首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Bajohrs M  Rickman C  Binz T  Davletov B 《EMBO reports》2004,5(11):1090-1095
Botulinum neurotoxins (BoNTs) block neurotransmitter release through their specific proteolysis of the proteins responsible for vesicle exocytosis. Paradoxically, two serotypes of BoNTs, A and E, cleave the same molecule, synaptosome-associated protein with relative molecular mass 25K (SNAP-25), and yet they cause synaptic blockade with very different properties. Here we compared the action of BoNTs A and E on the plasma membrane fusion machinery composed of syntaxin and SNAP-25. We now show that the BoNT/A-cleaved SNAP-25 maintains its association with two syntaxin isoforms in vitro, which is mirrored by retention of SNAP-25 on the plasma membrane in vivo. In contrast, BoNT/E severely compromises the ability of SNAP-25 to bind the plasma membrane syntaxin isoforms, leading to dissociation of SNAP-25. The distinct properties of botulinum intoxication, therefore, can result from the ability of shortened SNAP-25 to maintain its association with syntaxins-in the case of BoNT/A poisoning resulting in unproductive syntaxin/SNAP-25 complexes that impede vesicle exocytosis.  相似文献   

2.
Botulinum neurotoxin serotypes A and E (BoNT/A and BoNT/E) block neurotransmitter release by cleaving the 206-amino-acid SNARE protein, SNAP-25. For each BoNT serotype, cleavage of SNAP-25 results in the loss of intact protein, the production of an N-terminal truncated protein, and the generation of a small C-terminal peptide. Peptides that mimic the C-terminal fragments of SNAP-25 following BoNT/A or BoNT/E cleavage were shown to depress transmitter release in bovine chromaffin cells and in Aplysia buccal ganglion cells. Similarly, the N-terminal–truncated SNAP-25 resulting from BoNT/A or BoNT/E cleavage has been found to inhibit transmitter exocytosis in various systems. With one exception, however, the inhibitory action of truncated SNAP-25 has not been demonstrated at a well-defined cholinergic synapse. The goal of the current study was to determine the level of inhibition of neurotransmitter release by N-terminal BoNT/A- or BoNT/E-truncated SNAP-25 in two different neuronal systems: cholinergically coupled Aplysia neurons and rat hippocampal cell cultures. Both truncated SNAP-25 products inhibited depolarization-dependent glutamate release from hippocampal cultures and depressed synaptic transmission in Aplysia buccal ganglion cells. These results suggest that truncated SNAP-25 can compete with endogenous SNAP-25 for binding with other SNARE proteins involved in transmitter release, thus inhibiting neurotransmitter exocytosis.  相似文献   

3.
Puffer EB  Lomneth RB  Sarkar HK  Singh BR 《Biochemistry》2001,40(31):9374-9378
The role of SNAP-25 (synaptosomal associated protein of 25 kDa) isotypes in the neurotransmitter release process was examined by varying their relative abundance during PC12 cell differentiation induced by nerve growth factor (NGF). Norepinephrine release by NGF-differentiated PC12 cells is more sensitive to type A botulinum toxin (BoNT/A) than by nondifferentiated cells, while both differentiated and nondifferentiated PC12 cells are equally sensitive to type E botulinum toxin (BoNT/E). The differential sensitivity to BoNT/A corresponds to an altered susceptibility of SNAP-25 isotypes to BoNT/A cleavage in vitro, whereas both isotypes are equally vulnerable to cleavage by BoNT/E. Using recombinant SNAP-25 preparations, we show that BoNT/A cleaves SNAP-25b (present in differentiated cells) 2-fold more readily than SNAP-25a (present in both differentiated and nondifferentiated cells). Structural studies using far-ultraviolet circular dichroism (UV--CD) and thermal denaturation suggest a difference in the polypeptide folding as the underlying molecular basis for the differential sensitivity of SNAP-25b and SNAP-25a to BoNT/A cleavage. We propose differential roles for SNAP-25b and SNAP-25a in the neurotransmitter release process since our results suggest that BoNT/A inhibits neurotransmitter release by primarily cleaving SNAP-25b.  相似文献   

4.
Sharma SK  Singh BR 《Biochemistry》2004,43(16):4791-4798
In botulism disease, neurotransmitter release is blocked by a group of structurally related neurotoxin proteins produced by Clostridium botulinum. Botulinum neurotoxins (BoNT, A-G) enter nerve terminals and irreversibly inhibit exocytosis via their endopeptidase activities against synaptic proteins SNAP-25, VAMP, and Syntaxin. Type A C. botulinum secretes the neurotoxin along with 5 other proteins called neurotoxin associated proteins (NAPs). Here, we report that hemagglutinin-33 (Hn-33), one of the NAP components, enhances the endopeptidase activity of not only BoNT/A but also that of BoNT/E, both under in vitro conditions and in rat synaptosomes. BoNT/A endopeptidase activity in vitro is about twice as high as that of BoNT/E under disulfide-reduced conditions. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E (which otherwise have only residual endopeptidase activity) enhanced their in vitro endopeptidase activity by 21- and 25-fold, respectively. Cleavage of rat-brain synaptosome SNAP-25 by BoNTs was used to assay endopeptidase activity under nerve-cell conditions. Reduced BoNT/A and BoNT/E cleaved synaptosomal SNAP-25 by 20% and 15%, respectively. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E enhanced their endopeptidase activities by 13-fold for the cleavage of SNAP-25 in synaptosomes, suggesting a possible functional role of Hn-33 in association with BoNTs. We believe that Hn-33 could be used as an activator in the formulation of the neurotoxin for therapeutic use.  相似文献   

5.
《The Journal of cell biology》1995,128(6):1019-1028
SNAP-25 is known as a neuron specific molecule involved in the fusion of small synaptic vesicles with the presynaptic plasma membrane. By immunolocalization and Western blot analysis, it is now shown that SNAP- 25 is also expressed in pancreatic endocrine cells. Botulinum neurotoxins (BoNT) A and E were used to study the role of SNAP-25 in insulin secretion. These neurotoxins inhibit transmitter release by cleaving SNAP-25 in neurons. Cells from a pancreatic B cell line (HIT) and primary rat islet cells were permeabilized with streptolysin-O to allow toxin entry. SNAP-25 was cleaved by BoNT/A and BoNT/E, resulting in a molecular mass shift of approximately 1 and 3 kD, respectively. Cleavage was accompanied by an inhibition of Ca(++)-stimulated insulin release in both cell types. In HIT cells, a concentration of 30-40 nM BoNT/E gave maximal inhibition of stimulated insulin secretion of approximately 60%, coinciding with essentially complete cleavage of SNAP-25. Half maximal effects in terms of cleavage and inhibition of insulin release were obtained at a concentration of 5-10 nM. The A type toxin showed maximal and half-maximal effects at concentrations of 4 and 2 nM, respectively. In conclusion, the results suggest a role for SNAP-25 in fusion of dense core secretory granules with the plasma membrane in an endocrine cell type- the pancreatic B cell.  相似文献   

6.
Neurotransmitter release from synaptic vesicles is mediated by complex machinery, which includes the v- and t-SNAP receptors (SNAREs), vesicle-associated membrane protein (VAMP), synaptotagmin, syntaxin, and synaptosome-associated protein of 25 kDa (SNAP-25). They are essential for neurotransmitter exocytosis because they are the proteolytic substrates of the clostridial neurotoxins tetanus neurotoxin and botulinum neurotoxins (BoNTs), which cause tetanus and botulism, respectively. Specifically, SNAP-25 is cleaved by both BoNT/A and E at separate sites within the COOH-terminus. We now demonstrate, using toxin-insensitive mutants of SNAP-25, that these two toxins differ in their specificity for the cleavage site. Following modification within the COOH-terminus, the mutants completely resistant to BoNT/E do not bind VAMP but were still able to form a sodium dodecyl sulfate-resistant complex with VAMP and syntaxin. Furthermore, these mutants retain function in vivo, conferring BoNT/E-resistant exocytosis to transfected PC12 cells. These data provide information on structural requirements within the C-terminal domain of SNAP-25 for its function in exocytosis and raise doubts about the significance of in vitro binary interactions for the in vivo functions of synaptic protein complexes.  相似文献   

7.
The impact of syntaxin and SNAP-25 cleavage on [3H]noradrenaline ([3H]NA) and [3H]dopamine ([3H]DA) exocytotic release evoked by different stimuli was studied in superfused rat synaptosomes. The external Ca2+-dependent K+-induced [3H]catecholamine overflows were almost totally abolished by botulinum toxin C1 (BoNT/C1), which hydrolyses syntaxin and SNAP-25, or by botulinum toxin E (BoNT/E), selective for SNAP-25. BoNT/C1 cleaved 25% of total syntaxin and 40% of SNAP-25; BoNT/E cleaved 40% of SNAP-25 but left syntaxin intact. The GABA uptake-induced releases of [3H]NA and [3H]DA were differentially affected: both toxins blocked the former, dependent on external Ca2+, but not the latter, internal Ca2+-dependent. BoNT/C1 or BoNT/E only slightly reduced the ionomycin-evoked [3H]catecholamine release. More precisely, [3H]NA exocytosis induced by ionomycin was sensitive to toxins in the early phase of release but not later. The Ca2+-independent [3H]NA exocytosis evoked by hypertonic sucrose, thought to release from the readily releasable pool (RRP) of vesicles, was significantly reduced by BoNT/C1. Pre-treating synaptosomes with phorbol-12-myristate-13-acetate, to increase the RRP, enhanced the sensitivity to BoNT/C1 of [3H]NA release elicited by sucrose or ionomycin. Accordingly, cleavage of syntaxin was augmented by the phorbol-ester. To conclude, our results suggest that clostridial toxins selectively target exocytosis involving vesicles set into the RRP.  相似文献   

8.
Proteolysis of SNAP-25 Isoforms by Botulinum Neurotoxin Types A, C, and E   总被引:5,自引:2,他引:5  
Abstract : Tetanus toxin and the seven serologically distinct botulinal neurotoxins (BoNT/A to BoNT/G) abrogate synaptic transmission at nerve endings through the action of their light chains (L chains), which proteolytically cleave VAMP (vesicle-associated membrane protein)/synaptobrevin, SNAP-25 (synaptosome-associated protein of 25 kDa), or syntaxin. BoNT/C was reported to proteolyze both syntaxin and SNAP-25. Here, we demonstrate that cleavage of SNAP-25 occurs between Arg198 and Ala199, depends on the presence of regions Asn93 to Glu145 and Ile156 to Met202, and requires about 1,000-fold higher L chain concentrations in comparison with BoNT/A and BoNT/E. Analyses of the BoNT/A and BoNT/E cleavage sites revealed that changes in the carboxyl-terminal residues, in contrast with changes in the amino-terminal residues, drastically impair proteolysis. A proteolytically inactive BoNT/A L chain mutant failed to bind to VAMP/synaptobrevin and syntaxin, but formed a stable complex ( K D = 1.9 × 10-7 M ) with SNAP-25. The minimal essential domain of SNAP-25 required for cleavage by BoNT/A involves the segment Met146-Gln197, and binding was optimal only with full-length SNAP-25. Proteolysis by BoNT/E required the presence of the domain Ile156-Asp186. Murine SNAP-23 was cleaved by BoNT/E and, to a reduced extent, by BoNT/A, whereas human SNAP-23 was resistant to all clostridial L chains. Lys185Asp or Pro182Arg mutations of human SNAP-23 induced susceptibility toward BoNT/E or toward both BoNT/A and BoNT/E, respectively.  相似文献   

9.
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) inhibit neurotransmitter release by proteolyzing a single peptide bond in one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors SNAP-25, syntaxin, and vesicle-associated membrane protein (VAMP)/synaptobrevin. TeNT and BoNT/B, D, F, and G of the seven known BoNTs cleave the synaptic vesicle protein VAMP/synaptobrevin. Except for BoNT/B and TeNT, they cleave unique peptide bonds, and prior work suggested that different substrate segments are required for the interaction of each toxin. Although the mode of SNAP-25 cleavage by BoNT/A and E has recently been studied in detail, the mechanism of VAMP/synaptobrevin proteolysis is fragmentary. Here, we report the determination of all substrate residues that are involved in the interaction with BoNT/B, D, and F and TeNT by means of systematic mutagenesis of VAMP/synaptobrevin. For each of the toxins, three or more residues clustered at an N-terminal site remote from the respective scissile bond are identified that affect solely substrate binding. These exosites exhibit different sizes and distances to the scissile peptide bonds for each neurotoxin. Substrate segments C-terminal of the cleavage site (P4-P4') do not play a role in the catalytic process. Mutation of residues in the proximity of the scissile bond exclusively affects the turnover number; however, the importance of individual positions at the cleavage sites varied for each toxin. The data show that, similar to the SNAP-25 proteolyzing BoNT/A and E, VAMP/synaptobrevin-specific clostridial neurotoxins also initiate substrate interaction, employing an exosite located N-terminal of the scissile peptide bond.  相似文献   

10.
Synaptosomal-associated protein-25 (SNAP-25) is a component of the soluble NSF attachment protein receptor (SNARE) complex that is essential for synaptic neurotransmitter release. Botulinum neurotoxin serotype A (BoNT/A) is a zinc metalloprotease that blocks exocytosis of neurotransmitter by cleaving the SNAP-25 component of the SNARE complex. Currently there are no licensed medicines to treat BoNT/A poisoning after internalization of the toxin by motor neurons. The development of effective therapeutic measures to counter BoNT/A intoxication has been limited, due in part to the lack of robust high-throughput assays for screening small molecule libraries. Here we describe a high content imaging (HCI) assay with utility for identification of BoNT/A inhibitors. Initial optimization efforts focused on improving the reproducibility of inter-plate results across multiple, independent experiments. Automation of immunostaining, image acquisition, and image analysis were found to increase assay consistency and minimize variability while enabling the multiparameter evaluation of experimental compounds in a murine motor neuron system.  相似文献   

11.
Jin R  Sikorra S  Stegmann CM  Pich A  Binz T  Brunger AT 《Biochemistry》2007,46(37):10685-10693
Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote alpha-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the alpha-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.  相似文献   

12.
J E Keller  E A Neale  G Oyler  M Adler 《FEBS letters》1999,456(1):137-142
Primary dissociated fetal mouse spinal cord cultures were used to study the mechanisms underlying the differences in persistence of botulinum neurotoxin A (BoNT/A) and botulinum neurotoxin/E (BoNT/E) activities. Spinal cord cultures were exposed to BoNT/A (0.4 pM) for 2-3 days, which converted approximately half of the SNAP-25 to an altered form lacking the final nine C-terminal residues. The distribution of toxin-damaged to control SNAP-25 remained relatively unchanged for up to 80 days thereafter. Application of a high concentration of BoNT/E (250 pM) either 25 or 60 days following initial intoxication with BoNT/A converted both normal and BoNT/A-truncated SNAP-25 into a single population lacking the final 26 C-terminal residues. Excess BoNT/E was removed by washout, and recovery of intact SNAP-25 was monitored by Western blot analysis. The BoNT/E-truncated species gradually diminished during the ensuing 18 days, accompanied by the reappearance of both normal and BoNT/A-truncated SNAP-25. Return of BoNT/A-truncated SNAP-25 was observed in spite of the absence of BoNT/A in the culture medium during all but the first 3 days of exposure. These results indicate that proteolytic activity associated with the BoNT/A light chain persists inside cells for > 11 weeks, while recovery from BoNT/E is complete in < 3 weeks. This longer duration of enzymatic activity appears to account for the persistence of serotype A action.  相似文献   

13.
Seven types (A-G) of botulinum neurotoxin (BoNT) target peripheral cholinergic neurons where they selectively proteolyze SNAP-25 (BoNT/A, BoNT/C1, and BoNT/E), syntaxin1 (BoNT/C1), and synaptobrevin (BoNT/B, BoNT/D, BoNT/F, and BoNT/G), SNARE proteins responsible for transmitter release, to cause neuromuscular paralysis but of different durations. BoNT/A paralysis lasts longest (4-6 months) in humans, hence its widespread clinical use for the treatment of dystonias. Molecular mechanisms underlying these distinct inhibitory patterns were deciphered in rat cerebellar neurons by quantifying the half-life of the effect of each toxin, the speed of replenishment of their substrates, and the degradation of the cleaved products, experiments not readily feasible at motor nerve endings. Correlation of target cleavage with blockade of transmitter release yielded half-lives of inhibition for BoNT/A, BoNT/C1, BoNT/B, BoNT/F, and BoNT/E (31, 25, approximately 10, approximately 2, and approximately 0.8 days, respectively), equivalent to the neuromuscular paralysis times found in mice, with recovery of release coinciding with reappearance of the intact SNAREs. A limiting factor for the short neuroparalytic durations of BoNT/F and BoNT/E is the replenishment of synaptobrevin or SNAP-25, whereas pulse labeling revealed that extended inhibition by BoNT/A, BoNT/B, or BoNT/C1 results from longevity of each protease. These novel findings could aid development of new toxin therapies for patients resistant to BoNT/A and effective treatments for human botulism.  相似文献   

14.
We used botulinum neurotoxins (BoNT) to examine whether differences in the secretory activity of noradrenergic and adrenergic chromaffin cells are related to differences in the exocytotic machinery of these two types of bovine adrenal medulla cells. Cleavage of syntaxin and SNAP-25 by BoNT/C1 decreased in a dose-dependent way the release of both noradrenaline and adrenaline, but noradrenaline release was more sensitive to BoNT/C1. Cleavage of SNAP-25 by BoNT/A also had a larger inhibitory effect on noradrenaline release than on adrenaline release. Neither BoNT/C1 nor BoNT/A affected the intracellular Ca2+ responses induced by K+-depolarisation, and the extent of the inhibition of K+-evoked catecholamine release by selective blockers of voltage-gated Ca2+ channels was not affected by BoNT/C1. Therefore, our data do not support the hypothesis of a regulatory effect of syntaxin or SNAP-25 on the activity of Ca2+ channels. The lower sensitivity of adrenaline release to BoNT was not due to a reduced ability of the toxins to enter or to cleave their protein targets in adrenergic cells, since immunoblot analysis showed the cleavage of a larger fraction of syntaxin 1A in adrenergic cells, as compared to the cleavage in noradrenergic cells. The immunoblot analysis also showed larger amounts of syntaxin 1A in noradrenergic chromaffin cells than in adrenergic cells. Thus, in spite of a greater cleavage of syntaxin 1A in adrenergic cells by BoNT/C1, adrenaline release was less sensitive to BoNT/C1, suggesting that the release process in noradrenergic cells might be more dependent on syntaxin 1A and SNAP-25, as compared to adrenergic cells.  相似文献   

15.
Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses   总被引:11,自引:0,他引:11  
The clostridial neurotoxins responsible for tetanus and botulism are proteins consisting of three domains endowed with different functions: neurospecific binding, membrane translocation and proteolysis for specific components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular junction, is internalized and transported retroaxonally to the spinal cord. The spastic paralysis induced by the toxin is due to the blockade of neurotransmitter release from spinal inhibitory interneurons. In contrast, the seven serotypes of botulinum neurotoxins (BoNTs) act at the periphery by inducing a flaccid paralysis due to the inhibition of acetylcholine release at the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G cleave specifically at single but different peptide bonds, of the vesicle associated membrane protein (VAMP) synaptobrevin, a membrane protein of small synaptic vesicles (SSVs). BoNT types A, C and E cleave SNAP-25 at different sites located within the carboxyl-terminus, while BoNT type C additionally cleaves syntaxin. The remarkable specificity of BoNTs is exploited in the treatment of human diseases characterized by a hyperfunction of cholinergic terminals.  相似文献   

16.
Traffic of botulinum toxins A and E in excitatory and inhibitory neurons   总被引:1,自引:0,他引:1  
Botulinum neurotoxins (BoNTs), proteases specific for the SNARE proteins, are used to study the molecular machinery supporting exocytosis and are used to treat human diseases characterized by cholinergic hyperactivity. The recent extension of the use of BoNTs to central nervous system (CNS) pathologies prompted the study of their traffic in central neurons. We used fluorescent BoNT/A and BoNT/E to study the penetration, the translocation and the catalytic action of these toxins in excitatory and inhibitory neurons. We show that BoNT/A and BoNT/E, besides preferentially inhibiting synaptic vesicle recycling at glutamatergic relative to Gamma-aminobutyric acid (GABA)-ergic neurons, are more efficient in impairing the release of excitatory than inhibitory neurotransmitter from brain synaptosomes. This differential effect does not result from a defective penetration of the toxin in line with the presence of the BoNT/A receptor, synaptic vesicle protein 2 (SV2), in both types of neurons. Interestingly, exogenous expression of SNAP-25 in GABAergic neurons confers sensitivity to BoNT/A. These results indicate that the expression of the toxin substrate, and not the toxin penetration, most likely accounts for the distinct effects of the two neurotoxins at the two types of terminals and support the use of BoNTs for the therapy of CNS diseases caused by the altered activity of selected neuronal populations.  相似文献   

17.
Blockade of neurotransmitter release by botulinum neurotoxin type A (BoNT(A)) underlies the severe neuroparalytic symptoms of human botulism, which can last a few years. The structural basis for this remarkable persistence remains unclear. Herein, recombinant BoNT(A) was found to match the neurotoxicity of that from Clostridium botulinum, producing persistent cleavage of synaptosomal-associated protein of 25 kDa (SNAP-25) and neuromuscular paralysis. When two leucines near the C terminus of the protease light chain of A (LC(A)) were mutated, its inhibition of exocytosis was followed by fast recovery of intact SNAP-25 in cerebellar neurons and neuromuscular transmission in vivo. Deletion of 6-7 N terminus residues diminished BoNT(A) activity but did not alter the longevity of its SNAP-25 cleavage and neuromuscular paralysis. Furthermore, genetically fusing LC(E) to a BoNT(A) enzymically inactive mutant (BoTIM(A)) yielded a novel LC(E)-BoTIM(A) protein that targets neurons, and the BoTIM(A) moiety also delivers and stabilizes the inhibitory LC(E), giving a potent and persistent cleavage of SNAP-25 with associated neuromuscular paralysis. Moreover, its neurotropism was extended to sensory neurons normally insensitive to BoNT(E). LC(E-)BoTIM(A)(AA) with the above-identified dileucine mutated gave transient neuromuscular paralysis similar to BoNT(E), reaffirming that these residues are critical for the persistent action of LC(E)-BoTIM(A) as well as BoNT(A). LC(E)-BoTIM(A) inhibited release of calcitonin gene-related peptide from sensory neurons mediated by transient receptor potential vanilloid type 1 and attenuated capsaicin-evoked nociceptive behavior in rats, following intraplantar injection. Thus, a long acting, versatile composite toxin has been developed with therapeutic potential for pain and conditions caused by overactive cholinergic nerves.  相似文献   

18.
Uptake of botulinum neurotoxin into cultured neurons   总被引:10,自引:0,他引:10  
Keller JE  Cai F  Neale EA 《Biochemistry》2004,43(2):526-532
Botulinum neurotoxins (BoNTs) act within the synaptic terminal to block neurotransmitter release. The toxin enters the neuron by binding to neuronal membrane receptor(s), being taken up into an endosome-like compartment, and penetrating the endosome membrane via a pH-dependent translocation process. Once within the synaptic cytoplasm, BoNT serotypes A and E cleave separate sites on the C-terminus of the neuronal protein SNAP-25, one of the SNARE proteins required for synaptic vesicle fusion. In this study, we measured the effect of brief toxin exposure on SNAP-25 proteolysis in neuronal cell cultures as an indicator of toxin translocation. The results indicate that (1) uptake of both BoNT-A and -E is enhanced with synaptic activity induced by K+ depolarization in the presence of Ca2+ and (2) translocation of BoNT-A from the acidic endosomal compartment is slow relative to that of BoNT-E. Polyclonal antisera against each toxin protect cells when applied with the toxin during stimulation but has no effect when added immediately after toxin exposure, indicating that toxin endocytosis occurs with synaptic activity. Both serotypes cleave SNAP-25 at concentrations between 50 pM and 4 nM. IC50 values for SNAP-25 cleavage are approximately 0.5 nM for both serotypes. Inhibition of the pH-dependent translocation process by pretreating cultures with concanamycin A (Con A) prevents cleavage of SNAP-25 with IC50 values of approximately 25 nM. Addition of Con A at times up to 15 min after toxin exposure abrogated BoNT-A action; however, addition of Con A after 40 min was no longer protective. In contrast, Con A inhibited, but did not prevent, translocation of BoNT-E even when added immediately after toxin exposure, indicating that pH-dependent translocation of BoNT-E is rapid relative to that of BoNT-A. This study demonstrates that uptake of both BoNT-A and -E is enhanced with synaptic activity and that translocation of the toxin catalytic moiety into the cytosol occurs at different rates for these two serotypes.  相似文献   

19.
Mechanism of action of tetanus and botulinum neurotoxins   总被引:23,自引:0,他引:23  
The clostridial neurotoxins responsible for tetanus and botulism are metallo-proteases that enter nerve cells and block neurotransmitter release via zinc-dependent cleavage of protein components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular Junction and is internalized and transported retroaxonally to the spinal cord. Whilst TeNT causes spastic paralysis by acting on the spinal inhibitory interneurons, the seven serotypes of botullnum neurotoxins (BoNT) induce a flaccid paralysis because they intoxicate the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G specifically cleave VAMP/synaptobrevin, a membrane protein of small synaptic vesicles, at different single peptide bonds. Proteins of the presynaptic membrane are specifically attacked by the other BoNTs: serotypes A and E cleave SNAP-25 at two different sites located within the carboxyl terminus, whereas the specific target of serotype C is syntaxin.  相似文献   

20.
Synaptic transmission is conducted by neurotransmitters released from presynaptic nerve terminals by means of Ca2+-dependent exocytosis of synaptic vesicles. Formation of a complex of soluble N-ethylmaleimide-sensitive fusion protein receptor (SNARE) proteins, including vesicle-associated membrane protein-2 (VAMP-2) in the synaptic vesicle membrane, and syntaxin 1 and synaptosomal-associated protein of 25 kDa (SNAP-25) in the plasma membrane, is essential for exocytosis. Ionomycin treatment of cultured rat cerebellar granule cells led to cleavage of SNAP-25, but not syntaxin 1 and VAMP-2, that was dependent on extracellular Ca2+. Cleavage was also induced by N-methyl-D-aspartate (NMDA) treatment, but not by depolarization. The use of various site-specific antibodies to SNAP-25, suggested that the cleavage site was in the N-terminal domain of SNAP-25. Calpain inhibitors abolished the Ca2+-dependent cleavage of SNAP-25 and markedly facilitated Ca2+-dependent glutamate (Glu) release from cerebellar granule cells. These results suggest that calpain may play an important role in the long-lasting regulation of synaptic transmission by suppressing neurotransmitter release, possibly through the proteolytic cleavage of SNAP-25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号