首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deoxycholic acid, a colon tumor promoter, was found to bind covalently to DNA and RNA in the presence of methyl linoleate hydroperoxide and ferrous ion. This binding was shown to occur specifically with guanine residues and its covalent nature was demonstrated by analysis of hydrolysates of nucleic acid adducts. These findings are discussed in connection with the increased risk of colon cancer associated with a high fat and meat diet.  相似文献   

2.
3.
4.
5.
6.
T E Gunter  K K Gunter 《Biopolymers》1972,11(3):667-678
Thermal denaturation of DNA's and the corresponding helix–coil transformation of artificial polyribonucleic and polydeoxyribonucleic acids have been studied extensively both theoretically1–13 and experimentally. 14–30 Much less work has been carried out on the properties of these polynucleic acids at high pressure, and in particular, on the presure dependence of the helix–coil transition temperature.31–33 Light-scattering techniques have been used in this study to measure the pressure dependence of the helix–coil transition temperature of the two- and three-stranded helices of polyriboadenylic and polyribouridilic acids and of calf thymus DNA. From the slopes of the transition temperature vs. pressure curves and heats of transition obtained from the literature,20,34 the following volume changes from these helix–coil transitions have been obtained: (a) ?0.96 cc/mole of nucleotide base pairs for the poly (A + U) transition, (b) +0.35 cc/mole of nucleotide base trios for the poly (A + 2U) transition, and (c) +2.7 cc/mole of nucleotide base pairs for the DNA transition. The relative magnitudes and signs of these volume changes which show that poly (A + U) is destabilized by increased pressure, whereas poly (A + 2U) and calf thymus DNA are stabilized by increased pressure, indicates that further development of the helix–coil transition theory for polynucleotides is needed.  相似文献   

7.
8.
R Fuchs  M Daune 《Biochemistry》1972,11(14):2659-2666
  相似文献   

9.
Cellular retinoic acid-binding protein (CRABP) is the putative mediator of the biological effects of retinoic acid in the control of epithelial differentiation and tumorigenesis. Omega-6 fatty acids such as linoleic acid and arachidonic acid, precursors of prostaglandin synthesis, caused inhibition of retinoic acid binding to CRABP. These fatty acids, however, possessed lower affinity than retinoic acid for the binding protein. Omega-3 fatty acids, such as eicosapentaenoic acid and docosohexaenoic acid, did not cause such inhibition in the binding of retinoic acid. Whereas retinoic acid was a potent modulator of differentiation of F9 embryonal carcinoma cells, neither omega-3 nor omega-6 fatty acids showed any significant differentiation potential. Competition by omega-6 fatty acids with retinoic acid for CRABP may neutralize the binding protein-mediated biological functions of retinoic acid, and could thereby enhance tumor production.  相似文献   

10.
The dissociation constants for reversible covalent binding of twelve peptide nitrile inhibitors to the active site of papain have been measured by means of fluorescence titration. The binding constants generally parallel the kinetic specificity constants (kcat/Km) for related papain substrates, supporting earlier suggestions that peptide nitriles behave as transition state analog inhibitors of papain. In ten cases the temperature dependence of binding was analyzed to determine the enthalpic and entropic contributions to the binding energy. A compensation plot of delta H vs. T delta S resulted in two parallel lines, one for 'specific' nitriles (i.e., N-Ac-L-aa-NHCH2CN; aa = Phe, Leu, Met) and the other for 'non-specific' nitriles (e.g., N-Ac-D-Phe-NHCH2CN, PhCH2CH2CONHCH2CN hippurylnitrile, etc.). For both specific and nonspecific nitriles representing an 1800-fold range of Kd values (0.27 microM-490 microM), the solvent deuterium isotope effect on binding (Kd(H2O)/Kd(D2O) = DKd) was very close to 2.0. This isotope effect could be accounted for entirely by the simple protonic change which occurs upon the reversible addition of the active site sulfhydryl of papain to the nitrile group of the peptide derivative to form a covalent thioimidate linkage. In contrast, six closely related non-nitrile ligands containing identical peptide side chains but having C-terminal groups incapable of binding covalently to papain had unmeasureably high dissociation constants. Collectively, these results indicate that strong binding of peptide nitrile substrate analogs to papain requires a combination of (1) hydrophobic interaction (especially at the P2 position), (2) specific intermolecular hydrogen bonding and (3) covalent interaction of the nitrile with the active site sulfhydryl group.  相似文献   

11.
Novel acetone and aldimine covalent adducts were identified on the N‐termini and lysine side chains of recombinant monoclonal antibodies. Photochemical degradation of citrate buffers, in the presence of trace levels of iron, is demonstrated as the source of these modifications. The link between degradation of citrate and the observed protein modifications was conclusively established by tracking the citrate decomposition products and protein adducts resulting from photochemical degradation of isotope labeled 13C citrate by mass spectrometry. The structure of the acetone modification was determined by nuclear magnetic resonance (NMR) spectroscopy on modified–free glycine and found to correspond to acetone linked to the N‐terminus of the amino acid through a methyl carbon. Results from mass spectrometric fragmentation of glycine modified with an acetone adduct derived from 13C labeled citrate indicated that the three central carbons of citrate are incorporated onto protein amines in the presence of iron and light. While citrate is known to stoichiometrically decompose to acetone and CO2 through various intermediates in photochemical systems, it has never been shown to be a causative agent in protein carbonylation. Our results point to a previously unknown source for the generation of reactive carbonyl species. This work also highlights the potential deleterious impact of trace metals on recombinant protein therapeutics formulated in citrate buffers.  相似文献   

12.
13.
Acyl glucuronides are reactive metabolites of carboxylate drugs, able to undergo a number of reactions in vitro and in vivo, including isomerization via intramolecular rearrangement and covalent adduct formation with proteins. The intrinsic reactivity of a particular acyl glucuronide depends upon the chemical makeup of the drug moiety. The least reactive acyl glucuronide yet reported is valproic acid acyl glucuronide (VPA-G), which is the major metabolite of the antiepileptic agent valproic acid (VPA). In this study, we showed that both VPA-G and its rearrangement isomers (iso-VPA-G) interacted with bovine brain microtubular protein (MTP, comprised of 85% tubulin and 15% microtubule associated proteins {MAPs}). MTP was incubated with VPA, VPA-G and iso-VPA-G for 2 h at room temperature and pH 7.5 at various concentrations up to 4 mM. VPA-G and iso-VPA-G caused dose-dependent inhibition of assembly of MTP into microtubules, with 50% inhibition (IC50) values of 1.0 and 0.2 mM respectively, suggesting that iso-VPA-G has five times more inhibitory potential than VPA-G. VPA itself did not inhibit microtubule formation except at very high concentrations (≥2 mM). Dialysis to remove unbound VPA-G and iso-VPA-G (prior to the assembly assay) diminished inhibition while not removing it. Comparison of covalent binding of VPA-G and iso-VPA-G (using [14C]-labelled species) showed that adduct formation was much greater for iso-VPA-G. When [14C]-iso-VPA-G was reacted with MTP in the presence of sodium cyanide (to stabilize glycation adducts), subsequent separation into tubulin and MAPs fractions by ion exchange chromatography revealed that 78 and 22% of the covalent binding occurred with the MAPs and tubulin fractions respectively. These experiments support the notion of both covalent and reversible binding playing parts in the inhibition of microtubule formation from MTP (though the acyl glucuronide of VPA is less important than its rearrangement isomers in this regard), and that both tubulin and (perhaps more importantly) MAPs form adducts with acyl glucuronides.  相似文献   

14.
Insights into binding of fatty acids by fatty acid binding proteins   总被引:10,自引:0,他引:10  
Members of the phylogenetically related intracellular lipid binding protein (iLBP) are characterized by a highly conserved tertiary structure, but reveal distinct binding preferences with regard to ligand structure and conformation, when binding is assessed by the Lipidex method (removal of unbound ligand by hydrophobic polymer) or by isothermal titration calorimetry, a true equilibrium method. Subfamily proteins bind retinoids, subfamily II proteins bind bulky ligands, examples are intestinal bile acid binding protein (I-BABP) and liver fatty acid binding protein (L-FABP) which binds 2 ligand molecules, preferably monounsaturated and n-3 fatty acids. Subfamily III intestinal fatty acid binding protein (I-FABP) binds fatty acid in a bent conformation. The fatty acid bound by subfamily IV FABPs has a U-shaped conformation; here heart (H-) FABP preferably binds n-6, brain (B-) FABP n-3 fatty acids. The ADIFAB-method is a fluorescent test for fatty acid in equilibrium with iLBP and reveals some correlation of binding affinity to fatty acid solubility in the aqueous phase; these data are often at variance with those obtained by the other methods. Thus, in this review published binding data are critically discussed, taking into account on the one hand binding increments calculated for fatty acid double bonds on the basis of the solubility hypothesis, on the other hand the interpretation of calorimetric data on the basis of crystallographic and solution structures of iLBPs.  相似文献   

15.
The binding of amino acids to the herbicide 2,4-dichlorophenoxy acetic acid   总被引:1,自引:0,他引:1  
Summary. The interaction of amino acids with the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was studied by charge-transfer chromatography carried out on diatomaceous layers covered with different amount of 2,4-D and the effect of salts on the strength of interaction was elucidated. It was established that Arg, His, Lys, Orn, Phe and Trp binds to 2,4-D, the binding process is of saturation character. Principal component analysis proved that the concentration of 2,4-D exerts the highest impact on the interaction and the effect of salts is of secondary importance. The results suggest that these amino acid residues may account for the binding of 2,4-D to proteins and can play a considerable role in the detoxification processes by forming conjugates with 2,4-D. Received April 10, 1998, Accepted September 15, 1998  相似文献   

16.
The capacity of urocanic acid to interact with peroxyl radicals has been evaluated in several systems: oxidation in the presence of a free radical source (2,2'-azobis(2-amidinopropane; AAPH), protection of phycocyanin bleaching elicited by peroxyl radicals, and Cu(II)- and AAPH-promoted LDL oxidation. The results indicate that both isomers (cis and trans) are mild peroxyl radical scavengers. For example, trans-urocanic acid is nearly 400 times less efficient than Trolox in the protection of the peroxyl radical promoted bleaching of phycocyanin. Regarding the removal of urocanic acid by peroxyl radicals, nearly 100 muM trans-urocanic acid is required to trap half of the produced radicals under the employed conditions (10 mM AAPH, 37 degrees C). Competitive experiments show that the cis-isomer traps peroxyl radicals 30% less efficiently than the trans-isomer. Given the high concentrations that trans-urocanic acid reaches in skin, its capacity to trap peroxyl radicals could contribute to the protection of the tissue towards ROS-mediated processes. Furthermore, both isomers, and particularly the cis-isomer, protect LDL from Cu(II)-induced oxidation.  相似文献   

17.
Abstract

The capacity of urocanic acid to interact with peroxyl radicals has been evaluated in several systems: oxidation in the presence of a free radical source (2,2′-azobis(2-amidinopropane; AAPH), protection of phycocyanin bleaching elicited by peroxyl radicals, and Cu(II)- and AAPH-promoted LDL oxidation. The results indicate that both isomers (cis and trans) are mild peroxyl radical scavengers. For example, trans-urocanic acid is nearly 400 times less efficient than Trolox in the protection of the peroxyl radical promoted bleaching of phycocyanin. Regarding the removal of urocanic acid by peroxyl radicals, nearly 100 μM trans-urocanic acid is required to trap half of the produced radicals under the employed conditions (10 mM AAPH, 37°C). Competitive experiments show that the cis-isomer traps peroxyl radicals ~30% less efficiently than the trans-isomer. Given the high concentrations that trans-urocanic acid reaches in skin, its capacity to trap peroxyl radicals could contribute to the protection of the tissue towards ROS-mediated processes. Furthermore, both isomers, and particularly the cis-isomer, protect LDL from Cu(II)-induced oxidation.  相似文献   

18.
19.
20.
The correlation between protein motions and function is a central problem in protein science. Several studies have demonstrated that ligand binding and protein dynamics are strongly correlated in intracellular lipid binding proteins (iLBPs), in which the high degree of flexibility, principally occurring at the level of helix-II, CD, and EF loops (the so-called portal area), is significantly reduced upon ligand binding. We have recently investigated by NMR the dynamic properties of a member of the iLBP family, chicken liver bile acid binding protein (cL-BABP), in its apo and holo form, as a complex with two bile salts molecules. Binding was found to be regulated by a dynamic process and a conformational rearrangement was associated with this event. We report here the results of molecular dynamics (MD) simulations performed on apo and holo cL-BABP with the aim of further characterizing the protein regions involved in motion propagation and of evaluating the main molecular interactions stabilizing bound ligands. Upon binding, the root mean square fluctuation values substantially decrease for CD and EF loops while increase for the helix-loop-helix region, thus indicating that the portal area is the region mostly affected by complex formation. These results nicely correlate with backbone dynamics data derived from NMR experiments. Essential dynamics analysis of the MD trajectories indicates that the major concerted motions involve the three contiguous structural elements of the portal area, which however are dynamically coupled in different ways whether in the presence or in the absence of the ligands. Motions of the EF loop and of the helical region are part of the essential space of both apo and holo-BABP and sample a much wider conformational space in the apo form. Together with NMR results, these data support the view that, in the apo protein, the flexible EF loop visits many conformational states including those typical of the holo state and that the ligand acts stabilizing one of these pre-existing conformations. The present results, in agreement with data reported for other iLBPs, sharpen our knowledge on the binding mechanism for this protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号