首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The Nicaraguan population of Spodoptera frugiperda multiple nucleopolyhedrovirus, SfMNPV-NIC, is structured as a mixture of nine genotypes (A-I). Occlusion bodies (OBs) of SfMNPV-C, -D and -G pure genotypes are incapable of oral transmission; a phenotype which in SfMNPV-C and -D is due to the absence of pif1 and pif2 genes. The complete sequence of the SfMNPV-G genome was determined to identify possible factors involved in this phenotype. Deletions of 4860 bp (22,366-27,225) and 60 bp (119,759-119,818) were observed in SfMNPV-G genome compared with that of the predominant complete genotype SfMNPV-B (132,954 bp). However no genes homologous to previously described per os infectivity factors were located within the deleted sequences. Significant differences were detected in the nucleotide sequence in sf58 gene (unknown function) that produced changes in the amino acid sequence and the predicted secondary structure of the corresponding protein. This gene is conserved only in lepidopteran baculoviruses (alpha- and betabaculoviruses). To determine the role of sf58 in peroral infectivity a deletion mutant was constructed using bacmid technology. OBs of the deletion mutant (Sf58null) were not orally infectious for S. frugiperda larvae, whereas Sf58null rescue virus OBs recovered oral infectivity. Sf58null DNA and occlusion derived virions (ODVs) were as infective as SfMNPV bacmid DNA and ODVs in intrahemocelically infected larvae or cell culture, indicating that defects in ODV or OB morphogenesis were not involved in the loss of peroral infectivity. Addition of optical brightener or the presence of the orally infectious SfMNPV-B OBs in mixtures with SfMNPV-G OBs did not recover Sf58null OB infectivity. According to these results sf58 is a new per os infectivity factor present only in lepidopteran baculoviruses.  相似文献   

3.
4.
Twelve insect cell lines from six species were tested for susceptibility to baculovirus infection by occlusion-derived virus (ODV) phenotype through the use of a typical endpoint assay procedure. ODV from three nucleopolyhedroviruses were prepared by alkali treatment (sodium carbonate) of occlusion bodies (OBs) and the virus preparations were titered on various cell lines. More than a four-log difference was realized for each of theses viruses between the various cell lines. The TN368 line from Trichoplusia ni was only marginally susceptible to ODV from each virus, showing only 3-6 infectious units (IU) per million OBs while the gypsy moth line, LdEp was most susceptible, realizing more than 100,000 IU/million OBs. The other lines tested showed various levels of susceptibility between these two extremes and also varied between the three viruses tested. In additional tests, the ODV were treated with trypsin prior to application to the cells. With most cell lines, this treatment increased the infectivity of each virus by 2-10-fold. Exceptions to this trend included the gypsy moth LdEp line, on which the trypsinized ODV from two of the viruses were slightly less infectious than each virus without trypsin, and the TN-368 line, on which the trypsinized ODV was 5,000-75,000 times more infectious. The variable results of trypsinized virus on the different lines are probably due to the levels of endogenous protease activity in the various lines, but the mode of action of the trypsin has not been elucidated. Ultimately, the variable response of cell lines to ODV of different viruses, and the variable effects of trypsin on the ODV may lead to an improved understanding of the infection process of this virus phenotype as well as factors relating to baculovirus host range.  相似文献   

5.
利用BactoBac杆状病毒载体表达系统将真菌细胞色素P450nor基因克隆至转移载体pFastBac1中, 得到重组质粒pFastBacP450nor, 再将其转化进入含穿梭载体Bacmid的受体菌DH10Bac中发生转座作用, 得到含P450nor基因的重组穿梭载体rBacmid pAcP450nor。分离提取重组Bacmid DNA, 并转染培养的昆虫细胞Sf9, 得到重组病毒rAcp450nor。经酶切和PCR 鉴定, 细胞色素P450nor基因正确地插入到病毒基因组的多角体蛋白基因启动子下, SDSPAGE分析证明:表达蛋白的分子量为43kD左右。Western blotting分析结果表明:有一条特定的杂交带存在, 且分子量相同(约43kD)。进一步证明了含有真菌细胞色素P450nor基因的重组表达载体和重组病毒构建成功,并在昆虫细胞Sf9中实现了高效表达, 经MTT法测定表达的细胞色素P450nor具有还原NO的生物学活性。  相似文献   

6.
Defective viruses, that are deficient in certain essential genes, are maintained in the population by trans-complementation, exploiting the gene products of complete genotypes in co-infected cells. This process becomes prevalent only when cells are frequently infected by several virus particles, and only then will the fitness of defective viruses be subjected to frequency-dependent selection. Deletion variants that are not infectious per os are present in a multicapsid nucleopolyhedrovirus (SfMNPV, Baculoviridae) that infects the fall army worm, Spodoptera frugiperda. These variants enhance the pathogenicity and, therefore, the likelihood of transmission of the virus when co-infecting cells with complete genotypes, resulting in occlusion bodies (OBs) that may contain both genotypes co-occluded. Mixtures of complete (B) and defective (C) variants in ratios of 90% B+10% C, 50% B+50% C and 10% B+90% C were used to inoculate by injection S. frugiperda larvae. Viral OBs extracted from diseased insects were subjected to four or five successive rounds of per os infection. Following successive passages, genotype frequencies in all three experimental populations converged to a single equilibrium frequency comprising approximately 20% of deletion genotype C and approximately 80% of complete genotype B. This mirrors the relative proportions of deletion (22%) and complete (78%) genotypes observed in the wild-type SfMNPV population. The pathogenicity of experimental populations at the final passage was not significantly different from that of the wild-type isolate. In contrast, OBs of all genotype mixtures were significantly more pathogenic than OBs of genotype B alone. A population genetics model, in which virus populations were assigned linear frequency-dependent transmissibility values, was in remarkably close agreement to empirical data. Clearly, non-infectious deletion variants can profoundly affect the likelihood of transmission and the genetic structure and stability of virus populations.  相似文献   

7.
Proteolytic processing of viral membrane proteins is common among enveloped viruses and facilitates virus entry. The Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) occlusion-derived virus (ODV) protein P74 is part of a complex of essential peroral infectivity factors (PIFs). Here we report that P74 is efficiently cleaved into two fragments of about equal size by an occlusion body (OB) endogenous alkaline protease during ODV release when AcMNPV OBs are derived from larvae. The cleavage is specific for P74, since the other known peroral infectivity factors in the same complex (PIF1, PIF2, and PIF3) were not cleaved under the same conditions. P74 cleavage was not observed in OBs produced in three different insect cell lines, suggesting a larval host origin of the responsible protease. P74 in OBs produced in larvae of two different host species was cleaved into fragments with the same apparent molecular mass, indicating that the virus incorporates a similar alkaline protease from different hosts. Coimmunoprecipitation analysis revealed that the two P74 subunit fragments remain associated with the recently discovered PIF complex. We propose that under in vivo ODV infection conditions, P74 undergoes two sequential cleavage events, the first one being performed by an ODV-associated host alkaline protease and the second carried out by trypsin in the host midgut.  相似文献   

8.
To obtain the P8 protein of Rice gall dwarf virus (RGDV) with biological activity,its outer coat protein gene S8 was expressed in Spodoptera frugiperda (Sf9) insect cells using the baculovirus expression system.The S8 gene was subcloned into the pFastBacTM1 vector,to produce the recombinant baculovirus transfer vector pFB-S8.After transformation,pFB-S8 was introduced into the competent cells (E.coli DH10Bac) containing a shuttle vector,Bacmid,generating the recombinant bacmid rbpFB-S8.After being infected b...  相似文献   

9.
Two insect cell lines that had been maintained in both serum-free (SFM) and serum-containing (SCM) media for over 5 years were each tested for their ability to replicate baculovirus. The gypsy moth cell line, IPLB-LdEIta (Ld), produced similar (not statistically different) amounts of gypsy moth nucleopolyhedrovirus (LdMNPV) occlusion bodies (OBs) in the two media (serum-free Ex-Cell 400 and TC-100 with 9% (v/v) fetal bovine serum, SCM(1)) but produced more of the Autographa californica nucleopolyhedrovirus (AcMNPV) OBs in SFM than in SCM(1). When Ld cells normally grown in SCM(1) were switched to SFM, production of OBs from both viruses improved and, after three passages, reached higher levels of AcMNPV production than in cells normally maintained in that medium. Alternatively, cells switched from SFM to SCM(1) initially produced as much (in the case of LdMNPV) or higher (in the case of AcMNPV) levels of virus OBs than cells normally maintained in SCM(1) but productivity dropped off over subsequent passages such that after five passages in SCM(1), cells produced substantially fewer OBs of both viruses. A fall armyworm cell line (IPLB-SF21AE; Sf) showed slightly different effects from long- and short-term passage in SFM (Ex-Cell 400) or SCM(2) (TMN-FH). Cells maintained in SFM produced about 20 times more AcMNPV OBs than cells maintained long-term in SCM. Sf cells switched from SFM to SCM maintained the level of production of that seen in SFM at the first passage, but quickly dropped off OB production levels to that normally seen in SCM. Alternatively, SCM-maintained Sf cells produced higher levels at the first passage in SFM and, within five passages in SFM, reached levels found in cells maintained for long term in this medium. Under the conditions in which these two cell lines were infected, the highest levels of AcMNPV OB production in Ld cells were about five times that of Sf cells. In a separate series of experiments, cells normally grown in SFM were passaged over five times in Ex-Cell 400 to which serum was added; both cell lines produced as much virus as that in SFM. These results suggest that it is not the serum per se but rather some other components which differ between the SFM and the SCM formulations that are responsible for the varied virus production obtained in these studies. The results of these studies suggest that a maintenance and virus production protocol can be developed with Ld cells which could improve overall efficiency of virus production. These studies also suggest that long-term maintenance of cells in SFM was not detrimental to their ability to produce baculoviruses.  相似文献   

10.
将含有鸡传染性支气管炎病毒 S1 基因c D N A 的重组转移质粒p S X I V V I+ X3 S1 . Holte 和p S X I V V I+ X3/4 S1 . Holte 分别与粉纹夜蛾核型多角体病毒 Tn N P V S V I- G D N A( O C C- ,gal+ ) 共转染草地夜蛾( Sf9) 细胞,经空斑纯化得到重组病毒 Tn N P V( X3) S1 . Holte O C C+ 和 Tn N P V( X3/4) S1 . Holte O C C+ 。将重组毒株分别感染 Tn5 B1 细胞,并进行 S D S P A G E 与 Westernblot 检测。结果表明, Tn N P V( X3/4) S1 . Holte O C C+ 在感染的细胞中高效表达了 S1 蛋白, S D S P A G E 凝胶薄层色谱分析结果显示,感染病毒后72 h S1 蛋白的表达量占细胞内总蛋白量的35 .8 % ,而 Tn N P V( X3) S1 . Holte O C C+ 感染的细胞内检测不出 S1 蛋白。经分析认为这一差异主要来自 S1 基因翻译起始位点及其附近的周围环境。  相似文献   

11.
Wu W  Lin T  Pan L  Yu M  Li Z  Pang Y  Yang K 《Journal of virology》2006,80(23):11475-11485
38K (ac98) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved baculovirus gene whose function is unknown. To determine the role of 38K in the baculovirus life cycle, a 38K knockout bacmid containing the AcMNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a 38K repair bacmid was constructed by transposing the 38K open reading frame with its native promoter region into the polyhedrin locus of the 38K knockout bacmid. After transfection of these viruses into Spodoptera frugiperda cells, the 38K knockout bacmid led to a defect in production of infectious budded virus, while the 38K repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Slot blot analysis indicated that 38K deletion did not affect the levels of viral DNA replication. Subsequent immunoelectron-microscopic analysis revealed that masses of electron-lucent tubular structures containing the capsid protein VP39 were present in cells transfected with 38K knockout bacmids, suggesting that nucleocapsid assembly was interrupted. In contrast, the production of normal nucleocapsids was restored when the 38K knockout bacmid was rescued with a copy of 38K. Recombinant virus that expresses 38K fused to green fluorescent protein as a visual marker was constructed to monitor protein transport and localization within the nucleus during infection. Fluorescence was first detected along the cytoplasmic periphery of the nucleus and subsequently localized to the center of the nucleus. These results demonstrate that 38K plays a role in nucleocapsid assembly and is essential for viral replication in the AcMNPV life cycle.  相似文献   

12.
We have developed a novel method for the preparation of 'recombinant proteoliposomes'. Membrane proteins were expressed on budded virus (BV) envelopes using baculovirus gene expression systems, and proteoliposomes were prepared by fusion of these viruses with liposomes. First, plasmid DNA containing the gene for the thyroid-stimulating hormone receptor (TSHR) or the acetylcholine receptor alpha-subunit (AChRalpha) was co-transfected with wild type virus [Autographa californica nuclear polyhedrosis virus (AcNPV)] genomes into insect cells [Spodoptera frugiperda (Sf9)] to obtain recombinant viruses via homologous recombination. The recombinant viruses were again infected into Sf9 cells, and the resulting BVs were shown to express TSHR and AChRalpha. Next, the fusion behaviour of AcNPV-derived BVs and liposomes was examined via a fluorescence assay, and BVs were shown to fuse with phosphatidylserine-containing liposomes below pH 5.0, the pH at which fusion glycoprotein gp64 on the virus envelope becomes active. TSHR- or AChRalpha-expressed BVs were also shown to fuse with liposomes. Finally, TSHR- and AChRalpha-recombinant proteoliposomes were immobilized on enzyme-linked immunosorbent assay plates, and their reactivities were examined via a general immunoassay, which showed that the recombinant proteoliposomes were fully active. These results successfully demonstrate the development of a method based on a baculovirus gene expression system for the preparation of recombinant and functional proteoliposomes.  相似文献   

13.
类蜗牛毒素基因(conotoxinlike,ctl)是在一些杆状病毒基因组中存在的与蜗牛毒素类似的一类基因,其功能尚不清楚。本文利用苜蓿银纹夜蛾核多角病毒(AcMNPV)bacmid表达系统构建了含油桐尺蠖核多角体病毒(BusuNPV)ctl基因的重组病毒AcBac-ph-ctl。在细胞水平上对ctl基因的RT-PCR分析表明,该基因转录出mRNA。在甜菜夜蛾体内进行了生物活性测定,结果表明AcBac-ph-ctl与对照野生型AcMNPV的LC50,ST50无显著性差异,表明在此系统中,外源的CTL无杀虫增效性能。  相似文献   

14.
【目的】p48(ac103)基因在昆虫杆状病毒中高度保守,暗示其具有重要的生物学功能。为了研究该基因的功能,我们首先对该基因的表达特征进行描述。【方法】以杆状病毒代表种——苜蓿银纹夜蛾核型多角体病毒(Autographa californica multiple nucleopolyhedrovirus,AcMNPV)的p48基因为研究对象,利用Bac-to-Bac杆状病毒表达载体系统分别构建了在P48蛋白N-端和C-端融合HA-标签,并且携带绿色荧光蛋白基因和多角体蛋白基因的重组Bacmid。将重组Bacmid转染Sf9细胞,收集含病毒的上清去感染Sf9细胞,在感染后不同时间点收集细胞进行SDS-PAGE电泳,利用商业化的HA抗体进行Western blot分析以检测融合蛋白在昆虫细胞中的表达情况。【结果】用C-端融合HA-标签的重组病毒感染细胞后12h即可检测到一条43kDa左右、能与HA抗体发生特异性结合的蛋白条带,该特异性蛋白的表达一直持续到病毒感染后96h。从感染后48h起一直到96h,均能检测到另外一条约26kDa的蛋白条带也能与HA抗体发生特异性结合。在N-端融合HA-标签的重组病毒感染的细胞中没有检测到与HA抗体特异结合的蛋白。【结论】结果表明,p48基因是个晚期基因,在病毒感染的晚期表达,并且该蛋白在昆虫细胞中表达时N-端可能被剪切。  相似文献   

15.
An isolate of the Spodoptera frugiperda multiple nucleopolyhedrovirus comprises a stable proportion of deletion genotypes (e.g., SfNIC-C), that lack pif1 and pif2 rendering them noninfectious per os, and that survive by complementation with a complete genotype (SfNIC-B) in coinfected cells. To determine whether selection for particular ratios of complete and deletion genotypes occurs mainly during the establishment of the primary infection in insect midgut cells or during subsequent systemic infection, we examined genotype frequencies in insects that fed on OBs comprising different co-occluded mixtures of genotypes. Dramatic changes in genotype frequencies were observed between the OB inoculum and budded virus (BV) samples taken from larvae inoculated with OBs comprising 10% SfNIC-B + 90% SfNIC-C indicating that a marked reduction of SfNIC-C genotype had occurred in the insect midgut due to the immediate elimination of all OBs that originated from cells that had been infected only by SfNIC-C. In contrast, immediate changes were not observed in OBs comprising mixtures of 50% SfNIC-B + 50% SfNIC-C or those comprising 10% SfNIC-B + 90% SfNIC-C as most of the OBs in these mixtures originated from cells that had been infected by both genotypes. Subsequent changes in genotypic frequencies during five days of systemic infection were fairly small in magnitude for all genotypic mixtures. We conclude that the prevalence of defective genotypes in the SfNIC population is likely determined by a balance between host selection against OBs produced in cells infected by SfNIC-C alone and within-host selection for fast-replicating deletion genotypes. The strength of intra-host selection is likely modulated by changes in MOI during the infection period.  相似文献   

16.
A cDNA fragment containing the gene encoding the glycoprotein of infectious hematopoietic necrosis virus was inserted into Autographa californica baculovirus vectors under the control of the polyhedrin promoter. A 66-kilodalton protein, identical in size to the glycosylated glycoprotein of infectious hematopoietic necrosis virus, was expressed at high levels in Spodoptera frugiperda cells infected with the recombinant viruses. The expressed protein reacted with antiserum to the glycoprotein on Western blots (immunoblots).  相似文献   

17.
The baculovirus lef-12 (orf41) gene is required for transient expression of baculovirus late genes. To analyze the role of LEF-12 in the context of infected cells, two mutant viruses were constructed. Both mutants were viable in Trichoplusia ni High 5 and Spodoptera frugiperda Sf9 cells. Single-step growth curves, however, indicated that virus yields were reduced approximately fivefold in the absence of LEF-12. Pulse-labeling of infected cells revealed that LEF-12 mutant viruses entered the late phase and synthesized late proteins at levels equivalent to or only twofold lower than those of wild-type virus-infected cells. Western blot analyses confirmed that LEF-12 was not synthesized in cells infected with mutant virus. In wild-type virus-infected cells, LEF-12 was not detected until 18 h postinfection, and accumulation of LEF-12 peaked at 24 to 36 h postinfection. Primer extension mapping revealed that lef-12 mRNA was synthesized by 12 h postinfection and peaked between 18 and 24 h postinfection. Furthermore, synthesis of lef-12 mRNA and LEF-12 protein were inhibited by the addition of aphidicolin, indicating that lef-12 is expressed after DNA replication.  相似文献   

18.
Several mammalian viruses have been shown to induce a cellular DNA damage response during replication, and in some cases, this response is required for optimal virus replication. However, nothing is known about whether a DNA damage response is stimulated by DNA viruses in invertebrates. Cell cycle arrest and apoptosis are two of the downstream effects of the DNA damage response, and both are stimulated by baculovirus infection, suggesting a possible relationship between baculoviruses and the DNA damage response. In the study described in this report, we found that replication of the baculovirus Autographa californica M nucleopolyhedrovirus (AcMNPV) in the cell line Sf9, derived from the lepidopteran insect Spodoptera frugiperda, stimulated a DNA damage response, as indicated by an increased abundance of the S. frugiperda P53 protein (SfP53) and phosphorylation of the histone variant protein H2AX. Stimulation of the DNA damage response was dependent on viral DNA replication. Inhibition of the DNA damage response prevented both the increase in SfP53 accumulation and H2AX phosphorylation and also caused a 10- to 100-fold reduction in virus production, along with decreased viral DNA replication and late gene expression. However, silencing of Sfp53 expression by RNA interference did not significantly affect AcMNPV replication or induction of apoptosis by a mutant of AcMNPV lacking the antiapoptotic gene p35, indicating that these processes are not dependent on SfP53 in Sf9 cells.  相似文献   

19.
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) GP64 protein is an essential virion protein that is involved in both receptor binding and membrane fusion during viral entry. Genetic studies have shown that GP64-null viruses are unable to move from cell to cell and this results from a defect in the assembly and production of budded virions (BV). To further examine requirements for virion budding, we asked whether a GP64-null baculovirus, vAc(64-), could be pseudotyped by introducing a heterologous viral envelope protein (vesicular stomatitis virus G protein [VSV-G]) into its membrane and whether the resulting virus was infectious. To address this question, we generated a stably transfected insect Sf9 cell line (Sf9(VSV-G)) that inducibly expresses the VSV-G protein upon infection with AcMNPV Sf9(VSV-G) and Sf9 cells were infected with vAc(64-), and cells were monitored for infection and for movement of infection from cell to cell. vAc(64-) formed plaques on Sf9(VSV-G) cells but not on Sf9 cells, and plaques formed on Sf9(VSV-G) cells were observed only after prolonged intervals. Passage and amplification of vAc(64-) on Sf9(VSV-G) cells resulted in pseudotyped virus particles that contained the VSV-G protein. Cell-to-cell propagation of vAc(64-) in the G-expressing cells was delayed in comparison to wild-type (wt) AcMNPV, and growth curves showed that pseudotyped vAc(64-) was generated at titers of approximately 10(6) to 10(7) infectious units (IU)/ml, compared with titers of approximately 10(8) IU/ml for wt AcMNPV. Propagation and amplification of pseudotyped vAc(64-) virions in Sf9(VSV-G) cells suggests that the VSV-G protein may either possess the signals necessary for baculovirus BV assembly and budding at the cell surface or may otherwise facilitate production of infectious baculovirus virions. The functional complementation of GP64-null viruses by VSV-G protein was further demonstrated by identification of a vAc(64-)-derived virus that had acquired the G gene through recombination with Sf9(VSV-G) cellular DNA. GP64-null viruses expressing the VSV-G gene were capable of productive infection, replication, and propagation in Sf9 cells.  相似文献   

20.
Wu W  Passarelli AL 《Journal of virology》2012,86(10):5614-5625
The Autographa californica M nucleopolyhedrovirus (AcMNPV) orf79 (ac79) gene is a conserved gene in baculoviruses and shares homology with genes in ascoviruses, iridoviruses, and several bacteria. Ac79 has a conserved motif and structural similarities to UvrC and intron-encoded endonucleases. Ac79 is produced at early times during infection and concentrates in the nucleus of infected cells at late times, suggesting a cellular compartment-specific function. To investigate its function, an ac79-knockout bacmid was generated through homologous recombination in Escherichia coli. Titration assays showed that budded virus (BV) production was reduced in the ac79-knockout virus compared to control viruses, following either virus infection or the transfection of bacmid DNA. The ac79-knockout virus-infected cells produced plaques smaller than those infected with control ac79-carrying viruses. No obvious differences were observed in viral DNA synthesis, viral protein accumulation, or the formation of occlusion bodies in ac79-knockout and control viral DNA-transfected cells, indicating progression into the late and very late phases of viral infection. However, comparative analyses of the amounts of BV genomic DNA and structural proteins in a given quantity of infectious virions suggested that the ac79-knockout virus produced more noninfectious BV in infected cells than the control virus. The structure of the ac79-knockout BV determined by transmission electron microscopy appeared to be similar to that of the control virus, although aberrant capsid protein-containing tubular structures were observed in the nuclei of ac79-knockout virus-infected cells. Tubular structures were not observed for ac79 viruses with mutations in conserved endonuclease residues. These results indicate that Ac79 is required for efficient BV production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号