共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Subcellular distribution of glutathione S-transferase activity was investigated as stimulated form by N-ethylmaleimide in rat liver. The stimulated glutathione S-transferase activity was localized in mitochondrial and lysosomal fractions besides microsomes. Among N-ethylmaleimide-treated submitochondrial fractions, glutathione S-transferase activity was stimulated only in outer mitochondrial membrane fraction. In lysosomal fraction, it was suggested that glutathione S-transferase activity in peroxisomes, which is immunochemically related to microsomal transferase, was also stimulated, but not in lysosomes. 相似文献
4.
5.
Changes in distribution of enzymes within the liver lobule during adaptive increases 总被引:9,自引:0,他引:9
F A Welsh 《The journal of histochemistry and cytochemistry》1972,20(2):107-111
6.
P. C. Jocelyn 《The Biochemical journal》1970,117(5):947-949
1. The aerobic oxidation of GSH and other thiols by rat liver homogenate is abolished either by previous dialysis or by removal of the proteins but is restored by a mixture of the protein-free filtrate and the dialysed homogenate. 2. The oxidation is prevented by previously heating the dialysed homogenate but not the protein-free filtrate and also by known inhibitors of xanthine oxidase. 3. A similar oxidation occurs with hypoxanthine in place of of protein-free filtrate. 相似文献
7.
The distribution pattern and the number of tumor cells arrested in the liver were studied in mouse livers. Mice were perfused intravascularly with a suspension of B16F10 melanoma cells. The animals were sacrificed at 0, 1, 5, and 20 min after tumor cell perfusion. The pattern of tumor cell distribution was studied by morphological methods, and by a combined method of fluorescent-tumor cell labelling and histochemical succinate dehydrogenase activity on frozen sections, in order to define the localization of tumor cells arrested in the liver lobule. The results show that the tumor cells have an exclusive distribution in the periportal regions of the liver lobule (identified as the high succinate dehydrogenase activity areas), and that the cells are not arrested in the pericentral regions (identified as the low succinate dehydrogenase activity areas). In addition, indomethacin treatment (2 mg/kg/day) induced an increase in the number of melanoma cells arrested in the liver, but a different distribution with respect to controls was not observed. These results show that periportal regions of the liver lobule constitute a particular domain in which the B16F10 melanoma cells present a special retention ability that can be modulated by indomethacin treatment. 相似文献
8.
The effects of selenium and copper deficiencies on glutathione S-transferase and glutathione peroxidase in rat liver. 总被引:1,自引:1,他引:1 下载免费PDF全文
J R Arthur P C Morrice F Nicol S E Beddows R Boyd J D Hayes G J Beckett 《The Biochemical journal》1987,248(2):539-544
Selenium (Se) deficiency in rats produced significant increases in the activity of hepatic glutathione S-transferase (GST) with 1-chloro-2,4-dinitrobenzene as substrate and in various GST isoenzymes when determined by radioimmunoassay. These changes is GST activity and concentration were associated with Se deficiency that was severe enough to provoke decreases of over 98% in hepatic Se-containing glutathione peroxidase activity (Se-GSHpx). However, decreases in hepatic Se-GSHpx of 60% induced by copper (Cu) deficiency had no effect on GST activity or concentration. Increased GST activity in Se deficiency has previously been postulated to be a compensatory response to loss of Se-GSHpx, since some GSTs have a non-Se-glutathione peroxidase (non-Se-GSHpx) activity. However, the GST isoenzymes determined in this study, GST Yb1Yb1, GST YcYc and GST YaYa, are known to have up to 30-fold differences in non-Se-GSHpx activity, but they were all significantly increased to a similar extent in the Se-deficient rats. 相似文献
9.
1. The subcellular distribution of L-serine-pyruvate aminotransferase activity in rat liver was investigated. About 80% was recovered from cell-free homogenates in a 'total-particles' fraction and the remainder in the cytosol. 2. Subfractionation of the particles by differential sedimentation and on sucrose density gradients showed a distribution for serine-pyruvate aminotransferase activity closely matching that observed for mitochondrial marker enzymes. 3. A study of the solubilization of enzymes from combined subcellular particles by digitonin at various concentrations also indicated a common subcellular location for serine-pyruvate aminotransferase and established mitochondrial enzymes. 4. The increase in liver serine-pyruvate amino-transferase activity induced by glucagon injection was accounted for as an increased mitochondrial activity. 相似文献
10.
P C Jocelyn 《The Biochemical journal》1978,176(3):649-664
Diamide is reduced by mitochondria utilizing endogenous substrates with Vmax. 20nmol/min per mg of protein and Km 75micrometer. The reaction is inhibited by: (a) thiol-blocking reagents (N-ethylmaleimide, p-hydroxymercuribenzoate, mersalyl and 2,6-dichlorophenol-indophenol);(b) respiratory inhibitors (arsenicals, malonate and antimycin, but not cyanide or oligomycin; inhibition by antimycin is reversed by ATP); (c) uncouplers (carbonyl cyanide p-trifluoromethoxyphenylhydrazone, 2,4-dinitrophenol and valinomycin with K+; inhibition by the first of these uncouplers is not reversed by cyanide); (d) reagents affecting energy conservation (Ca2+, increasing pH, phosphate; phosphate inhibition is augmented by catalytic ADP or ATP and augmentation is abolished by respiratory inhibitors). Concentrations of mitochondrial glutathione are high when diamide reduction is uninhibited, but low after adding one of the above inhibitors such that the reduction rate is roughly proportional to the glutathione concentration. Endogenous ATP concentrations are lower in the presence of diamide than without, but the difference is abolished by respiratory inhibitors. With oligomycin added, however, ATP concentrations are higher in the presence of diamide and this positive increment is decreased by antimycin, N-ethylmaleimide and malonate. In the presence of diamide and an uncoupler, the mitochondrial glutathione content does not fall if various reducible substrates are present, although the inhibition of diamide reduction is not relieved. Some of these substrates prevent the fall in reduced glutathione concentration found with diamide and phosphate. They also relieve the inhibition of diamide reduction and the relief is sensitive to butylmalonate. The inhibition of diamide reduction by N-ethylmaleimide, mersalyl or p-hydroxymercuribenzoate is not relieved by reducible substrates, but the latter mitigate the fall in the concentration of glutathione. Inhibitors of carriers of tricarboxylic acid-cycle intermediates also inhibit reduction of diamide. The reduced glutathione concentration remains high when they are added singly, but falls when two of them are combined. It is proposed that diamide may enter the matrix as a protonated adduct formed with the thiol groups of mitochondrial carriers and then be reduced in the matrix by glutathione, which is regenerated via NADH, energy-dependent transhydrogenase and NADP+-specific glutathione reductase. Some of the high-energy equivalents required for the transhydrogeneration may be generated by the substrate phosphorylation step of the tricarboxylic acid cycle. 相似文献
11.
T Higashi M Furukawa K Hikita A Naruse N Tateishi Y Sakamoto 《Journal of biochemistry》1985,98(6):1661-1667
The extent of intracellular glutathione binding to proteins through a disulfide linkage in rat liver was examined quantitatively. The content of glutathione associated with the acid-precipitable fraction and releasable on borohydride treatment was 0.024 +/- 0.016 mumol/g liver, which accounted for less than one per cent of the total glutathione (6-7 mumol/g liver) in the liver of fed rats. Most of the thiol (2-4 mumol/g liver) liberated from liver proteins into the acid-soluble fraction on borohydride reduction in the presence of guanidine hydrochloride was not glutathione but was proteinaceous in nature. The amounts of thiols liberated per g of liver were similar in fed, fasted, and dibutyryl-3',5'-cyclic AMP-treated rats. 相似文献
12.
13.
N N Chernov 《Biokhimii?a (Moscow, Russia)》1986,51(5):762-769
The existence of membrane-bound forms of glutathione reductase in rat liver and transplantable hepatoma G-27 was demonstrated, using differential centrifugation techniques. The activity of the sedimentable form of the liver enzyme was detected only in the presence of detergents. Conditions for the manifestation of the latent glutathione reductase activity in whole liver homogenates and in the 105000 g pellet were determined. Solubilization of the latent form of the enzyme in the presence of sodium deoxycholate increases 2-fold the glutathione reductase activity in liver homogenates (but not in hepatoma). Simultaneous determination of the disulfidereductase, nonspecific NADPH-oxidase and gamma-glutamyltransferase (membrane-bound enzyme of glutathione metabolism) activities was performed. 相似文献
14.
15.
Effect of allylisopropylacetamide on glutathione metabolism in the rat liver. The possible role of glutathione in the induction of 5-aminolaevulinate synthase 下载免费PDF全文
Mahin D. Maines 《The Biochemical journal》1981,196(1):285-292
Administration of allylisopropylacetamide to rats caused a marked decline in the concentrations of reduced and oxidized glutathione in the liver. However, this decrease occurred in the presence of uninhibited activities of gamma-glutamylcysteine synthase and glutathione reductase, and unaltered activities of glutathione transferases A, B and C. The administration of cysteine, the rate-limiting precursor of glutathione formation, to rats treated with allylisopropylacetamide potentiated the inductive effects of the agent on 5-aminolaevulinate synthase, and markedly decreased the extent of decrease in glutathione concentrations by the agent. Conversely, the administration of diethyl maleate, which depletes the hepatic glutathione concentrations, to allylisopropylacetamide-pretreated rats (1h) diminished the extent of 5-aminolaevulinate synthase induction and the production of porphyrins by nearly 50%, when measured at 16h. This treatment did not alter the extent of non-enzymic degradation of liver haem by allylisopropylacetamide. When diethyl maleate was administered to the animals possessing high 5-aminolaevulinate synthase activity (at 3, 7 and 15h after allylisopropylacetamide), in 1h the enzyme activity was markedly decreased. Diethyl maleate had no effect on induction of 5-aminolaevulinate synthase by 3,5-diethoxycarbonyl-1,4-dihydrocollidine, also a potent porphyrinogenic agent. Diethyl maleate alone neither inhibited 5-aminolaevulinate synthase activity nor decreased the cellular content of porphyrins and haem. The data suggest that the decreases observed in the glutathione concentrations after allylisopropylacetamide administration are not the result of decreased production of the tripeptide. Rather, they most likely reflect the increased utilization of glutathione. The findings further suggest that the inhibition by diethyl maleate of allylisopropylacetamide-stimulated 5-aminolaevulinate synthase involves the inhibition of induction processes. 相似文献
16.
On the multiplicity of rat liver glutathione S-transferases 总被引:7,自引:0,他引:7
Rat liver glutathione S-transferases have been purified to apparent electrophoretic homogeneity by S-hexylglutathione-linked Sepharose 6B affinity chromatography and CM-cellulose column chromatography. At least 11 transferase activity peaks can be resolved including five Yb size homodimeric isozymes, two Yc size homodimeric isozymes, one Ya homodimeric isozyme, one Y alpha homodimeric isozyme, and two Ya-Yc heterodimeric isozymes. Distribution of the GSH peroxidase activity among the CM-cellulose column fractions suggests the existence of further multiplicity in this isozyme family. Substrate specificity patterns of the Yb subunit isozymes revealed a possibility that each of the five Yb-containing isozymes is composed of a different homodimeric Yb size subunit composition. Our findings on the increasing multiplicity of glutathione S-transferase isozymes are consistent with the notion that multiple isozymes of overlapping substrate specificities are required to detoxify a multitude of xenobiotics in addition to serving other important physiological functions. 相似文献
17.
The distribution and chemical nature of radioactive folates in rat liver cells and rat liver mitochondria. 下载免费PDF全文
Subcellular fractionation of rat liver cells revealed that a mixture of 14C- and 3H-labelled folic acid was distributed approximately equally between the mitochondria and cytosol 2, 24, 48 and 72 h after oral administration. Subfractionation of liver mitochondria 48 h after oral administration showed that the radioactivity was mainly associated with the inner membrane (27.7%) and matrix (51.5%). Hot-ascorbate extraction of the cell cytosol, mitochondrial inner membrane and matrix showed the majority of folates were present as polyglutamates. Acid treatment of isolated folates from cytosol, inner membrane and matrix produced breakdown products consistent with scission of tetrahydrofolates. The folates isolated in the mitochondrial matrix were bound to protein that had an estimated mol. wt. of 90,000. 相似文献
18.
The fate of extracellular glutathione in the rat. 总被引:14,自引:0,他引:14
When intravenously administered to rats, [U-14C]glycine-labelled GSSG, GSH and its analogue ophthalmic acid were rapidly removed from the blood. In perfusion studies with isolated liver, however, the compounds did not enter the liver tissue. Thus, uptake by this tissue is obviously not responsible for the removal of gamma-glutamyl tripeptides from the blood. Instead, rapid hydrolysis of the tripeptides was observed. The undegraded tripeptides were only detected in the blood immediately after administration. Within tissue the degradation product glycine accounted for all the radioactivity. After intravenous injection of the labelled tripeptides the radioactivity accumulated first in the kidney, as shown by autoradiographic studies and chemical analysis of different tissues. The hydrolysis of the gamma-glutamyl tripeptides decreased markedly after the renal arteries were clamped. These observations strongly suggest that renal tissue is the principal site of the degradation of the tripeptides. Inhibition studies and experiments with isolated renal tubules revealed that gamma-glutamyl transpeptidase catalyses the fast hydrolysis of the extracellular peptides. The results indicate that, when entering the extracellular space, glutathione and its analogues are completely hydrolysed and must be resynthesized after reuptake of the constituent amino acids. It is concluded that the degradation occurs mainly on the luminal surface of the renal brush-border membrane and that gamma-glutamyl transpeptidase is a glutathionase acting on extracellular glutathione. 相似文献
19.
20.
M A Pajares C Durán F Corrales M M Pliego J M Mato 《The Journal of biological chemistry》1992,267(25):17598-17605
Rat liver S-adenosylmethionine (AdoMet) synthetase appears as high-M(r) (tetramer) and low-M(r) (dimer) forms. Both are inhibited in the presence of GSSG at pH 8. The calculated Ki values are 2.14 and 4.03 mM for the high- and low-M(r) forms, respectively. No effect on enzyme activity was observed in the presence of GSH, but modulation of inhibition by GSSG can be obtained by addition of GSH. At a total glutathione concentration (GSH + GSSG) of 10 mM, a KOX of 1.74 was calculated for the high-M(r) form, whereas this constant was 2.85 for the low-M(r) AdoMet synthetase. No incorporation of [35S]GSSG was observed in either of the enzyme forms, and inhibition of enzyme activity was correlated with dissociation of both AdoMet synthetases to a monomer. The data obtained in the presence of GSSG seem to suggest that oxidation leads to the formation of an intrasubunit disulfide. The possible regulation of AdoMet synthetase activity by the GSH/GSSG ratio is discussed, as well as its in vivo significance. 相似文献