首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a single-cell technique for measuring membrane potential, membrane resistance, and the efflux of rapidly penetrating solutes such as Cl and H2O. Erythrocytes from Amphiuma means were aspirated into a Sylgard (Dow Corning Corp.)-coated capillary. The aspirated cell separated a solution within the capillary from a solution in the bath. Each of these two solutions was contiguous with approximately 5% of the total membrane surface. Microelectrodes placed concentrically within the capillary permit the measurement of intracellular voltage, specific membrane resistance, and the electrical seal between the two solutions. The intracellular voltage averaged -17.7 mV (pH 7.6) and changed as either intra- or extracellular chloride was varied. The average specific membrane resistance measured by passing current across the exposed membrane surface was 110 ohm-cm2. 36Cl and tritiated H2O fluxes (0.84 +/- 0.05 x 10(-6) M . cm-2 . min-1 and 6.4 +/- 1.5 x 10(-3) M . cm-2 . min-1, respectively) were determined by noting the rate at which isotope leaves the cell and crosses the membrane exposed to the bath. Our measured values for the flux of 36Cl and tritiated H2O approximate reported values for free-floating cells. 36Cl efflux, in addition, is inhibited by 4-acetamido-4'-isothiocyano-stilbene 2,2'-disulfonic acid (SITS) and furosemide, known inhibitors of the anion exchange mechanism responsible for the rapid anion fluxes of red blood cells. One can also demonstrate directly that > 89% of 36Cl efflux is "electrically silent" by analyzing the flux in the presence of an imposed transcellular voltage.  相似文献   

2.
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is the key enzyme in purine base salvage in humans and in purine auxotrophs, including Plasmodium falciparum, the leading cause of malaria. Hydrogen/deuterium (H/D) exchange into amide bonds, quantitated by on-line HPLC and mass spectrometry, has been used to compare the dynamic and conformational properties of human HGPRT alone, the HGPRT-GMP-Mg(2+) complex, the HGPRT-IMP-MgPPi <==> HGPRT-Hx-MgPRPP equilibrating mixture, and the transition-state analogue complex HGPRT-ImmGP-MgPPi. The rate and extent of H/D exchange of 26 peptic peptides, spanning 91% of the primary structure, have been monitored. Human HGPRT has 207 amide H/D exchange sites. After 1 h in D2O, HGPRT alone exchanges 160, HGPRT-GMP-Mg(2+) exchanges 154, the equilibrium complex exchanges 139, and the transition-state analogue complex exchanges 126 of these amide protons. H/D exchange rates are correlated with structure for peptides in (1) catalytic site loops, (2) a connected peptide of the subunit interface of the tetramer, and (3) a loop buried in the catalytic site. Structural properties related to H/D exchange are defined from crystallographic studies of the HGPRT-GMP-Mg(2+) and HGPRT-ImmGP-MgPPi complexes. Transition-state analogue binding strengthens the interaction between subunits and tightens the catalytic site loops. The solvent exchange dynamics in specific peptides correlates with hydrogen bond patterns, solvent access, crystallographic B-factors, and ligand exchange rates. Solvent exchange reveals loop dynamics in the free enzyme, Michaelis complexes, and the complex with the bound transition-state analogue. Proton transfer paths, rather than dynamic motion, are required to explain exchange into a buried catalytic site peptide in the complex with the bound transition-state analogue.  相似文献   

3.
Hydrogen peroxide (H(2)O(2)) is a physiologic oxidant implicated in vascular cell signaling, although little is known about the biochemical consequences of its reaction with endothelial cells. Submicrometer-resolution hard X-ray elemental mapping of cultured porcine aortic endothelial cells (PAEC) has provided data on the global changes for intracellular elemental density within PAEC and indicates an efflux of metal ions and phosphorus from the cytoplasm after H(2)O(2) treatment. The synchrotron-radiation-induced X-ray emission experiments (SRIXE) show that H(2)O(2)-treated cells are irregularly shaped and exhibit blebbing indicative of increased permeability due to the damaged membrane. The SRIXE results suggest that H(2)O(2)-induced damage is largely restricted to the cell membrane as judged by the changes to membrane and cytoplasmic components rather than the cell nucleus. The SRIXE data also provide a mechanism for cell detoxification as the metal-ion efflux resulting from the initial H(2)O(2)-mediated changes to cell membrane potentially limits intracellular metal-mediated redox processes through Fenton-like chemistry. They may also explain the increased levels of these ions in atherosclerotic plaques, regardless of whether they are involved in plaque formation. Finally, the SRIXE data support the notion that cultured endothelial cells exposed to H(2)O(2) respond with enhanced cellular metal-ion efflux into the extracellular space.  相似文献   

4.
Resonance Raman spectra were observed for compound II of horseradish peroxidase A2, and the Fe(IV) = O stretching Raman line was identified at 775 cm-1. This Raman line shifted to 741 cm-1 upon a change of solvent from H2(16)O to H2(18)O, indicating occurrence of the oxygen exchange between the Fe(IV) = O heme and bulk water. The oxygen exchange took place only at the acidic side of the heme-linked ionization with pKa = 6.9.  相似文献   

5.
This study presents the first detailed examination by resonance Raman (RR) spectroscopy of the rates of solvent exchange for the C5 and C3 positions of the TPQ cofactor in several wild-type copper-containing amine oxidases and mutants of the amine oxidase from Hansenula polymorpha (HPAO). On the basis of crystal structure analysis and differing rates of C5 [double bond] O and C3 [bond] H exchange within the enzyme systems, but equally rapid rates of C5 [double bond] O and C3 [bond] H exchange in a TPQ model compound, it is proposed that these data can be used to determine the TPQ cofactor orientation within the active site of the resting enzyme. A rapid rate of C5 [double bond] O exchange (t(1/2) < 30 min) and a slow (t(1/2) = 6 h) to nonexistent rate of C3 [bond] H exchange was observed for wild-type HPAO, the amine oxidase from Arthrobacter globiformis, pea seedling amine oxidase at pH 7.1, and the E406Q mutant of HPAO. This pattern is ascribed to a productive TPQ orientation, with the C5 [double bond] O near the substrate-binding site and the C3 [bond] H near the Cu. In contrast, a slow rate of C5 [double bond] O exchange (t(1/2) = 1.6-3.3 h) coupled with a fast rate of C3 [bond] H exchange (t(1/2) < 30 min) was observed for the D319E and D319N catalytic base mutants of HPAO and for PSAO at pH 4.6 (t(1/2) = 4.5 h for C5 [double bond] O exchange). This pattern identifies a flipped orientation, involving 180 degrees rotation about the C alpha-C beta bond, which locates the C3 [bond] H near the substrate-binding site and the C5 double bond] O near the Cu. Finally, fast rates of both C5 [double bond] O and C3 [bond] H exchange (t(1/2) < 30 min) were observed for the amine oxidase from Escherichia coli and the N404A mutant of HPAO, suggesting a mobile cofactor, with multiple TPQ orientations between productive and flipped. These results demonstrate that opposing sides of the TPQ ring possess different degrees of solvent accessibility and that the rates of C5 [double bond] O and C3 [bond] H exchange can be used to predict the TPQ cofactor orientation in the resting forms of these enzymes.  相似文献   

6.
High-resolution 1H nuclear magnetic resonance in H2O has been used to study the effect of sequence, conformation, environmental factors and base substituents on the exchange behavior of the hydrogen-bonded imino protons of guainine X cytosine and inosine X cytosine base-pairs in DNA, RNA, and DNA-RNA duplexes. The exchange rates were determined by measurement of the spin-lattice relaxation rates of the imino protons as a function of temperature. The exchange was not altered by the presence of high concentrations of salt, and the inability of phosphate to catalyze the exchange indicates that the exchange is limited by formation of a solvent-accessible "open" state. The exchange behavior depends on the duplex conformation and sequence. Exchange from the Z form polymers was orders of magnitude slower than the corresponding duplexes in the B conformation, and the A form RNA duplexes exchanged more slowly than the B form DNA polymers with the same sequence. The exchange behavior of the DNA-RNA hybrids was dependent on whether the purine or the pyrimidine strand contained the deoxyribose sugar. For both the guanine and inosine-containing duplexes, the homopolymer duplexes exchange more slowly than the more stable alternating copolymers. For the alternating duplexes, substitution of cytosine with 5-bromo- or 5-methylcytosine slowed the exchange and increased the activation energy for exchange. The inosine-containing duplexes exchanged more rapidly than the guanosine-containing duplexes, but both showed similar changes in exchange behavior in response to changes in sequence and base substituents. The activation energies for base-pair opening in B form DNA are correlated with the van der Waals contribution to the base-base interaction energy, suggesting that the purine base is partially unstacked in the open state. Using the relaxation measurements to set an upper limit on the exchange rate in poly(dG-dC) and the tritium exchange behavior at low temperature, we find that even though Z-DNA exchanges very slowly, the activation energy is similar to that observed in the A and B form duplexes, suggesting that exchange occurs from a similar open state.  相似文献   

7.
T Li  J E Johnson    G J Thomas  Jr 《Biophysical journal》1993,65(5):1963-1972
We describe a novel approach to investigating exchange kinetics in biological assemblies. The method makes use of a Raman multichannel analyzer coupled with a dialysis flow cell. We employ this methodology to determine exchange rates of labile hydrogens in both the packaged RNA genome and protein subunits of bean pod mottle virus (BPMV). In the BPMV assembly, which is similar to human picornaviruses, the x-ray structure indicates that about 20% of the ssRNA chain is ordered at the threefold vertices of the icosahedral capsid, although the nucleotide bases in the ordered segments are not known (Chen et al., 1989). Here, we compare exchange profiles of the native virus with those of the empty capsid, model nucleic acids and aqueous solvent to reveal the following exchange characteristics of BPMV RNA and protein: (i) Base-specific retardation of exchange is observed in the packaged RNA. (ii) Retardation is greatest for uracil residues, for which the first-order exchange rate constant (kU = 0.18 +/- 0.02 min-1) is 40% lower than that of either the H2O solvent or adenine or cytosine groups of RNA (ksolv approximately kA approximately kC = 0.30 +/- 0.02 min-1). (iii) Retardation of exchange is also observed for the guanine residues of packaged RNA. (iv) No appreciable exchange of amide NH groups of capsid subunits occurs within the time of complete exchange (t approximately 10 min) of packaged RNA or bulk solvent. Thus, the present results identify sites in both the protein subunits (amide NH) and RNA nucleotides (amino NH2 and imino NH) which are resistant to solvent-catalyzed hydrogen exchange. We propose that retardation of exchange of labile sites of the RNA nucleotides is a consequence of the organization of the RNA chromosome within the virion. Our findings support a model for BPMV in which surface and buried domains of capsid subunits are extensively and rigidly hydrogen-bonded, and in which uracil and guanine exocyclic donor groups of packaged RNA are the principal targets for subunit interaction at the threefold vertices of the capsid.  相似文献   

8.
M Sabat  R Cini  T Haromy  M Sundaralingam 《Biochemistry》1985,24(26):7827-7833
The 1:1:1 complex of Mn2+, ATP, and 2,2'-dipyridylamine (DPA) crystallizes as Mn-(HATP)2.Mn(H2O)6.(HDPA)2.12H2O in the orthorhombic space group C222(1) with unit cell dimensions a = 10.234 (3) A, b = 22.699 (3) A, and c = 31.351 (4) A. The structure was solved by the multisolution technique and refined by the least-squares method to a final R index of 0.072 using 3516 intensities. The structure is composed of two ATP molecules sharing a common manganese atom. The metal exhibits alpha, beta, gamma coordination to the triphosphate chains of two dyad-related ATP molecules, resulting in a hexacoordinated Mn2+ ion surrounded by six phosphate groups. The metal to oxygen distances are 2.205 (6), 2.156 (4), and 2.144 (5) A for the alpha-, beta-, and gamma-phosphate groups, respectively. No metal-base interactions are observed. There is a second hexaaqua-coordinated Mn2+ ion that is also located on a dyad axis. The hydrated manganese ions sandwich the phosphate-coordinated manganese ions in the crystal with a metal-metal distance of 5.322 A. The ATP molecule is protonated on the N(1) site of the adenine base and exhibits the anti conformation (chi = 66.0 degrees). The ribofuranose ring is in the 2/3 T conformation with pseudorotation parameters P = 179 (1) degrees and tau m = 34.1 (6) degrees. The adenine bases form hydrogen-bonded self-pairs across a crystallographic dyad axis and stack with both DPA molecules to form a column along the dyad. The structure of the metal-ATP complex provides information about the possible metal coordination, conformation, and environment of the nucleoside triphosphate substrate in the enzyme.  相似文献   

9.
The crystal structure of 2SmCl3.galactitol.14H2O has been determined. The crystal system is triclinic, space group: P-1. The unit cell dimensions: a = 9.683(2) A, b = 10.341(2) A, c = 7.990(2) A; alpha = 108.01(3) degrees, beta = 92.71(3) degrees, gamma = 88.42(3) degrees. Each Sm atom is coordinated to nine oxygen atoms, three from the alditol and six from water molecules, with Sm-O distance from 2.417 to 2.520 A. The seventh water molecule is hydrogen-bonded by the hydroxy hydrogen on O-3 (O(3)-H(13)...O(10), 2.635 A). After forming complexes the peaks have shifted and the relative intensities have changed in the IR and Raman spectra, which are corresponding to the changes in bond distances and bond angles of the structures. The IR and Raman spectra of Pr-, Nd- and Sm-galactitol complexes are similar, which show that the three metal ions have the same coordination mode.  相似文献   

10.
J B Ames  J Raap  J Lugtenburg  R A Mathies 《Biochemistry》1992,31(50):12546-12554
Kinetic resonance Raman spectra of the HR520, HR640, and HR578 species in the halorhodopsin photocycle are obtained using time delays ranging from 5 microseconds to 10 ms in 0.3 M NO3-, 0.3 M Cl-, and 3 M Cl-. The Raman intensities are converted to absolute concentrations by using a conservation of molecules constraint. The simplest kinetic scheme that satisfactorily models the data is HR578-->HR520 in equilibrium with HR640-->HR578. The rate constant for the HR640-->HR578 transition increases with Cl- concentration, suggesting that Cl- is taken up between HR640 and HR578. The ratio of the forward to the reverse rate constants connecting HR520 and HR640 increases as the inverse of the Cl- concentration, suggesting that Cl- is released during the HR520-->HR640 step. The configuration about the C13 = C14 bond of the retinal chromophore in HR640 is examined by regenerating the protein with [12,14-2H2]retinal. The C12-2H + C14-2H rocking vibration for HR640 is observed at 943 cm-1, demonstrating that the chromophore is 13-cis. The changes in the resonance Raman spectrum of HR640 in response to 2H2O suspension indicates that the Schiff base linkage to the protein is protonated. None of the HR640 fingerprint vibrations shift significantly in 2H2O, suggesting that the Schiff base adopts a C = N anti configuration; this assignment is supported by the frequency of the C15-2H rocking mode (1002 cm-1). The 13-cis structure for the chromophore in HR640 requires that thermal isomerization back to all-trans occurs in the HR640-->HR578 transition. These structural and kinetic results are incorporated into a two-state C-T model for Cl- pumping.  相似文献   

11.
1. The metabolic fate of infused [1-14C]glutamate was studied in perfused rat liver. The 14C label taken up by the liver was recovered to 85 +/- 2% as 14CO2 and [14C]glutamine. Whereas 14CO2 production accounted for about 70% of the [1-14C]glutamate taken up under conditions of low endogenous rates of glutamine synthesis, stepwise stimulation of glutamine synthesis by NH4Cl increased 14C incorporation into glutamine at the expense of 14CO2 production. Extrapolation to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of vascular glutamate taken up by the liver for glutamine synthesis. This was observed in both, antegrade and retrograde perfusions and suggests an almost exclusive uptake of glutamate into perivenous glutamine-synthetase-containing hepatocytes. 2. Glutamate was simultaneously taken up and released from perfused rat liver. At a near-physiological influent glutamate concentration (0.1 mM), the rates of unidirectional glutamate influx and efflux were similar (about 100 and 120 nmol g-1 min-1, respectively). 3. During infusion of [1-14C]oxoglutarate (50 microM), addition of glutamate (2 mM) did not affect hepatic uptake of [1-14C]oxoglutarate. However, it increased labeled glutamate release from the liver about 10-fold (from 9 +/- 2 to 86 +/- 20 nmol g-1 min-1; n = 4), whereas 14CO2 production from labeled oxoglutarate decreased by about 40%. This suggests not only different mechanisms of oxoglutarate and glutamate transport across the plasma membrane, but also points to a glutamate/glutamate exchange. 4. Oxoglutarate was recently shown to be taken up almost exclusively by perivenous glutamine-synthetase-containing hepatocytes [Stoll, B & H?ussinger, D. (1989) Eur. J. Biochem. 181, 709-716] and [1-14C]oxoglutarate (9 microM) was used to label selectively the intracellular glutamate pool in this perivenous cell population. The specific radioactivity of this intracellular (perivenous) glutamate pool was assessed by measuring the specific radioactivity of newly synthesized glutamine which is continuously released from these cells into the perfusate. Comparison of the specific radioactivities of glutamine and glutamate released from perivenous cells indicates that about 60% of total glutamate release from the liver is derived from the perivenous glutamine-synthetase-containing cell population. Following addition of unlabeled glutamate (0.1 mM), unidirectional glutamate efflux from perivenous cells increased from about 30 to 80 nmol g-1 min-1, whereas glutamate efflux from non-perivenous (presumably periportal) hepatocytes remained largely unaltered (i.e. 20-30 nmol g-1 min-1). 5. It is concluded that, in the intact liver, vascular glutamate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase.  相似文献   

12.
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.  相似文献   

13.
Tracer chloride and potassium net efflux from valinomycin-treated human erythrocytes were measured into media of different chloride concentrations, Clo, at 25 degrees C and pH 7.8. Net efflux was maximal [45-50 mmol (kg cell solids)-1 min-1] at Clo = 0. It decreased hyperbolically with increasing Clo to 14-16 mmol (kg cell solids)-1 min- 1. Half-maximal inhibition occurred at Clo = 3 mM. In the presence of the anion exchange inhibitor DNDS, net efflux was reduced to 5 mmol (kg cell solids)-1 min-1, independent of Clo. Of the three phenomenological components of net efflux, the Clo-inhibitable (DNDS-inhibitable) component was tentatively attributed to "slippage," that is, net transport mediated by the occasional return of the empty transporter. The Clo-independent (DNDS-inhibitable) component was tentatively attributed to movement of chloride through the anion transporter without the usual conformational change of the transport site on the protein ("tunneling"). These concepts of slippage and tunneling are shown to be compatible with a model that describes the anion transporter as a specialized single-site, two-barrier channel that can undergo conformational changes between two states. Net chloride efflux when the slippage component dominated (Clo = 0.7 mM) was accelerated by a more negative (inside) membrane potential. It appears that the single anion binding-and-transport site on each transporter has one net positive charge and that is neutralized when a chloride ion is bound.  相似文献   

14.
Neutron diffraction is used to localize water molecules and/or exchangeable hydrogen ions in the purple membrane by H2O/2H2O exchange experiments at different values of relative humidity. At 100% relative humidity, differences in the hydration between protein and lipid areas are observed, accounting for an excess amount of about 100 molecules of water in the lipid domains per unit cell. A pronounced isotope effect was observed, reproducibly showing an increase in the lamellar spacing from 60 A in 2H2O to 68 A in H2O. At 15% relative humidity, the positions of exchangeable protons became visible. A dominant difference density peak corresponding to 11 +/- 2 exchangeable protons was detected in the central part of the projected structure of bacteriorhodopsin at the Schiff's base end of the chromophore. A difference density map obtained from data on purple membrane films at 15% relative humidity in 2H2O, and the same sample after complete drying in vacuum, revealed that about eight of these protons belong to four water molecules. This is direct evidence for tightly bound water molecules close to the chromophore binding site of bacteriorhodopsin, which could participate in the active steps of H+ translocation as well as in the proton pathway across this membrane protein.  相似文献   

15.
This study investigated the effects of intensity and duration of exercise on lymphocyte proliferation as a measure of immunologic function in men of defined fitness. Three fitness groups--low [maximal O2 uptake (VO2max) = 44.9 +/- 1.5 ml O2.kg-1.min-1 and sedentary], moderate (VO2max = 55.2 +/- 1.6 ml O2.kg-1.min-1 and recreationally active), and high (VO2max = 63.3 +/- 1.8 ml O2.kg-1.min-1 and endurance trained)--and a mixed control group (VO2max = 52.4 +/- 2.3 ml O2.kg-1.min-1) participated in the study. Subjects completed four randomly ordered cycle ergometer rides: ride 1, 30 min at 65% VO2max; ride 2, 60 min at 30% VO2max; ride 3, 60 min at 75% VO2max; and ride 4, 120 min at 65% VO2max. Blood samples were obtained at various times before and after the exercise sessions. Lymphocyte responses to the T cell mitogen concanavalin A were determined at each sample time through the incorporation of radiolabeled thymidine [( 3H]TdR). Despite differences in resting levels of [3H]TdR uptake, a consistent depression in mitogenesis was present 2 h after an exercise bout in all fitness groups. The magnitude of the reduction in T cell mitogenesis was not affected by an increase in exercise duration. A trend toward greater reduction was present in the highly fit group when exercise intensity was increased. The reduction in lymphocyte proliferation to the concanavalin A mitogen after exercise was a short-term phenomenon with recovery to resting (preexercise) values 24 h after cessation of the work bout. These data suggest that single sessions of submaximal exercise transiently reduce lymphocyte function in men and that this effect occurs irrespective of subject fitness level.  相似文献   

16.
M W Washabaugh  W P Jencks 《Biochemistry》1988,27(14):5044-5053
Rate constants for C(2)-proton exchange from thiamin, N(1')-methylthiamin, and several 3-substituted-4-methylthiazolium ions catalyzed by D2O and deuterioxide ion were determined by 1H NMR at 30 degrees C and ionic strength 2.0 M. Values of pKa for the thiazolium ions, including thiamin itself, were found to be in the range pKa = 17-19; the pKa values for N(1')-protonated thiamin and free thiamin C(2)-H in H2O are 17.7 and 18.0, respectively. The pKa value for N(1')-protonated thiamin was calculated from the observed rate constant for the pD-independent reaction with D2O after correction for a secondary solvent deuterium isotope effect of kH2O/kD2O = 2.6. The pKa value for free thiamin was calculated from the rate constant for catalysis by OD- after correction by a factor of 3.3 = 8/2.4 for an 8-fold negative deviation of kOD from the Br?nsted plot of slope 1.0 for general base catalysis and a secondary solvent isotope effect of kOD/kOH = 2.4. Values of k-a = 2 X 10(10) and 3 X 10(9) M-1 s-1 were assumed for diffusion-controlled protonation of the C(2) ylide in the reverse direction by H3O+ and H2O, respectively. The Hammett rho I value for the exchange reaction catalyzed by deuterioxide ion or D2O is 8.4 +/- 0.2. There is no positive deviation of the rate constants for free or N(1')-substituted thiamin analogues in either Hammett correlation. This shows that the aminopyrimidinyl group does not provide significant intramolecular catalysis of nonenzymic C(2)-proton removal in the coenzyme.  相似文献   

17.
The crystal structure of SrCl(2).galactitol.4H(2)O has been determined. It belongs to monoclinic system, C2/c space group with unit cell dimensions: a=13.9849(3), b=14.1601(5), c=8.3026(3) A, beta=104.621(2) degrees, V=1590.9(9) A(3) and Z=4. Each Sr(2+) ion in the unit cell binds to two molecules of galactitol through O2 and O3 in one alditol and O2' and O3' in the other, as well as to four water molecules. Sr-O distances in SrCl(2).galactitol.4H(2)O complex range from 2.5420 to 2.6359 A. FT-IR, Raman and far-IR spectra of SrCl(2).galactitol.4H(2)O all show that SrCl(2) coordinates with galactitol through OH groups of the sugar molecule to form the new complex.  相似文献   

18.
We evaluated whether acute anemia results in altered blood glucose utilization during sustained exercise at 26.8 m/min on 0% grade, which elicited approximately 60-70% maximal O2 consumption. Acute anemia was induced in female Sprague-Dawley rats by isovolumic plasma exchange transfusion. Hemoglobin and hematocrit were reduced 33% by exchange transfusion to 8.6 +/- 0.4 g/dl and 26.5 +/- 1%, respectively. Glucose kinetics were determined by primed continuous infusion of [6-3H]glucose. Rates of O2 consumption were similar during rest (pooled means 25.1 +/- 1.8 ml.kg-1.min-1) and exercise (pooled means 46.8 +/- 3.0 ml.kg-1.min-1). Resting blood glucose and lactate concentrations were not different in anemic animals (pooled means 5.1 +/- 0.2 and 0.9 +/- 0.02 mM, respectively). Exercise resulted in significantly decreased blood glucose (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and elevated lactate (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM) concentrations in anemic animals. Glucose turnover rates (Rt) were not different between anemic and control animals at rest and averaged 58.8 +/- 3.6 mumol.kg-1.min-1. Exercise resulted in a 30% greater increase in Rt in anemic (141.7 +/- 3.2 mumol.kg-1.min-1) than in control animals (111.2 +/- 5.2 mumol.kg-1.min-1). Metabolic clearance rates (MCR = Rt/[glucose]) were not different at rest (11.6 +/- 7.4) but were significantly greater in anemic (55.2 +/- 5.7 ml.kg-1.min-1) than in control animals (24.3 +/- 1.4 ml.kg-1.min-1) during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Leupeptin and similar peptide argininal (arginine aldehyde) transition-state analog protease inhibitors exist in three covalent forms in aqueous solution, the leupeptin hydrate (IH), a cyclic carbinolamine form (IC) generated by the addition of the guanidino epsilon N to the aldehydic carbon, and the free aldehyde form (IA). 1H NMR in D2O show their equilibrium concentrations to be 42, 56, and 2% for IH, IC (R and S enantiomers), and IA. The rates of conversion of (formula; see text) were determined by 1H NMR in D2O by trapping IA with semicarbazide. Application of a deuterium isotope effect of 2.8 led to rate constants in H2O for kC of 0.092 min-1 and kD of 0.73 min-1. The equilibrium concentration of IA and rates for kC and kD are then used to explain the lag phase in the inhibition of cathepsin B and papain by leupeptin. Two circumstances are observed. (i) At micromolar concentrations of leupeptin and papain the binding of leupeptin is biphasic with rate constants identical to kD and kC. (ii) At more dilute nanomolar concentrations of total leupeptin and proteases, the observed lag phase for approach to steady-state inhibition (with rate constant k') is now explained by the low values of the koff rate constants (0.072 min-1 for cathepsin B and 0.024 min-1 for papain) together with the extremely low concentrations of the active inhibitor form IA, with k' = kon[IA] + koff. While kon[IA] is slow, the second-order rate constant kon is found to be quite fast, 1.2 x 10(7) M-1 s-1 for cathepsin B and 1.8 x 10(7) M-1 s-1 for papain. Thus, the binding of leupeptin to cathepsin B and papain may show a lag phase, but this is not due to slow binding.  相似文献   

20.
Ketone body kinetics in humans: a mathematical model   总被引:2,自引:0,他引:2  
A model has been developed to account for ketone body kinetics in man based on data following bolus injections of [14C]acetoacetate (A) and [14C]beta-OH butyrate (B) into normal humans in the postabsorptive state. The model consists of separate compartments for blood A and B that are linked by a tissue compartment in which rapid interconversion of the ketone bodies occurs. The probability of movement from blood into this compartment was assumed to be the same for both ketone bodies. Two slowly equilibrating tissue compartments are required to account for the slow components in the tracer data, and thus a five-compartment model is proposed. By modeling the transient tracer data with the tracee in a steady state, ketone body kinetics were defined in terms of the rapid interconversions of A and B, and the slow exchanges of carbon within the tissues. The rates of release of new A and B into blood, (UA and UB) were calculated. These rates were less than the apparent production rates, PRA and PRB, as the PR's included carbon atoms first released as the other ketone body. The exchange constants between the compartments were determined in addition to the fractional catabolic rates (FCR) and metabolic clearance rates (MCR) of A and B. The initial space of distribution was 10 L and the mean values +/- SD (n = 11), normalized to this volume, were UA = 6.4 +/- 5.0, UB = 8.8 +/- 8.0 (mumol L-1 min-1), FCRA = 0.226 +/- 0.142, FCRB = 0.188 +/- 0.124 (min-1), MCRA = 2.26 +/- 1.42, MCRB = 1.87 +/- 1.23 (L min-1) and PRA = 11.1 +/- 7.6, PRB = 12.7 +/- 10.0 (mumol L-1 min-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号