaptive response to a general accumulation of isoaspartyl protein damage in the brain and other tissues.  相似文献   

7.
The insulin receptor (IR) is an important hub in insulin signaling and its activation is tightly regulated. Upon insulin stimulation, IR is activated through autophosphorylation, and consequently phosphorylates several insulin receptor substrate (IRS) proteins, including IRS1-6, Shc and Gab1. Certain adipokines have also been found to activate IR. On the contrary, PTP, Grb and SOCS proteins, which are responsible for the negative regulation of IR, are characterized as IR inhibitors. Additionally, many other proteins have been identified as IR substrates and participate in the insulin signaling pathway. To provide a more comprehensive understanding of the signals mediated through IR, we reviewed the upstream and downstream signal molecules of IR, summarized the positive and negative modulators of IR, and discussed the IR substrates and interacting adaptor proteins. We propose that the molecular events associated with IR should be integrated to obtain a better understanding of the insulin signaling pathway and diabetes.  相似文献   

8.
Inhibition of P300 acetyltransferase activity by specific inhibitor C646 has been shown to improve insulin signaling. However, the underlying molecular mechanism of this improvement remains unclear. In this study, we analyzed P300 levels of obese patients and found that they were significantly increased in liver hepatocytes. In addition, large amounts of P300 appeared in the cytoplasm. Inhibition of P300 acetyltransferase activity by C646 drastically increased tyrosine phosphorylation of the insulin receptor protein substrates (IRS1/2) without affecting the tyrosine phosphorylation of the beta subunit of the insulin receptor (IRβ) in hepatocytes in the absence of insulin. Since IRS1/2 requires membrane translocation and binding to inositol compounds for normal functions, we also examined the role of acetylation on binding to phosphatidylinositol(4,5)P2 and found that IRS1/2 acetylation by P300 reduced this binding. In contrast, we show that inhibition of IRS1/2 acetylation by C646 facilitates IRS1/2 membrane translocation. Intriguingly, we demonstrate that C646 activates IRβ′s tyrosine kinase activity and directly promotes IRβ interaction with IRS1/2, leading to the tyrosine phosphorylation of IRS1/2 and subsequent activation of insulin signaling even in the absence of insulin. In conclusion, these data reveal the unique effects of C646 in activating insulin signaling in patients with obesity and diabetes.  相似文献   

9.
Mutations of the Drosophila melanogaster insulin/IGF signaling system slow aging, while also affecting growth and reproduction. To understand this pleiotropy, we produced an allelic series of single codon substitutions in the Drosophila insulin receptor, InR. We generated InR substitutions using homologous recombination and related each to emerging models of receptor tyrosine kinase structure and function. Three mutations when combined as trans-heterozygotes extended lifespan while retarding growth and fecundity. These genotypes reduced insulin-stimulated Akt phosphorylation, suggesting they impede kinase catalytic domain function. Among these genotypes, longevity was negatively correlated with egg production, consistent with life-history trade-off theory. In contrast, one mutation (InR353) was located in the kinase insert domain, a poorly characterized element found in all receptor tyrosine kinases. Remarkably, wild-type heterozygotes with InR353 robustly extended lifespan without affecting growth or reproduction and retained capacity to fully phosphorylate Akt. The Drosophila insulin receptor kinase insert domain contains a previously unrecognized SH2 binding motif. We propose the kinase insert domain interacts with SH2-associated adapter proteins to affect aging through mechanisms that retain insulin sensitivity and are independent of reproduction.  相似文献   

10.
The angiotensin AT1 receptor is a seven transmembrane (7TM) receptor, which mediates the regulation of blood pressure. Activation of angiotensin AT1 receptor may lead to impaired insulin signaling indicating crosstalk between angiotensin AT1 receptor and insulin receptor signaling pathways. To elucidate the molecular mechanisms behind this crosstalk, we applied the BRET2 technique to monitor the effect of angiotensin II on the interaction between Rluc8 tagged insulin receptor and GFP2 tagged insulin receptor substrates 1, 4, 5 (IRS1, IRS4, IRS5) and Src homology 2 domain-containing protein (Shc). We demonstrate that angiotensin II reduces the interaction between insulin receptor and IRS1 and IRS4, respectively, while the interaction with Shc is unaffected, and this effect is dependent on Gαq activation. Activation of other Gαq-coupled 7TM receptors led to a similar reduction in insulin receptor and IRS4 interactions whereas Gαs- and Gαi-coupled 7TM receptors had no effect. Furthermore, we used a panel of kinase inhibitors to show that angiotensin II engages different pathways when regulating insulin receptor interactions with IRS1 and IRS4. Angiotensin II inhibited the interaction between insulin receptor and IRS1 through activation of ERK1/2, while the interaction between insulin receptor and IRS4 was partially inhibited through protein kinase C dependent mechanisms. We conclude that the crosstalk between angiotensin AT1 receptor and insulin receptor signaling shows a high degree of specificity, and involves Gαq protein, and activation of distinct kinases. Thus, the BRET2 technique can be used as a platform for studying molecular mechanisms of crosstalk between insulin receptor and 7TM receptors.  相似文献   

11.
The hypervariable (Vβ/D/Jβ) regions of T‐cell receptors (TCR) have been sequenced in a variety of autoimmune diseases by various investigators. An analysis of some of these sequences shows that TCR from both human diabetics and NOD mice mimic insulin, glucagon, the insulin receptor, and the glucagon receptor. Such similarities are not found in the TCR produced in other human autoimmune diseases. These data may explain how insulin, glucagon, and their receptors are targets of autoimmunity in diabetes and also suggest that TCR mimicking insulin and its receptor may be targets of anti‐insulin autoantibodies. Such intra‐systemic mimicry of self‐proteins also raises complex questions about how “self” and “nonself” are regulated during TCR production, especially in light of the complementarity of insulin for its receptor and glucagon for its receptor. The data presented here suggest that some TCR may be complementary to other TCR in autoimmune diseases, a possibility that is experimentally testable. Such complementarity, if it exists, could either serve to down‐regulate the clones bearing such TCR or, alternatively, trigger an intra‐immune system civil war between them. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In many human breast cancers and cultured cell lines, insulin receptor expression is elevated, and insulin, via its own insulin receptor, can stimulate cell growth. It has recently been demonstrated that the enzyme phosphatidylinositol-3-kinase (PI3-K) mediates various aspects of insulin receptor signaling including cell growth. In order to understand the mechanisms for insulin-stimulated cell growth in human breast cancer, we measured insulin-stimulable PI3-K activity in a non-transformed breast epithelial cell line, MCF-10A, and in two malignantly transformed cell lines, ZR-75-1 and MDA-MB157. All three cell lines express comparable amounts of insulin receptors whose tyrosine autophosphorylation is increased by insulin, and in these cell lines insulin stimulates growth. In MDA-MB157 and MCF-10A cells, insulin stimulated PI3-K activity three- to fourfold. In ZR-75-1 cells, however, insulin did not stimulate PI3-K activity. In ZR-75-1 cells PI3-K protein was present, and its activity was stimulated by epidermal growth factor, suggesting that there might be a defect in insulin receptor signaling upstream of PI3-K and downstream of the insulin receptor. Next, we studied insulin receptor substrate-1 (IRS-1), a major endogenous substrate for the insulin receptor which, when tyrosine is phosphorylated by the insulin receptor, interacts with and activates PI3-K. In ZR-75-1 cells, there were reduced levels of protein for IRS-1. In these cells, both Shc tyrosine phosphorylation and mitogen-activated protein kinase (MAP-K) activity were increased by the insulin receptor (indicating that the p21ras pathway may account for insulin-stimulated cell growth in ZR-75-1 cells). The PI3-K inhibitor LY294002 (50 μM) reduced insulin-stimulated growth in MCF-10A and MDA-MB157 cell lines, whereas it did not modify insulin effect on ZR-75-1 cell growth. The MAP-K/Erk (MEK) inhibitor PD98059 (50 μM) consistently reduced insulin-dependent growth in all three cell lines. Taken together, these data suggest that in breast cancer cells insulin may stimulate cell growth via PI3-K–dependent or–independent pathways. J. Cell. Biochem. 70:268–280, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Chan CB  Liu X  He K  Qi Q  Jung DY  Kim JK  Ye K 《EMBO reports》2011,12(8):847-854
Dysfunction of hepatic insulin receptor tyrosine kinase (IRTK) causes the development of type 2 diabetes. However, the molecular mechanism regulating IRTK activity in the liver remains poorly understood. Here, we show that phosphoinositide 3-kinase enhancer A (PIKE-A) is a new insulin-dependent enhancer of hepatic IRTK. Liver-specific Pike-knockout (LPKO) mice display glucose intolerance with impaired hepatic insulin sensitivity. Specifically, insulin-provoked phosphoinositide 3-kinase/Akt signalling is diminished in the liver of LPKO mice, leading to the failure of insulin-suppressed gluconeogenesis and hyperglycaemia. Thus, hepatic PIKE-A has a key role in mediating insulin signal transduction and regulating glucose homeostasis in the liver.  相似文献   

14.
Phosphorylation of the insulin receptor by casein kinase I   总被引:1,自引:0,他引:1  
Insulin receptor was examined as a substrate for the multipotential protein kinase casein kinase I. Casein kinase I phosphorylated partially purified insulin receptor from human placenta as shown by immunoprecipitation of the complex with antiserum to the insulin receptor. Analysis of the phosphorylated complex by polyacrylamide gel electrophoresis under nonreducing conditions showed a major phosphorylated band at the position of the alpha 2 beta 2 complex. When the phosphorylated receptor was analyzed on polyacrylamide gels under reducing conditions, two phosphorylated bands, Mr 95,000 and Mr 135,000, were observed which corresponded to the alpha and beta subunits. The majority of the phosphate was associated with the beta subunit with minor phosphorylation of the alpha subunit. Phosphoamino acid analysis revealed that casein kinase I phosphorylated only seryl residues. The autophosphorylated alpha 2 beta 2 receptor purified by affinity chromatography on immobilized O-phosphotyrosyl binding antibody was also a substrate for casein kinase I. Reduction of the phosphorylated alpha 2 beta 2 receptor indicated that casein kinase I incorporated phosphate into seryl residues only in the beta subunit.  相似文献   

15.
IRTKS encodes a member of the IRSp53/MIM homology domain family, which has been shown to play an important role in the formation of plasma membrane protrusions. Although the phosphorylation of IRTKS occurs in response to insulin stimulation, the role of this protein in insulin signaling remains unknown. Here we show that IRTKS-deficient mice exhibit insulin resistance, including hyperglycemia, hyperinsulinemia, glucose intolerance, decreased insulin sensitivity, and increased hepatic glucose production. The administration of ectopic IRTKS can ameliorate the insulin resistance of IRTKS-deficient and diabetic mice. In parallel, the expression level of IRTKS was significantly decreased in diabetic mouse model. Furthermore, DNA hypermethylation of the IRTKS promoter was also observed in these subjects. We also show that IRTKS, as an adaptor of the insulin receptor (IR), modulates IR-IRS1-PI3K-AKT signaling via regulating the phosphorylation of IR. These findings add new insights into our understanding of insulin signaling and resistance.  相似文献   

16.
17.
A long-standing problem of developmental biology is how body size is determined. In Drosophila melanogaster, the insulin/insulin-like growth factor (I/IGF) and target of rapamycin (TOR) signaling pathways play important roles in this process. However, the detailed mechanisms by which insect body growth is regulated are not known. Therefore, we have attempted to utilize systemic nymphal RNA interference (nyRNAi) to knockdown expression of insulin signaling components including Insulin receptor (InR), Insulin receptor substrate (chico), Phosphatase and tensin homologue (Pten), Target of rapamycin (Tor), RPS6-p70-protein kinase (S6k), Forkhead box O (FoxO) and Epidermal growth factor receptor (Egfr) and observed the effects on body size in the Gryllus bimaculatus cricket. We found that crickets treated with double-stranded RNA (dsRNA) against Gryllus InR, chico, Tor, S6k and Egfr displayed smaller body sizes, while Gryllus FoxO nyRNAi-ed crickets exhibited larger than normal body sizes. Furthermore, RNAi against Gryllus chico and Tor displayed slow growth and RNAi against Gryllus chico displayed longer lifespan than control crickets. Since no significant difference in ability of food uptake was observed between the Gryllus chico(nyRNAi) nymphs and controls, we conclude that the adult cricket body size can be altered by knockdown of expressions of Gryllus InR, chico, Tor, S6k, FoxO and Egfr by systemic RNAi. Our results suggest that the cricket is a promising model to study mechanisms underlying controls of body size and life span with RNAi methods.  相似文献   

18.
19.
Ionotropic glutamate receptors constitute an important family of ligand-gated ion channels for which there is little biochemical or structural data. Here we probe the domain structure and boundaries of the ligand binding domain of the AMPA-sensitive GluR2 receptor by limited proteolysis and deletion mutagenesis. To identify the proteolytic fragments, Maldi mass spectrometry and N-terminal amino acid sequencing were employed. Trypsin digestion of HS1S2 (Chen GQ, Gouaux E. 1997. Proc Natl Acad Sci USA 94:13431-13436) in the presence and absence of glutamate showed that the ligand stabilized the S1 and S2 fragments against complete digestion. Using limited proteolysis and multiple sequence alignments of glutamate receptors as guides, nine constructs were made, folded, and screened for ligand binding activity. From this screen, the S1S21 construct proved to be trypsin- and chymotrypsin-resistant, stable to storage at 4 degrees C, and amenable to three-dimensional crystal formation. The HS1S21 variant was readily prepared on a large scale, the His tag was easily removed by trypsin, and crystals were produced that diffracted to beyond 1.5 A resolution. These experiments, for the first time, pave the way to economical overproduction of the ligand binding domains of glutamate receptors and more accurately map the boundaries of the ligand binding domain.  相似文献   

20.
Although insulin receptor (InsR) and type I insulin-like growth factor receptor (IGF-IR) elicit different physiological effects in their target tissues, their signaling capabilities are similar to a large extent. In the present work, we investigated the potential of the third member of the family, insulin receptor-related receptor (IRR), to associate with known interaction partners of the InsR and the IGF-I receptor in a yeast two-hybrid assay. Using the intracellular part of the IRR we found no association with any of the tested signaling molecules. Phosphotyrosine detection revealed a lack in the constitutive activation of the IRR described for analogous constructs of the two other members of the family. Replacement of the kinase domain of the IGF-IR or its C-terminal lobe alone into the IRR caused a complete restoration of the tyrosine phosphorylation of the IRR. The reestablishment of autophosphorylation was paralleled by restoration of interaction with a specific range of signaling molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号