首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fringe plays a key role in the specification of boundaries during development by modulating the ability of Notch ligands to activate Notch receptors. Fringe is a fucose-specific beta1,3-N-acetylglucosaminyltransferase that modifies O-fucose moieties on the epidermal growth factor-like (EGF) repeats of Notch. To investigate how the change in sugar structure caused by Fringe modulates Notch activity, we have analyzed the sites of O-fucose and Fringe modification on mouse Notch1. The extracellular domain of Notch1 has 36 tandem EGF repeats, many of which are predicted to be modified with O-fucose. We recently proposed a broadened consensus sequence for O-fucose, C(2)X(3-5)(S/T)C(3) (where C(2) and C(3) represent the second and third conserved cysteines), significantly expanding the potential number of modification sites on Notch. Here we demonstrate that sites predicted using this broader consensus sequence are modified with O-fucose on mouse Notch1, and we present evidence suggesting that the consensus can be further refined to C(2)X(4-5)(S/T)C(3). In particular, we demonstrate that EGF 12, a portion of the ligand-binding site, is modified with O-fucose and that this site is evolutionarily conserved. We also show that endogenous Fringe proteins in Chinese hamster ovary cells (Lunatic fringe and Radical fringe) as well as exogenous Manic fringe modify O-fucose on many but not all EGF repeats of mouse Notch1. These findings suggest that the Fringes show a preference for O-fucose on some EGF repeats relative to others. This specificity appears to be encoded within the amino acid sequence of the individual EGF repeats. Interestingly, our results reveal that Manic fringe modifies O-fucose both at the ligand-binding site (EGF 12) and in the Abruptex region. These findings provide insight into potential mechanisms by which Fringe action on Notch receptors may influence both the affinity of Notch-ligand binding and cell-autonomous inhibition of Notch signaling by ligand.  相似文献   

2.
Epidermal growth factor-like (EGF) repeats and thrombospondin type 1 repeats (TSRs) are both small cysteine-knot motifs known to be O-fucosylated. The enzyme responsible for the addition of O-fucose to EGF repeats, protein O-fucosyltransferase 1 (POFUT1), has been identified and shown to be essential in Notch signaling. Fringe, an O-fucose beta1,3-N-acetylglucosaminyltransferase, elongates O-fucose on specific EGF repeats from Notch to form a disaccharide that can be further elongated to a tetrasaccharide. TSRs are found in many extracellular matrix proteins and are involved in protein-protein interactions. The O-fucose moiety on TSRs can be further elongated with glucose to form a disaccharide. The discovery of O-fucose on TSRs raised the question of whether POFUT1, or a different enzyme, adds O-fucose to TSRs. Here we demonstrate the existence of a TSR-specific O-fucosyltransferase distinct from POFUT1. Similar to POFUT1, the novel TSR-specific O-fucosyltransferase is a soluble enzyme that requires a properly folded TSR as an acceptor substrate. In addition, we found that a previously identified fucose-specific beta1,3-glucosyltransferase adds glucose to O-fucose on TSRs, but it does not modify O-fucose on an EGF repeat. Similarly, Lunatic fringe, Manic fringe, and Radical fringe are all capable of modifying O-fucose on an EGF repeat, but not on a TSR. Taken together, these results suggest that two distinct O-fucosylation pathways exist in cells, one specific for EGF repeat and the other for TSRs.  相似文献   

3.
The Notch family of signaling receptors plays key roles in determining cell fate and growth control. Recently, a number of laboratories have shown that O-fucose glycans on the epidermal growth factor (EGF)-like repeats of the Notch extracellular domain modulate Notch signaling. Fringe, a known modifier of Notch function, is an O-fucose specific beta1,3-N-acetylglucosaminyltransferase. The transfer of GlcNAc to O-fucose on Notch by fringe results in the potentiation of signaling by the Delta class of Notch ligands, but causes inhibition of signaling by the Serrate/Jagged class of Notch ligands. Interestingly, addition of a beta1,4 galactose by beta4GalT-1 to the GlcNAc added by fringe is required for Jagged1-induced Notch signaling to be inhibited in a co-culture assay. Thus, both fringe and beta4GalT-1 are modulators of Notch function. Several models have been proposed to explain how alterations in O-fucose glycans result in changes in Notch signaling, and these models are discussed.  相似文献   

4.
O-Fucose has been identified on epidermal growth factor-like (EGF) repeats of Notch, and elongation of O-fucose has been implicated in the modulation of Notch signaling by Fringe. O-Fucose modifications are also predicted to occur on Notch ligands based on the presence of the C(2)XXGG(S/T)C(3) consensus site (where S/T is the modified amino acid) in a number of the EGF repeats of these proteins. Here we establish that both mammalian and Drosophila Notch ligands are modified with O-fucose glycans, demonstrating that the consensus site was useful for making predictions. The presence of O-fucose on Notch ligands raised the question of whether Fringe, an O-fucose specific beta 1,3-N-acetylglucosaminyltransferase, was capable of modifying O-fucose on the ligands. Indeed, O-fucose on mammalian Delta 1 and Jagged1 can be elongated with Manic Fringe in vivo, and Drosophila Delta and Serrate are substrates for Drosophila Fringe in vitro. These results raise the interesting possibility that alteration of O-fucose glycans on Notch ligands could play a role in the mechanism of Fringe action on Notch signaling. As an initial step to begin addressing the role of the O-fucose glycans on Notch ligands in Notch signaling, a number of mutations in predicted O-fucose glycosylation sites on Drosophila Serrate have been generated. Interestingly, analysis of these mutants has revealed that O-fucose modifications occur on some EGF repeats not predicted by the C(2)XXGGS/TC(3) consensus site. A revised, broad consensus site, C(2)X(3-5)S/TC(3) (where X(3-5) are any 3-5 amino acid residues), is proposed.  相似文献   

5.
The extracellular domain of mouse Notch1 contains 36 tandem epidermal growth factor-like (EGF) repeats, many of which are modified with O-fucose. Previous work from several laboratories has indicated that O-fucosylation plays an important role in ligand mediated Notch activation. Nonetheless, it is not clear whether all, or a subset, of the EGF repeats need to be O-fucosylated. Three O-fucose sites are invariantly conserved in all Notch homologues with 36 EGF repeats (within EGF repeats 12, 26, and 27). To investigate which O-fucose sites on Notch1 are important for ligand-mediated signaling, we mutated the three invariant O-fucose sites in mouse Notch1, along with several less highly conserved sites, and evaluated their ability to transduce Jagged1- and Delta1-mediated signaling in a cell-based assay. Our analysis revealed that mutation of any of the three invariant O-fucose sites resulted in significant changes in both Delta1 and Jagged1 mediated signaling, but mutations in less highly conserved sites had no detectable effect. Interestingly, mutation of each invariant site gave a distinct effect on Notch function. Mutation of the O-fucose site in EGF repeat 12 resulted in loss of Delta1 and Jagged1 signaling, while mutation of the O-fucose site in EGF repeat 26 resulted in hyperactivation of both Delta1 and Jagged1 signaling. Mutation of the O-fucose site in EGF repeat 27 resulted in faulty trafficking of the Notch receptor to the cell surface and a decreased S1 processing of the receptor. These results indicate that the most highly conserved O-fucose sites in Notch1 are important for both processing and ligand-mediated signaling in the context of a cell-based signaling assay.  相似文献   

6.
Fringe O-fucose-beta1,3-N-acetylglucosaminyltransferases modulate Notch signaling by potentiating signaling induced by Delta-like ligands, while inhibiting signaling induced by Serrate/Jagged1 ligands. Based on binding studies, the differential effects of Drosophila fringe (DFng) on Notch signaling are thought to result from alterations in Notch glycosylation that enhance binding of Delta to Notch but reduce Serrate binding. Here, we report that expression of mammalian fringe proteins (Lunatic [LFng], Manic [MFng], or Radical [RFng] Fringe) increased Delta1 binding and activation of Notch1 signaling in 293T and NIH 3T3 cells. Although Jagged1-induced signaling was suppressed by LFng and MFng, RFng enhanced signaling induced by either Delta1 or Jagged1, underscoring the diversity of mammalian fringe glycosyltransferases in regulating signaling downstream of different ligand-receptor combinations. Interestingly, suppression of Jagged1-induced Notch1 signaling did not correlate with changes in Jagged1 binding as found for Delta1. Our data support the idea that fringe glycosylation increases Delta1 binding to potentiate signaling, but we propose that although fringe glycosylation does not reduce Jagged1 binding to Notch1, the resultant ligand-receptor interactions do not effectively promote Notch1 proteolysis required for activation of downstream signaling events.  相似文献   

7.
The Notch signaling pathway is involved in a wide variety of highly conserved developmental processes in mammals. Importantly, mutations of the Notch protein and components of its signaling pathway have been implicated in an array of human diseases (T-cell leukemia and other cancers, Multiple Sclerosis, CADASIL, Alagille Syndrome, Spondylocostal Dysostosis). In mammals, Notch becomes activated upon binding of its extracellular domain to ligands (Delta and Jagged/Serrate) that are present on the surface of apposed cells. The extracellular domain of Notch contains up to 36 tandem Epidermal Growth Factor-like (EGF) repeats. Many of these EGF repeats are modified at evolutionarily-conserved consensus sites by an unusual form of O-glycosylation called O-fucose. Work from several groups indicates that O-fucosylation plays an important role in ligand mediated Notch signaling. Recent evidence also suggests that the enzyme responsible for addition of O-fucose to Notch, protein O-fucosyltransferase-1 (POFUT1), may serve a quality control function in the endoplasmic reticulum. Additionally, some of the O-fucose moieties are further elongated by the action of members of the Fringe family of beta-1,3-N-acetylglucosaminyltransferases. The alteration in O-fucose saccharide structure caused by Fringe modulates the response of Notch to its ligands. Thus, glycosylation serves an important role in regulating Notch activity. This review focuses on the role of glycosylation in the normal functioning of the Notch pathway. As well, potential roles for glycosylation in Notch-related human diseases, and possible roles for therapeutic targeting of POFUT1 and Fringe in Notch-related human diseases, are discussed.  相似文献   

8.
The three members of the mammalian fringe gene family, Manic fringe (Mfng), Radical fringe (Rfng), and Lunatic fringe (Lfng), were identified on the basis of their similarity to Drosophila fringe (fng) and their participation in the evolutionarily conserved Notch receptor signaling pathway. Fringe genes encode pioneer secretory proteins with weak similarity to glycosyltransferases. Both expression patterns and functional studies support an important role for Fringe genes in patterning during embryonic development and an association with cellular transformation. We have now further characterized the expression and determined the chromosomal localization and genomic structure of the mouse Mfng, Rfng, and Lfng genes; the genomic structure and conceptual open reading frame of the human RFNG gene; and the refined chromosomal localization of the three human fringe genes. The mouse Fringe genes are expressed in the embryo and in adult tissues. The mouse and human Fringe family members map to three different chromosomes in regions of conserved synteny: Mfng maps to mouse Chr 15, and MFNG maps to human Chr 22q13.1 in the region of two cancer-associated loci; Lfng maps to mouse Chr 5, and LFNG maps to human Chr 7p22; Rfng maps to mouse Chr 11, and RFNG maps to human Chr 17q25 in the minimal region for a familial psoriasis susceptibility locus. Characterization of the genomic loci of the Fringe gene family members reveals a conserved genomic organization of 8 exons. Comparative analysis of mammalian Fringe genomic organization suggests that the first exon is evolutionarily labile and that the Fringe genes have a genomic structure distinct from those of previously characterized glycosyltransferases. Received: 19 February 1999 / Accepted: 22 February 1999  相似文献   

9.
NOTCH signaling induced by Delta1 (DLL1) and Jagged1 (JAG1) NOTCH ligands is modulated by the β3N-acetylglucosaminyl transferase Fringe. LFNG (Lunatic Fringe) and MFNG (Manic Fringe) transfer N-acetylglucosamine (GlcNAc) to O-fucose attached to EGF-like repeats of NOTCH receptors. In co-culture NOTCH signaling assays, LFNG generally enhances DLL1-induced, but inhibits JAG1-induced, NOTCH signaling. In mutant Chinese hamster ovary (CHO) cells that do not add galactose (Gal) to the GlcNAc transferred by Fringe, JAG1-induced NOTCH signaling is not inhibited by LFNG or MFNG. In mouse embryos lacking B4galt1, NOTCH signaling is subtly reduced during somitogenesis. Here we show that DLL1-induced NOTCH signaling in CHO cells was enhanced by LFNG, but this did not occur in either Lec8 or Lec20 CHO mutants lacking Gal on O-fucose glycans. Lec20 mutants corrected with a B4galt1 cDNA became responsive to LFNG. By contrast, MFNG promoted DLL1-induced NOTCH signaling better in the absence of Gal than in its presence. This effect was reversed in Lec8 cells corrected by expression of a UDP-Gal transporter cDNA. The MFNG effect was abolished by a DDD to DDA mutation that inactivates MFNG GlcNAc transferase activity. The binding of soluble NOTCH ligands and NOTCH1/EGF1-36 generally reflected changes in NOTCH signaling caused by LFNG and MFNG. Therefore, the presence of Gal on O-fucose glycans differentially affects DLL1-induced NOTCH signaling modulated by LFNG versus MFNG. Gal enhances the effect of LFNG but inhibits the effect of MFNG on DLL1-induced NOTCH signaling, with functional consequences for regulating the strength of NOTCH signaling.  相似文献   

10.
Two glycosyltransferases that transfer sugars to epidermal growth factor (EGF) domains, OFUT1 and Fringe, regulate Notch signaling. To characterize the impact of glycosylation at the 23 consensus O-fucose sites in Drosophila Notch, we conducted deletion mapping and site-specific mutagenesis and then assayed the binding of soluble forms of Notch to cell-surface ligands. Our results support the conclusion that EGF11 and EGF12 are essential for ligand binding, but indicate that other EGF domains also make substantial contributions to ligand binding. Characterization of Notch deletion constructs and O-fucose site mutants further revealed that no single site or region can account for the influence of Fringe on Notch-ligand binding. Additionally, we observed an influence of Fringe on a Notch fragment including only 4 of its 36 EGF domains (EGF10-13). Together, our observations imply that glycosylation influences Notch-ligand interactions through a distributive mechanism that involves local interactions with multiple EGF domains and led us to suggest a structural model for how Notch interacts with its ligands.  相似文献   

11.
Two glycosyltransferases that transfer sugars to EGF domains, OFUT1 and Fringe, regulate Notch signaling. However, sites of O-fucosylation on Notch that influence Notch activation have not been previously identified. Moreover, the influences of OFUT1 and Fringe on Notch activation can be positive or negative, depending on their levels of expression and on whether Delta or Serrate is signaling to Notch. Here, we describe the consequences of eliminating individual, highly conserved sites of O-fucose attachment to Notch. Our results indicate that glycosylation of an EGF domain proposed to be essential for ligand binding, EGF12, is crucial to the inhibition of Serrate-to-Notch signaling by Fringe. Expression of an EGF12 mutant of Notch (N-EGF12f) allows Notch activation by Serrate even in the presence of Fringe. By contrast, elimination of three other highly conserved sites of O-fucosylation does not have detectable effects. Binding assays with a soluble Notch extracellular domain fusion protein and ligand-expressing cells indicate that the NEGF12f mutation can influence Notch activation by preventing Fringe from blocking Notch-Serrate binding. The N-EGF12f mutant can substitute for endogenous Notch during embryonic neurogenesis, but not at the dorsoventral boundary of the wing. Thus, inhibition of Notch-Serrate binding by O-fucosylation of EGF12 might be needed in certain contexts to allow efficient Notch signaling.  相似文献   

12.
Fringes are glycosyltransferases that transfer N-acetylglucosamine to the O-linked fucose of Notch receptors. They regulate the Notch signaling activity that drives tumor formation and progression, resulting in poor prognosis. However, the specific tumor-promoting role of Fringes differs depending on the type of cancer. Although a particular Fringe member could act as a tumor suppressor in one cancer type, it may act as an oncogene in another. This review discusses the tumorigenic role of the Fringe family (lunatic fringe, manic fringe, and radical fringe) in modulating Notch signaling in various cancers. Although the crucial functions of Fringes continue to emerge as more mechanistic studies are being pursued, further translational research is needed to explore their roles and therapeutic benefits in various malignancies.  相似文献   

13.
The extracellular domain of Notch contains epidermal growth factor (EGF) repeats that are extensively modified with different O-linked glycans. O-Fucosylation is essential for receptor function, and elongation with N-acetylglucosamine, catalyzed by members of the Fringe family, modulates Notch activity. Only recently, genes encoding enzymes involved in the O-glucosylation pathway have been cloned. In the Drosophila mutant rumi, characterized by a mutation in the protein O-glucosyltransferase, Notch signaling is impaired in a temperature-dependent manner, and a mouse knock-out leads to embryonic lethality. We have previously identified two human genes, GXYLT1 and GXYLT2, encoding glucoside xylosyltransferases responsible for the transfer of xylose to O-linked glucose. The identity of the enzyme further elongating the glycan to generate the final trisaccharide xylose-xylose-glucose, however, remained unknown. Here, we describe that the human gene C3ORF21 encodes a UDP-xylose:α-xyloside α1,3-xylosyltransferase, acting on xylose-α1,3-glucoseβ1-containing acceptor structures. We have, therefore, renamed it XXYLT1 (xyloside xylosyltransferase 1). XXYLT1 cannot act on a synthetic acceptor containing an α-linked xylose alone, but requires the presence of the underlying glucose. Activity on Notch EGF repeats was proven by in vitro xylosylation of a mouse Notch1 fragment recombinantly produced in Sf9 insect cells, a bacterially expressed EGF repeat from mouse Notch2 modified in vitro by Rumi and Gxylt2 and in vivo by co-expression of the enzyme with the Notch1 fragment. The enzyme was shown to be a typical type II membrane-bound glycosyltransferase localized in the endoplasmic reticulum.  相似文献   

14.
NOTCH1 is a transmembrane receptor that initiates a cell–cell signaling pathway controlling various cell fate specifications in metazoans. The addition of O-fucose by protein O-fucosyltransferase 1 (POFUT1) to epidermal growth factor-like (EGF) repeats in the NOTCH1 extracellular domain is essential for NOTCH1 function, and modification of O-fucose with GlcNAc by the Fringe family of glycosyltransferases modulates Notch activity. Prior cell-based studies showed that POFUT1 modifies EGF repeats containing the appropriate consensus sequence at high stoichiometry, while Fringe GlcNAc-transferases (LFNG, MFNG, and RFNG) modify O-fucose on only a subset of NOTCH1 EGF repeats. Previous in vivo studies showed that each FNG affects naïve T cell development. To examine Fringe modifications of NOTCH1 at a physiological level, we used mass spectral glycoproteomic methods to analyze O-fucose glycans of endogenous NOTCH1 from activated T cells obtained from mice lacking all Fringe enzymes or expressing only a single FNG. While most O-fucose sites were modified at high stoichiometry, only EGF6, EGF16, EGF26, and EGF27 were extended in WT T cells. Additionally, cell-based assays of NOTCH1 lacking fucose at each of those O-fucose sites revealed small but significant effects of LFNG on Notch-Delta binding in the EGF16 and EGF27 mutants. Finally, in activated T cells expressing only LFNG, MFNG, or RFNG alone, the extension of O-fucose with GlcNAc in the same EGF repeats was diminished, consistent with cooperative interactions when all three Fringes were present. The combined data open the door for the analysis of O-glycans on endogenous NOTCH1 derived from different cell types.  相似文献   

15.
Fringe proteins are O-fucose-specific beta-1,3 N-acetylglucosaminyltransferases that glycosylate the extracellular EGF repeats of Notch and enable Notch to be activated by the ligand Delta. In the sea urchin, signaling between Delta and Notch is known to be necessary for specification of secondary mesenchyme cells (SMCs). The Lytechinus variegatus Fringe homologue is expressed in both the signaling and receiving cells during this first Delta-Notch signal. Perturbation of Fringe expression through morpholino antisense oligonucleotide (MO) injection results in fewer SMCs but also causes decreased and delayed archenteron invagination. Partial endoderm specification occurs but expression of some endoderm genes is compromised. The data are consistent with a Fringe-requiring Notch signal as one upstream component of archenteron morphogenesis. Finally, Fringe perturbations result in more severe phenotypes than those previously reported for Notch dominant-negative (LvN(neg)) injections or reported here for Notch MO (NMO) injections. Injecting a combination of LvN(neg) and NMO results in a more severe phenotype than either treatment alone, and this combination phenocopies the fringe MO embryos. Taken together, the results show that Fringe is necessary both for maternal and zygotic Notch signals, and these Notch signals affect specification of mesoderm and endoderm.  相似文献   

16.
The formation of boundaries is a fundamental organizing principle during development. The Notch signalling pathway regulates this developmental patterning mechanism in many tissues. Recent data suggest that Notch receptors are involved in boundary determination during odontogenesis. It remains, however, uncertain if other components of the Notch pathway are also important for compartmental lineage restrictions in teeth. Here we report on the expression of the Lunatic fringe gene, which encodes a secreted signalling molecule regulating the Notch pathway, during the development of mouse teeth. Lunatic fringe is expressed in both epithelial and mesenchymal components of the developing molar. The expression pattern of Lunatic fringe in the epithelium is complementary to that of the Notch receptors. Lunatic fringe is asymmetrically expressed in the incisor epithelium during its antero-posterior rotation. This expression pattern defines the lingual comportment of the incisor epithelium whereas the labial comportment is defined by Notch2 expression.  相似文献   

17.
The Notch family of signaling receptors plays key roles in determining cell fate and growth control. Recently, a number of laboratories have shown that O-fucose glycans on the epidermal growth factor (EGF)-like repeats of the Notch extracellular domain modulate Notch signaling. Fringe, a known modifier of Notch function, is an O-fucose specific β1,3-N-acetylglucosaminyltransferase. The transfer of GlcNAc to O-fucose on Notch by fringe results in the potentiation of signaling by the Delta class of Notch ligands, but causes inhibition of signaling by the Serrate/Jagged class of Notch ligands. Interestingly, addition of a β1,4 galactose by β4GalT-1 to the GlcNAc added by fringe is required for Jagged1-induced Notch signaling to be inhibited in a co-culture assay. Thus, both fringe and β4GalT-1 are modulators of Notch function. Several models have been proposed to explain how alterations in O-fucose glycans result in changes in Notch signaling, and these models are discussed.  相似文献   

18.
19.
Notch signaling plays critical roles in animal development and physiology. The activation of Notch receptors by their ligands is modulated by Fringe-dependent glycosylation. Fringe catalyzes the addition of N-acetylglucosamine in a beta1,3 linkage onto O-fucose on epidermal growth factor-like domains. This modification of Notch by Fringe influences the binding of Notch ligands to Notch receptors. However, prior studies have relied on in vivo glycosylation, leaving unresolved the question of whether addition of N-acetylglucosamine is sufficient to modulate Notch-ligand interactions on its own, or whether instead it serves as a precursor to subsequent post-translational modifications. Here, we describe the results of in vitro assays using purified components of the Drosophila Notch signaling pathway. In vitro glycosylation and ligand binding studies establish that the addition of N-acetylglucosamine onto O-fucose in vitro is sufficient both to enhance Notch binding to the Delta ligand and to inhibit Notch binding to the Serrate ligand. Further elongation by galactose does not detectably influence Notch-ligand binding in vitro. Consistent with these observations, carbohydrate compositional analysis and mass spectrometry on Notch isolated from cells identified only N-acetylglucosamine added onto Notch in the presence of Fringe. These observations argue against models in which Fringe-dependent glycosylation modulates Notch signaling by acting as a precursor to subsequent modifications and instead establish the simple addition of N-acetylglucosamine as a basis for the effects of Fringe on Drosophila Notch-ligand binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号