首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Gene activation and DNA binding by Drosophila Ubx and abd-A proteins   总被引:18,自引:0,他引:18  
M L Samson  L Jackson-Grusby  R Brent 《Cell》1989,57(6):1045-1052
The Ubx and abd-A gene products are required for proper development of thoracic and abdominal structures in Drosophila. We expressed LexA-Ubx and LexA-abdA fusion proteins in yeast. These proteins activated expression of target genes that carried either upstream LexA operators or upstream Ubx binding sites. Both proteins contain homeodomains. Experiments with mutant fusion proteins show that the homeodomain is not required for the proteins to form dimers or enter the nucleus, and that, when DNA binding is provided by the LexA moiety, the homeodomain is not required for gene activation. Our results suggest that the homeodomain is necessary for these proteins to bind Ubx sites, but that the homeodomain does not contact DNA exactly like bacterial helix-turn-helix proteins. Finally, our data suggest that gene activation by these proteins is a simple consequence of their binding to DNA, while negative gene regulation requires that these proteins act together with other Drosophila gene products.  相似文献   

4.
5.
6.
Two overlapping genomic clones containing the fibroin light-chain (Fib-L)-encoding gene (Fib-L) were obtained from the cosmid library of the silkworm, Bombyx mori J-139, by hybridization with the Fib-L cDNA clone. Sequencing of the 14.6-kb region revealed that Fib-L was 13472 bp long containing seven exons, and that the gene contained a large first intron which occupied about 60% of the gene. Comparison of restriction patterns of the J-139 Fib-L with those of eight other B. mori breeds producing normal-level fibroin demonstrated that considerable restriction-fragment length polymorphisms were present in regions containing the first intron and the 3′-flanking sequence. However, sizes of the Fib-L mRNA and the Fib-L polypeptide were very similar among the nine breeds tested, suggesting that the exon sequences and the splice signals were all well conserved. 5′-Flanking regions of Fib-L and the fibroin heavy-chain (Fib-H)-encoding gene (Fib-H) compared in this study contained three 18-30-bp sequences of high similarity and many 8-10-bp common elements, six of which coincided with the binding sites of homeodomain proteins. Gel retardation assays with the nuclear extracts of the posterior and middle silk glands suggested that protein factors present in the posterior silk-gland nuclei could bind to a set of those common upstream elements.  相似文献   

7.
Regulatory sequences or factors involved in the regulation of target genes of Drosophila homeodomain proteins are largely unknown. Here, we identify sequence elements that are involved in the function of the fushi tarazu (ftz) autoregulatory element AE, a direct in vivo target of the homeodomain protein ftz. A systematic deletion analysis of AE in transgenic embryos defines multiple elements that are redundantly involved in enhancer activity. Sequences juxtaposed to ftz binding sites are not strictly required for enhancer function. Several sequence motifs are conserved in other developmentally regulated genes of Drosophila melanogaster and in the AE homologue of Drosophila virilis. The D. virilis AE is functional in D. melanogaster. The sequence motifs identified here are candidate elements contributing to the target specificity of the homeodomain protein ftz.  相似文献   

8.
The homeodomain encoded by the Antennapedia (Antp) gene of Drosophila was overproduced in a T7 expression vector in Escherichia coli. The corresponding polypeptide of 68 amino acids was purified to homogeneity. The homeodomain was analysed by ultracentrifugation and assayed for DNA binding. The secondary structure of the isolated homeodomain was determined by nuclear magnetic resonance spectroscopy. DNA-binding studies indicate that the isolated homeodomain binds to DNA in vitro. It selectively binds to the same sites as a longer Antp polypeptide and a full-length fushi tarazu (ftz) protein. Therefore, the homeodomain represents the DNA-binding domain of the homeotic proteins.  相似文献   

9.
10.
11.
12.
Many Drosophila developmental genes contain a DNA binding domain encoded by the homeobox. This homeodomain contains a region distantly homologous to the helix-turn-helix motif present in several prokaryotic DNA binding proteins. We investigated the nature of homeodomain-DNA interactions by making a series of mutations in the helix-turn-helix motif of the Drosophila homeodomain protein Paired (Prd). This protein does not recognize sequences bound by the homeodomain proteins Fushi tarazu (Ftz) or Bicoid (Bcd). We show that changing a single amino acid at the C-terminus of the recognition helix is both necessary and sufficient to confer the DNA binding specificity of either Ftz or Bcd on Prd. This simple rule indicates that the amino acids that determine the specificity of homeodomains are different from those mediating protein-DNA contacts in prokaryotic proteins. We further show that Prd contains two DNA binding activities. The Prd homeodomain is responsible for one of them while the other is not dependent on the recognition helix.  相似文献   

13.
14.
15.
Polycomb group (PcG) proteins repress homeotic genes in cells where these genes must remain inactive during development. This repression requires cis-acting silencers, also called PcG response elements. Currently, these silencers are ill-defined sequences and it is not known how PcG proteins associate with DNA. Here, we show that the Drosophila PcG protein Pleiohomeotic binds to specific sites in a silencer of the homeotic gene Ultrabithorax. In an Ultrabithorax reporter gene, point mutations in these Pleiohomeotic binding sites abolish PcG repression in vivo. Hence, DNA-bound Pleiohomeotic protein may function in the recruitment of other non-DNA-binding PcG proteins to homeotic gene silencers.  相似文献   

16.
17.
Much of the functional specificity of Drosophila homeotic selector proteins, in their ability to regulate specific genes and to assign specific segmental identities, appears to map within their different, but closely related homeodomains. For example, the Drosophila Dfd and human HOX4B (Hox 4.2) proteins, which have extensive structural similarity only in their respective homeodomains, both specifically activate the Dfd promoter. In contrast, a chimeric Dfd protein containing the Ubx homeodomain (Dfd/Ubx) specifically activates the Antp P1 promoter, which is normally targeted by Ubx. Using a variety of DNA binding assays, we find significant differences in DNA binding preferences between the Dfd, Dfd/Ubx and Ubx proteins when Dfd and Antp upstream regulatory sequences are used as binding substrates. No significant differences in DNA binding specificity were detected between the human HOX4B (Hox 4.2) and Drosophila Dfd proteins. All of these full-length proteins bound as monomers to high affinity DNA binding sites, and interference assays indicate that they interact with DNA in a way that is very similar to homeodomain polypeptides. These experiments indicate that the ninth amino acid of the recognition helix of the homeodomain, which is glutamine in all four of these Antp-type homeodomain proteins, is not sufficient to determine their DNA binding specificities. The good correlation between the in vitro DNA binding preferences of these four Antp-type homeodomain proteins and their ability to specifically regulate a Dfd enhancer element in the embryo, suggests that the modest binding differences that distinguish them make an important contribution to their unique regulatory specificities.  相似文献   

18.
Two overlapping genomic clones containing the fibroin light-chain (Fib-L)-encoding gene (Fib-L) were obtained from the cosmid library of the silkworm, Bombyx mori J-139, by hybridization with the Fib-L cDNA clone. Sequencing of the 14.6-kb region revealed that Fib-L was 13472 bp long containing seven exons, and that the gene contained a large first intron which occupied about 60% of the gene. Comparison of restriction patterns of the J-139 Fib-L with those of eight other B. mori breeds producing normal-level fibroin demonstrated that considerable restriction-fragment length polymorphisms were present in regions containing the first intron and the 3′-flanking sequence. However, sizes of the Fib-L mRNA and the Fib-L polypeptide were very similar among the nine breeds tested, suggesting that the exon sequences and the splice signals were all well conserved. 5′-Flanking regions of Fib-L and the fibroin heavy-chain (Fib-H)-encoding gene (Fib-H) compared in this study contained three 18-30-bp sequences of high similarity and many 8-10-bp common elements, six of which coincided with the binding sites of homeodomain proteins. Gel retardation assays with the nuclear extracts of the posterior and middle silk glands suggested that protein factors present in the posterior silk-gland nuclei could bind to a set of those common upstream elements.  相似文献   

19.
20.
Murine homeobox genes play a fundamental role in directing embryogenesis by controlling gene expression during development. The homeobox encodes a DNA binding domain (the homeodomain) which presumably mediates interactions of homeodomain proteins with specific DNA sites in the control regions of target genes. However, the bases for these selective DNA-protein interactions are not well defined. In this report, we have characterized the DNA binding specificities of three murine homeodomain proteins, Hox 7.1, Hox 1.5, and En-1. We have identified optimal DNA binding sites for each of these proteins by using a random oligonucleotide selection strategy. Comparison of the sequences of the selected binding sites predicted a common consensus site that contained the motif (C/G)TAATTG. The TAAT core was essential for DNA binding activity, and the nucleotides flanking this core directed binding specificity. Whereas variations in the nucleotides flanking the 5' side of the TAAT core produced modest alterations in binding activity for all three proteins, perturbations of the nucleotides directly 3' of the core distinguished the binding specificity of Hox 1.5 from those of Hox 7.1 and En-1. These differences in binding activity reflected differences in the dissociation rates rather than the equilibrium constants of the protein-DNA complexes. Differences in DNA binding specificities observed in vitro may contribute to selective interactions of homeodomain proteins with potential binding sites in the control regions of target genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号