首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Export of mitochondrially synthesized lysophosphatidic acid   总被引:1,自引:0,他引:1  
We have previously demonstrated that the properties of mitochondrial glycerophosphate acyltransferase are in keeping with the asymmetric distribution of fatty acids found in naturally occurring cell glycerophospholipids. We are now examining if mitochondria can export lysophosphatidic acid and if it is converted to other phospholipids by the microsomes. Rat liver mitochondria were incubated for 3 min with [2-3H]-sn-glycerol 3-phosphate, palmityl-CoA, and N-ethylmaleimide in the acyltransferase assay medium. In the absence of bovine serum albumin in the medium, greater than 80% of the phospholipids sedimented with the mitochondria. In the presence of the albumin, the lysophosphatidic acid was present entirely in the supernatant fluid. The very little phosphatidic acid that was formed sedimented with the mitochondria. Addition of microsomes to the supernatant fluid followed by a further incubation of 5 min converted 61% of the lysophosphatidic acid to phosphatidic acid which sedimented with the microsomes. When mitochondria and microsomes were incubated together in the assay medium containing albumin and N-ethylmaleimide, the product contained more phosphatidic and less lysophosphatidic acid. When the subcellular components were reisolated by differential centrifugation, 70% of the phosphatidic acid sedimented with the microsomes and the lysophosphatidic acid stayed in the postmicrosomal supernatant. Thus, under appropriate conditions mitochondrially produced lysophosphatidic acid can leave the organelles and this phospholipid can be converted to phosphatidic acid by the microsomes.  相似文献   

2.
The superoxide-generating enzyme of human neutrophils, NADPH oxidase, is converted from an inactive to an active form upon stimulation of the neutrophil. This activation process was examined using a recently developed cell-free system in which dormant oxidase is activated by arachidonic acid in the presence of a soluble factor from the neutrophil (Curnutte, J. T. (1985) J. Clin. Invest. 75, 1740-1743). NADPH oxidase from unstimulated human neutrophils was detected only in the membrane fraction. The soluble activation factor was localized entirely to the cytosolic fraction and exhibited two peaks of activity when partially purified under nondenaturing conditions: a major peak with a molecular mass of approximately 250 kDa and a variable minor peak with a mass of approximately 40 kDa. Both forms activated NADPH oxidase in a similar manner and did not exhibit synergy when combined. The cytosolic factor is not protein kinase C (or another kinase) as both peaks of factor activity could be resolved from the protein kinase C peak and neither required calcium or ATP to activate the oxidase. Activation of NADPH oxidase did require the simultaneous presence of the membrane fraction, the cytosolic factor, arachidonic acid, and magnesium. Following activation, however, only the membrane fraction was then required for O2- production. Cytosolic factor levels were normal in five patients with either X-linked or autosomal recessive cytochrome b-negative chronic granulomatous disease. In contrast, the membrane fractions from each failed to generate O2-, indicating that the defects in these two genetic forms of chronic granulomatous disease reside either in the oxidase itself or in a membrane component required for activation.  相似文献   

3.
Recently we have detected and partially purified a 15-kDa cytosolic L-alpha-lysophosphatidic acid (LPA)-binding protein (LPABP), which stimulates export of LPA from mitochondria (Vancura, A., Carroll, M. A., and Haldar, D. (1991) Biochem. Biophys. Res. Commun. 175, 339-343). Now we have purified this protein to homogeneity. By Western immunoblot analysis, amino acid sequence analysis, and binding characteristics we have shown that LPABP is identical with liver fatty acid-binding protein (L-FABP). This protein binds LPA, and stimulates mitochondrial and microsomal glycerophosphate acyltransferase (GAT) and the export of LPA from both the organelles. The mitochondrially synthesized LPA exported by L-FABP can be converted to phosphatidic acid by microsomes. L-FABP also stimulates microsomal conversion of LPA to phosphatidic acid but strongly inhibits this reaction in mitochondria. However, in the absence of L-FABP mitochondria predominantly synthesize PA. Taken together, these findings are suggestive that L-FABP plays a major role in mitochondrial and microsomal phospholipid metabolism by regulating both the synthesis and utilization of LPA.  相似文献   

4.
S6 phosphatase activities, which dephosphorylate the phosphorylated S6 synthetic peptide, RRLSSLRASTSKSESSQK, were purified to near homogeneity from the membrane and cytosolic fractions of the rat parotid gland. Multiple S6 phosphatases were fractionated on Mono Q and gel filtration columns. In the cytosolic fraction, at least three forms of S6 phosphatase, termed peaks I, II, and III, were differentially resolved. The three forms had different sizes and protein compositions. The peak I enzyme, which had an approximately Mr of 68 kDa on gel filtration, appears to represent a dimeric form of the 39 kDa protein. This S6 phosphatase showed the high activity in the presence of EGTA and was completely inhibited by nanomolar concentrations of either okadaic acid or inhibitor 2. The peak II S6 phosphatase enzyme, with an Mr of 35 kDa, was activated by Mn2+. This form could be a proteolytic product of the catalytic subunit of type 1 phosphatase, due to its sensitivities to okadaic acid and inhibitor 2. The peak III enzyme, with an Mr of 55 kDa, is a Mn2+-dependent S6 phosphatase. This S6 phosphatase can be classified as a type 1 phosphatase, due to its sensitivity to okadaic acid, since the IC50 of okadaic acid is 4 nM. However, the molecular mass of this S6 phosphatase differs from that of the type 1 catalytic subunit (37 kDa) and showed less sensitivity to inhibitor 2. On the other hand, the membrane fraction contained one form of the S6 phosphatases, termed peak V (Mr 34 and 28 kDa), which could be classified as a type 1 phosphatase. This S6 phosphatase activity was greatly stimulated by Mn2+.Abbreviations PP1-C catalytic subunit of type 1 protein phosphatase - SDS sodium dodecyl sulfate - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - PMSF phenylmethylsulfonyl fluoride - Mops 4-morpholine propanesulfonic acid - EDTA ethylenediaminetetraacetate - EGTA [ethylenbis (oxyethylenenitrilo)]-tetra acetic acid  相似文献   

5.
Cytosolic proteins may play an important role in the intracellular transport of bile acids in enterocytes. The lithocholate binding properties of cytosolic protein from bovine small intestine were studied. Lithocholate binding was observed in the Y (45-50 kDa), Y' (30-35 kDa), and Z fractions (10-15 kDa) following gel filtration of cytosol. A Y protein with glutathione S-transferase activity (46 kDa) was purified by S-octyl-glutathione affinity chromatography and chromatofocusing (eluted at pH 7.5) of the Y fraction. Two Y' bile acid binding proteins with dihydrodiol dehydrogenase activity were partially purified from the Y' fraction by chromatofocusing and hydroxyapatite-HPLC. The lithocholate binding affinity of Y' protein (Kd < 0.35 microM) was higher than that of Y protein (Kd = 2 microM) and was comparable to that of Z protein (Kd = 0.2 microM). The binding affinity of Y protein was higher for bilirubin (Kd = 2.5 microM) than that for BSP (Kd = 200 microM). This was comparable to the binding affinity of bovine hepatic Y protein. These data indicate that Y' and Z proteins participate in the intracellular transport of bile acids from the brush border to the basolateral pole in enterocytes.  相似文献   

6.
The topography of formation and migration of phosphatidic acid (PA) in the transverse plane of rat liver mitochondrial outer membrane (MOM) were investigated. Isolated mitochondria and microsomes, incubated with sn-glycerol 3-phosphate and an immobilized substrate palmitoyl-CoA-agarose, synthesized both lyso-PA and PA. The mitochondrial and microsomal acylation of glycerophosphate with palmitoyl-CoA-agarose was 80-100% of the values obtained in the presence of free palmitoyl-CoA. In another series of experiments, both free polymyxin B and polymyxin B-agarose stimulated mitochondrial glycerophosphate acyltransferase activity approximately 2-fold. When PA loaded mitochondria were treated with liver fatty acid binding protein, a fifth of the phospholipid left the mitochondria. The amount of exportable PA reduced with the increase in the time of incubation. In another approach, PA-loaded mitochondria were treated with phospholipase A(2). The amount of phospholipase A(2)-sensitive PA reduced when the incubation time was increased. Taken together, the results suggest that lysophosphatidic acid (LPA) and PA are synthesized on the outer surface of the MOM and that PA moves to the inner membrane presumably for cardiolipin formation.  相似文献   

7.
8.
Triacylglycerol is one of the major storage forms of metabolic energy in eukaryotic cells. Biosynthesis of triacylglycerol is known to occur in membranes. We report here the isolation, purification, and characterization of a catalytically active cytosolic 10 S multienzyme complex for triacylglycerol biosynthesis from Rhodotorula glutinis during exponential growth. The complex was characterized and was found to contain lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, diacylglycerol acyltransferase, acyl-acyl carrier protein synthetase, and acyl carrier protein. The 10 S triacylglycerol biosynthetic complex rapidly incorporates free fatty acids as well as fatty acyl-coenzyme A into triacylglycerol and its biosynthetic intermediates. Lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, and diacylglycerol acyltransferase from the complex were microsequenced. Antibodies were raised against the synthetic peptides corresponding to lysophosphatidic acid acyltransferase and phosphatidic acid phosphatase sequences. Immunoprecipitation and immunolocalization studies show the presence of a cytosolic multienzyme complex for triacylglycerol biosynthesis. Chemical cross-linking studies revealed that the 10 S multienzyme complex was held together by protein-protein interactions. These results demonstrate that the cytosol is one of the sites for triacylglycerol biosynthesis in oleaginous yeast.  相似文献   

9.
It is well known that cellular function declines with age. Since phosphatidic acid (PtdOH) biosynthesis is central to the generation of membrane phospholipids, the hypothesis that aging decreases PtdOH biosynthesis was tested. Glycerol-3-phosphate acyltransferase (GPAT) and lysophosphatidic acid acyltransferase (LAT) activities were examined in isolated mitochondria and microsomes from young and old rat liver. The results show that mitochondrial GPAT preference for palmitoyl-CoA over oleoyl-CoA was only observed if albumin or acyl-CoA binding protein (ACBP) were present in the assay in the young rats. Furthermore, mitochondrial GPAT activity was significantly reduced in the presence of albumin and ACBP in aged mitochondria using palmitoyl-CoA as the substrate. These data show, for the first time, that mitochondrial GPAT acyl-CoA preference is due to the presence of a protein that binds acyl-CoAs, not the enzyme itself, and that aging significantly reduces mitochondrial GPAT activity.  相似文献   

10.
We recently purified two closely related 33 kDa proteins from rat hepatic cytosol, designated bile acid binder I and II, which selectively bind bile acids with comparable affinity as glutathione S-transferase B. This work has now been extended to human liver in which we have identified a similar cytosolic binding activity in the 30-40 kDa fraction from gel filtration. Subsequent chromatofocusing and hydroxyapatite chromatography resulted in the isolation of a homogeneous monomeric protein of 36 kDa. The binding affinity of this protein for lithocholate using the displacement of 1-anilino-8-naphthalenesulfonate (ANS) was 0.1 microM, whereas human hepatic glutathione S-transferases purified from glutathione affinity chromatography demonstrated no competitive displacement of ANS.  相似文献   

11.
Cytosolic fructose-1,6-P(2) (FBP) aldolase (ALD(c)) from germinated mung beans has been purified 1078-fold to electrophoretic homogeneity and a final specific activity of 15.1 micromol FBP cleaved/min per mg of protein. SDS-PAGE of the final preparation revealed a single protein-staining band of 40 kDa that cross-reacted strongly with rabbit anti-(carrot ALD(c))-IgG. The enzyme's native M(r) was determined by gel filtration chromatography to be 160 kDa, indicating a homotetrameric quaternary structure. This ALD is a class I ALD, since EDTA or Mg(2+) had no effect on its activity, and was relatively heat-stable losing 0-25% of its activity when incubated for 5 min at 55-65 degrees C. It demonstrated: (i) a temperature coefficient (Q(10)) of 1.7; (ii) an activation energy of 9.2 kcal/mol active site; and (iii) a broad pH-activity optima of 7.5. Mung bean ALD(c) is bifunctional for FBP and sedoheptulose-1,7-P(2) (K(m) approximately 17 microM for both substrates). ATP, ADP, AMP and ribose-5-P exerted inhibitory effects on the activity of the purified enzyme. Ribose-5-P, ADP and AMP functioned as competitive inhibitors (K(i) values=2.2, 3.1 and 7.5mM, respectively). By contrast, the addition of 2mM ATP: (i) reduced V(max) by about 2-fold, (ii) increased K(m)(FBP) by about 4-fold, and (iii) shifted the FBP saturation kinetic plot from hyperbolic to sigmoidal (h=1.0 and 2.6 in the absence and presence of 2mM ATP, respectively). Potent feedback inhibition of ALD(c) by ATP is suggested to help balance cellular ATP demands with the control of cytosolic glycolysis and respiration in germinating mung beans.  相似文献   

12.
Despite the evolutionary-tree data suggesting that gene duplication leading to the divergence of the three branches which heart, liver and intestinal fatty acid-binding proteins belong to must have occurred before the vertebrate/invertebrate split, only the heart fatty acid-binding protein has been reported for invertebrates. In an attempt to shed light on this apparent inconsistency the presence of the other two branch members was investigated in the Urochordata Molgula pedunculata, an ascidian species close to vertebrates. The mantle-, gonad- and digestive tube-cytosolic fractions, obtained by centrifugation at 106,000 g, were incubated separately with [1-(14)C]palmitic acid and then fractionated on a Sephadex G-75 column. In the case of gonads and digestive tube, radioactive peaks corresponding to a molecular mass of 14-16 kDa, characteristic of fatty acid-binding proteins, were detected. When the experiment was performed on the mantle, this peak showing fatty acid binding capacity was absent. Western Blot of the radioactive 14-16 kDa Sephadex fraction from the urochordate gonad cross-reacted with rat liver fatty acid-binding protein anti-serum but did not do so with anti-rat intestinal, adipocyte or heart fatty acid-binding protein antisera. The material from the digestive tube was not recognized by any of the antisera. The most abundant protein in said 14-16 kDa fraction was a protein disulphide isomerase-related protein. Its partial amino acid sequence was determined.  相似文献   

13.
A hybrid precursor protein constructed by fusing the mitochondrial matrix-targeting signal of rat preornithine carbamyl transferase to murine cytosolic dihydrofolate reductase (designated pO-DHFR) was expressed in Escherichia coli. Following purification under denaturing conditions, pO-DHFR was capable of membrane translocation when diluted directly into import medium containing purified mitochondria but lacking cytosolic extracts. This import competence was lost with time, however, when the precursor was diluted and preincubated in medium lacking mitochondria, unless cytosolic proteins (provided by rabbit reticulocyte lysate) were present. Identical results were obtained for purified precursor made by in vitro translation. The ability of the cytosolic proteins to maintain the purified precursor in an import-competent state was sensitive to protease, N-ethylmaleimide (NEM), and was heat labile. Further, this activity appeared to be signal sequence dependent. ATP was not required for the maintenance of pO-DHFR competence, nor did purified 70-kDa heat shock protein (the constitutive form of Hsp70) substitute for this activity. Interestingly, however, purified Hsp70 prevented aggregation of the precursor in an ATP-dependent manner and, as well, retarded the apparent rate and extent of pO-DHFR folding. Partial purification of reticulocyte lysate proteins indicated that competence activity resides within a large mass protein fraction (200-250 kDa) that contains Hsp70. Sucrose density gradient analysis revealed that pO-DHFR reversibly interacts with components of this fraction. Pretreatment of the fraction with NEM, however, significantly stabilized the subsequent formation of a complex with the precursor. The results indicate that Hsp70 can retard precursor polypeptide folding and prevent precursor aggregation; however, by itself, Hsp70 cannot confer import competence to pO-DHFR. Maintenance of import competence correlates with interactions between the precursor and an NEM-sensitive cytosolic protein fraction. Efficient dissociation of the precursor from this complex appears to require a reactive thiol moiety on the cytosolic protein(s).  相似文献   

14.
Solubilization of rat liver mitochondria in 5% Triton X-100 followed by chromatography on a hydroxylapatite column resulted in the identification of malonyl-CoA binding protein(s) distinct from a major carnitine palmitoyltransferase activity peak. Further purification of the malonyl-CoA binding protein(s) on an acyl-CoA affinity column followed by sodium dodecyl sulfate gel electrophoresis indicated proteins with Mr mass of 90 and 45-33 kDa. A purified liver malonyl-CoA binding fraction, which was devoid of carnitine palmitoyltransferase, and a soluble malonyl-CoA-insensitive carnitine palmitoyltransferase were reconstituted by dialysis in a liposome system. The enzyme activity in the reconstituted system was decreased by 50% in the presence of 100 microM malonyl-CoA. Rat liver mitochondria carnitine palmitoyltransferase may be composed of an easily dissociable catalytic unit and a malonyl-CoA sensitivity conferring regulatory component.  相似文献   

15.
cgi-58 (comparative gene identification-58) is a member of alpha/beta-hydrolase family of proteins. Mutations in CGI-58 are shown to be responsible for a rare genetic disorder known as Chanarin-Dorfman syndrome, characterized by an excessive accumulation of triacylglycerol in several tissues and ichthyosis. We have earlier reported that YLR099c encoding Ict1p in Saccharomyces cerevisiae can acylate lysophosphatidic acid to phosphatidic acid. Here we report that human CGI-58 is closely related to ICT1. To understand the biochemical function of cgi-58, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to specifically acylate lysophosphatidic acid in an acyl-CoA-dependent manner. Overexpression of CGI-58 in S. cerevisiae showed an increase in the formation of phosphatidic acid resulting in an overall increase in the total phospholipids. However, the triacylglycerol level was found to be significantly reduced. In addition, the physiological significance of cgi-58 in mice white adipose tissue was studied. We found soluble lysophosphatidic acid acyltransferase activity in mouse white adipose tissue. Immunoblot analysis using anti-Ict1p antibodies followed by mass spectrometry of the immunocross-reactive protein in lipid droplets revealed its identity as cgi-58. These observations suggest the existence of an alternate cytosolic phosphatidic acid biosynthetic pathway in the white adipose tissue. Collectively, these results reveal the role of cgi-58 as an acyltransferase.  相似文献   

16.
A low molecular weight, native zinc binding, cytosolic protein (LMZP) has been isolated, purified and characterized from human normal term placenta. Gel filtration of heat treated placental cytosol after sequential acetone precipitation (80% ppt) revealed a major zinc binding protein in the range of low molecular weight. This partially purified zinc binding fraction was further fractionated on DEAE-Sephadex A-25. The zinc was eluted in one of the three peak fractions. Further, the purity of zinc binding protein was confirmed on fast protein liquid chromatography (FPLC). The purified placental LMZP was homogenous on SDS-polyacrylamide gel electrophoresis with a single band. Ultraviolet (UV) spectrum of LMZP showed an absorption maximum at 257 nm which disappeared at pH 2. Molecular weight of LMZP as determined by gel chromatography, SDS-polyacrylamide gel electrophoresis and amino acid analysis was 6 kDa. It was calculated that 1 g atom of zinc was bound to 1 mole of the LMZP. Unlike in classical metallothionein, the amino acid composition of placental LMZP revealed the presence of aromatic amino acids, lower content of cysteine and higher content of histidine, glutamic acid and aspartic acid (10, 9 and 5 residues/mole, respectively).  相似文献   

17.
Both cytosolic and high salt nuclear extracts were isolated from Hepa 1c1c7 cells incubated with 2-azido-3[125I]iodo-7,8-dibromo-dibenzo-p-dioxin ([125I]N3Br2DpD). The [125I]N3Br2DpD-labeled cytosolic fraction was subjected to chemical cross-linking with dimethyl pimelimidate and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Chemical cross-linking of the cytosolic form of the AhR revealed monomeric (97 kDa), dimeric (185 kDa), trimeric (281 kDa), and tetrameric (327 kDa) complexes. In a time course of exposure to the cross-linking reagent, the largest form given above became the predominant AhR form observed in the cytosolic extracts. The 327 kDa cytosolic species apparently consists of a 97 kDa AhR, an approximately 88 kDa protein, an approximately 96 kDa protein, and an approximately 46 kDa protein. Nuclear extracts from [125I]N3Br2DpD-labeled Hepa 1c1c7 cells were applied to sucrose density gradients. The 6 S nuclear receptor peak fractions were pooled and subjected to chemical cross-linking. Analysis by SDS-PAGE revealed a monomeric (97 kDa) ligand binding protein and a dimeric (182 kDa) complex. This would suggest that the nuclear 6 S AhR consists of a 97 kDa AhR and an approximately 85 kDa protein. These findings would indicate that the AhR exists in cytosol as a tetrameric species, while in the nucleus the AhR exists as a heterodimer.  相似文献   

18.
The rabbit heart contains a cytosolic enzyme which selectively incorporates polyunsaturated fatty acids into phosphatidylcholine. This unique acyltransferase is selective for fatty acids, thus far tested, that are substrates for cyclooxygenase or lipoxygenase (i.e., arachidonic, eicosapentaenoic, linoleic and dihomo-gamma-linoleic acids) or which reverse the symptoms of essential fatty acid deficiency (columbinic acid). On the other hand, palmitic, oleic, 5,8,11-eicosatrienoic (n-9, Mead acid), and docosatetraenoic acid (n-6, adrenic acid) were not incorporated in phospholipids by the cytosolic acyltransferase. No such fatty acid selectivity was exhibited by the cytosolic acyl-CoA synthetase or by the acyltransferase activities present in cardiac microsomes and mitochondria.  相似文献   

19.
A 14 kDa polypeptide in rat ileal cytosol has been identified as the major intestinal cytosolic bile acid-binding protein (I-BABP) by photoaffinity labeling with the radiolabeled 7,7-azo derivative of taurocholate (7,7-azo-TC). To further characterize I-BABP, the protein was purified by lysylglycocholate Sepharose 4B affinity and DE-52 anion-exchange chromatography. The purified I-BABP contained a single 14 kDa band on SDS-PAGE. The 14 kDa protein showed a 26-fold increase in binding affinity for [3H]7,7-azo-TC compared to cytosolic protein. Immunoblotting of protein fractions separated by affinity chromatography showed that neither liver fatty acid binding protein (L-FABP) nor intestinal fatty acid binding protein (I-FABP) bind to the affinity column and that the 14 kDa protein which bound to the column and was subsequently eluted with detergent did not cross-react with anti-L-FABP or anti-I-FABP. The 14 kDa protein labeled with [3H]7,7-azo-TC was radioimmunoprecipitated from cytosol by rabbit antiserum raised against purified I-BABP. I-BABP was shown to have a blocked N-terminus; however, its mixed internal sequence generated from cyanogen bromide-cleaved protein and amino acid composition indicated that it was related to (although clearly distinct from) both I-FABP and L-FABP. These studies have isolated a 14 kDa bile acid-binding protein from rat ileal cytosol which is immunologically and biochemically distinct from I-FABP and L-FABP.  相似文献   

20.
Human amniotic fluid has been shown to contain a protein that binds insulin-like growth factor I and II (IGF-I and IGF-II). Partially purified preparations of this protein have been reported to inhibit the biologic actions of the IGFs. In these studies our laboratory has used a modified purification procedure to obtain a homogeneous preparation of this protein as determined by polyacrylamide gel electrophoresis and amino acid sequence analysis. During purification the ion exchange chromatography step resulted in two peaks of material with IGF binding activity termed peaks B and C. Each peak was purified separately to homogeneity. Both peaks were estimated to be 31,000 daltons by polyacrylamide gel electrophoresis and their amino acid compositions were nearly identical. Amino acid sequence analysis showed that both peaks had identical N-terminal sequences through the first 28 residues. Neither protein had detectable carbohydrate side chains and each had a similar affinity for radiolabeled IGF-I (1.7-2.2 x 10(10) liters/mol). In contrast, these two forms had marked differences in bioactivity. Concentrations of peak C material between 2 and 20 ng/ml inhibited IGF-I stimulation of [3H]thymidine incorporation into smooth muscle cell DNA. In contrast, when peak B (100 ng/ml) was incubated with IGF-I there was a 4.4-fold enhancement of stimulation of DNA synthesis. Additionally, pure peak B was shown to adhere to cell surfaces, whereas peak C was not adherent. The non-adherent peak C inhibited IGF-I binding to its receptor and to adherent peak B. We conclude that human amniotic fluid contains two forms of IGF binding protein that have very similar physiochemical characteristics but markedly different biologic actions. Since both have similar if not identical amino acid compositions, N-terminal sequences, and do not contain carbohydrate, we conclude that they differ in some other as yet undefined post-translational modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号