共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Turner NJ 《Current opinion in chemical biology》2011,15(2):234-240
Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R=H) and p-hydroxycinnamic (1: R=OH) to generate L-phenylalanine (2: R=H) and L-tyrosine (2: R=OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of L-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of L-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids. 相似文献
3.
Ten C-glycosyl β2- and β/β2-peptides with three to eight amino acid residues have been prepared. Solution and solid-phase peptide syntheses were employed to assemble β2-amino acids in which C-glycosylic substituents are attached to the C-2 position of β-amino acids. Conformational analysis of the C-glycosyl β2-peptides using NMR and CD spectra indicates that the tripeptide can form a helical secondary structure. Besides, helix directions of the C-glycosyl β/β2-peptides are governed by the configuration at the α-carbon of the peptide backbone that originates from the stereocenter of the C-glycosyl β2-amino acids. 相似文献
4.
5.
6.
Summary. Various α/β amino acid derivatives 5 were attached to compounds 3 to yield 2,3-dihydro-1H-pyrrol-3-ones amino acids derivatives 6. This rare heterocyclic amino acid skeleton including the pyrrolo[1,2-b][1,3]oxazol moiety was also successfully prepared in the esteric form. The structure of the new compounds was characterized by spectroscopic methods. 相似文献
7.
Yukihiro Isoda Shogo Asanami Ken’ichi Takeo Yasunori Nitta 《Bioscience, biotechnology, and biochemistry》2013,77(12):3223-3229
Among 2,3-epoxypropyl α-d-glucopyranoside and 2,3-epoxypropyl α-maltooligosaccharides and the β-anomers, 2,3-epoxypropyl α-d-glucopyranoside (α-EPG) strongly inactivated the β-amylases [EC 3.2.1.2] of sweet potato, barley, and Bacillus, cereus, in addition to soybean β amylase [J. Biochem., 99, 1631 (1986)]. However, none of the compounds used inactivated any α-amylases [EC 3.2.1.1] of porcine pancreas, Aspergillus oryzae, or Bacillus amyloliquefaciens. Irreversible incorporation of 14C-labeled α-EPG into β-amylases was stoichiometric, i.e., one α-EPG per active site of the enzyme was bound, and the inactivations were almost complete. The results suggest that α-EPG is an affinity labeling reagent selective for β-amylase. Slow inactivations by the other compounds were also observed, depending on the difference of source of β amylase. 相似文献
8.
Aimed at understanding the crucially important structural features for the integrity of α-helical mimicry by βγ-sequences,
an α-amino acid sequence in a native peptide was substituted by differently arranged βγ-sequences. The self- and hetero-assembly
of a series of αβγ-chimeric sequences based on a 33-residue GCN4-derived peptide was investigated by means of molecular dynamics,
circular dichroism, and a disulfide exchange assay. Despite the native-like behavior of βγ alternating sequences such as retention
of α-helix dipole and the formation of 13-membered α-helix turns, the αβγ-chimeras with different βγ substitution patterns
do not equally mimic the structural behavior of the native parent peptide in solution. The preservation of the key residue
contacts such as van der Waals interactions and intrahelical H-bonding, which can be met only by particular substitution patterns,
thermodynamically favor the adoption of coiled coil folding motif. In this study, we show how successfully the destabilizing
structural consequences of α → βγ modification can be harnessed by reducing the solvent-exposed hydrophobic surface area and
placing of suitably long and bulky helix-forming side chains at the hydrophobic core. The pairing of αβγ-chimeric sequences
with the native wild-type are thermodynamically allowed in the case of ideal arrangement of β- and γ-residues. This indicates
a similarity in local side chain packing of β- and γ-amino acids at the helical interface of αβγ-chimeras and the native α-peptide.
Consequently, the backbone extended residues are able to participate in classical “knob-into-hole” packing with native α-peptide. 相似文献
9.
Andrea Angeli Sonia Del Prete Sameh M. Osman Fatmah A. S. Alasmary Zeid AlOthman William A. Donald 《Journal of enzyme inhibition and medicinal chemistry》2018,33(1):227-233
The α- and β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae, VchCAα, and VchCAβ, were investigated for their activation with natural and non-natural amino acids and amines. The most effective VchCAα activators were L-tyrosine, histamine, serotonin, and 4-aminoethyl-morpholine, which had KAs in the range of 8.21–12.0?µM. The most effective VchCAβ activators were D-tyrosine, dopamine, serotonin, 2-pyridyl-methylamine, 2-aminoethylpyridine, and 2-aminoethylpiperazine, which had KAs in the submicromolar – low micromolar range (0.18–1.37?µM). The two bacterial enzymes had very different activation profiles with these compounds, between each other, and in comparison to the human isoforms hCA I and II. Some amines were selective activators of VchCAβ, including 2-pyridylmethylamine (KA of 180?nm for VchCAβ, and more than 20?µM for VchCAα and hCA I/II). The activation of CAs from bacteria, such as VchCAα/β has not been considered previously for possible biomedical applications. It would be of interest to study in more detail the extent that CA activators are implicated in the virulence and colonisation of the host by such pathogenic bacteria, which for Vibrio cholerae, is highly dependent on the bicarbonate concentration and pH in the surrounding tissue. 相似文献
10.
《生物化学与生物物理学报:生物膜》2019,1861(11):183028
The development of antimicrobial agents that target and selectively disrupt biofilms is a pressing issue since, so far, no antibiotics have been developed that achieve this effectively. Previous experimental work has found a promising set of antibacterial peptides: β2,2-amino acid derivatives, relatively small molecules with common structural elements composed of a polar head group and two non-polar hydrocarbon arms. In order to develop insight into possible mechanisms of action of these novel antibacterial agents, we have performed an in silico investigation of four leading β2,2-amino acid derivatives, interacting with models of both bacterial (target) and eukaryotic (host) membranes, using molecular dynamics simulation with a model with all-atom resolution. We found an unexpected result that could shed light on the mechanism of action of these antimicrobial agents: the molecules assume a conformation where one of the hydrophobic arms is directed downward into the membrane core while the other is directed upwards, out of the membrane and exposed above the position of the membrane headgroups; we dubbed this conformation the “can-can pose”. Intriguingly, the can-can pose was most closely linked to the choice of headgroup. Also, the compound previously found to be most effective against biofilms displayed the strongest extent of this behavior and, additionally, this behavior was more pronounced for this compound in the bacterial than in the eukaryotic membrane. We hypothesize that adopting the can-can pose could possibly disrupt the protective peptidoglycan macronet found on the exterior of the bacterial membrane. 相似文献
11.
The influxes of the l- and d-stereoisomers of alanine, valine, serine, leucine, histidine, phenylalanine and tryptophan across the brush border of rabbit ileum and the roles of the α-carboxylate and α-amino groups in the influx process have been examined. Our results indicate that:
- 1.
- 1. The interactions between neutral amino acids and the influx mechanism(s) invovle the α-amino and α-carboxylate groups as well as the side chain. 相似文献
12.
The nitrogen-fixing symbiosis between bacteria in the family Rhizobiaceae and members of the legume family (Fabaceae) has been well studied, particularly from the perspective of the early signaling and recognition events. Recent studies of non-nodulating legume mutants have resulted in the identification of a number of genes that are responsive to signal molecules from the bacteria. However, a second group of nodule-forming bacteria, completely unrelated to the Rhizobiaceae, which are α-Proteobacteria, has been discovered. These bacteria belong to the β-Proteobacteria and have been designated β-rhizobia to distinguish them from the better-known α-rhizobia. Here, we review what is known in this economically important symbiosis about the interaction between legumes and α-rhizobia, and we incorporate information, where known, about the β-rhizobia.Key Words: biological nitrogen fixation, recognition, specificity, α-rhizobia, β-rhizobia 相似文献
13.
The α- and β-N-oxalyl derivatives of l-α,β-diaminopropionic acid have been chemically synthesized and also isolated from seed extracts of Lathyrus sativus. Chemical and physical properties of the natural and synthetic isomers were in good agreement. The toxicity of the α-isomer to chicks was evaluated and compared with that of the β-isomer. 相似文献
14.
15.
Rhizomes and roots of Petasites niveus gave some new cis-fused, unstable furanoeremophilanes bearing the senecioyloxy group either at C-2β or at C-3β and C-6β, besides the known, unstable 2β-pangeloyloxy-10β-H-furanoeremophilane (furanojaponin) and 3β,6β-diangeloyloxy-10β-H-furanoeremophilane. The senecioyloxy or angeloyloxy group at C-6 was easily replaced in alcohols, by the alkoxyl group, leading in medium yields to the ethers with retention of configuration at C-6. Most of the above terpenes prefer the ‘non-steroid-like’ conformation. 相似文献
16.
Amyloid precursor protein (APP) fragment containing amino acids 667–676, (APP667–676), is a substrate for β-secretase which is responsible for generating amyloid β peptides. Conformational analysis of APP667–676 peptide [Ac-Ser-Glu-Val-Lys-Met-Asp-Ala-Glu-Phe-Arg-NH2] and the effect of substitution of Asp672 with d-Asp and iso-l-Asp, studied for the first time, demonstrate that the peptide backbone of APP667–676 is flexible and adopts different conformations in different solvent environments (water, trifluoroethanol and dimethylsulfoxide). A major conformational difference was observed in trifluoroethanol solvent when Asp672 is substituted with d-Asp and iso-Asp. These conformational changes involved in APP667–676 may assist in understanding the interactions between β-secretase and APP667–676, with relevance to Alzheimer’s disease. 相似文献
17.
Stereospecific hydroxylation of (E)-3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-(methoxycarbonylmethylene)-α-D-xylo-hexofuranose (2) with potassium permanganate in pyridine afforded pure 3-C-[(R)-hydroxy(methoxycarbonyl)methyl]-1,2:5,6-di-O-isopropylidene-α-D-galactofuranose (5) in 55% yield. Mesylation of the diol 5 in pyridine yielded the monomethanesulfonate 6 and, in addition, a small proportion of an unsaturated, exocyclic sulfonate 7. Treatment of 6 with sodium azide in N-N-dimethylformamide and reduction of the resultant α-azido ester 9 afforded methyl D- (and L-) 2-(1,2:5,6-di-O-isopropylidene-α-D-galactofuranos-3-yl)glycinate, (11a) and (10a), respectively. Basic hydrolysis of 11a and 10a yielded D- and L-2-(1,2:5,6-di-O-isopropylidene-α-D-galactofuranos-3-yl)glycine (11b) and (10b), respectively. The structures of the glycosyl α-amino acids were correlated with that of L-alanine by circular dichroism. 相似文献
18.
Vincent Jallu Pierre Poulain Patrick F. J. Fuchs Cecile Kaplan Alexandre G. de Brevern 《PloS one》2012,7(11)
Background
The HPA-1 alloimmune system carried by the platelet integrin αIIbβ3 is the primary cause of alloimmune thrombocytopenia in Caucasians and the HPA-1b allele might be a risk factor for thrombosis. HPA-1a and -1b alleles are defined by a leucine and a proline, respectively, at position 33 in the β3 subunit. Although the structure of αIIbβ3 is available, little is known about structural effects of the L33P substitution and its consequences on immune response and integrin functions.Methodology/Principal Findings
A complete 3D model of the L33-β3 extracellular domain was built and a P33 model was obtained by in silico mutagenesis. We then performed molecular dynamics simulations. Analyses focused on the PSI, I-EGF-1, and I-EGF-2 domains and confirmed higher exposure of residue 33 in the L33 β3 form. These analyses also showed major structural flexibility of all three domains in both forms, but increased flexibility in the P33 β3 form. The L33P substitution does not alter the local structure (residues 33 to 35) of the PSI domain, but modifies the structural equilibrium of the three domains.Conclusions
These results provide a better understanding of HPA-1 epitopes complexity and alloimmunization prevalence of HPA-1a. P33 gain of structure flexibility in the β3 knee may explain the increased adhesion capacity of HPA-1b platelets and the associated thrombotic risk. Our study provides important new insights into the relationship between HPA-1 variants and β3 structure that suggest possible effects on the alloimmune response and platelet function. 相似文献19.
20.
Sébastien Fortin Lianhu Wei Emmanuel Moreau Philippe Labrie Éric Petitclerc Lakshmi P. Kotra René C.-Gaudreault 《Bioorganic & medicinal chemistry》2009,17(10):3690-3697
Computational tools such as CoMSIA and CoMFA models reported in a recent study revealed the structure–activity relationships ruling the interactions occurring between hydrophobic N-phenyl-N′-(2-chloroethyl)ureas (CEU) and the colchicine-binding site (C-BS) on βΙΙ-tubulin. Here, we describe the mechanisms involved in the covalent binding of three subsets of CEU derivatives to the C-BS. The FlexiDock experiments confirmed that the interaction of non-covalent portions of the CEU auxophore moiety of CEU is involved in the binding of the drug to the C-BS facilitate the nucleophilic attack of Glu-β198 rather than Cys-β239. In addition, these studies suggest that Cys-β239 together with Asn-α99, Ser-α176, Thr-α177, Leu-β246, Asn-β247, Ala-β248, Lys-β252 and Asn-β256 are implicated in the stabilization of a C-BS–CEU complex prior to the acylation of Glu-β198 by CEU. Our molecular models propose the formation of a stabilized C-BS–CEU complex before the completion of the Glu-β198 acylation; acylation triggering conformational changes of β-tubulin, microtubule depolymerization and anoikis. The computational models presented here might be useful to the design of selective and more potent C-BS inhibitors. Of interest, in vivo acylation of acidic amino acid residues by xenobiotics is an unusual reaction and may open new approaches for the design of irreversible protein inhibitors such as tubulin. 相似文献