首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cyclic AMP receptor protein of Escherichia coli in the presence of cyclic AMP undergoes a conformational change resulting in an increased affinity for DNA and an increased susceptibility to attack by proteolytic enzymes resulting in loss of DNA binding capacity. Of several cyclic nucleotides tested only cyclic AMP and cyclic tubercidin monophosphate are able to effect the conformational transition in cyclic AMP receptor protein, prerequisite to proteolytic inactivation or DNA binding. Other analogues such as cyclic GMP or cyclic IMP which are competitive inhibitors of cyclic AMP do not support DNA binding or proteolytic inactivation.  相似文献   

3.
Two proteins encoded by bacteriophage T7, the gene 2.5 single-stranded DNA binding protein and the gene 4 helicase, mediate homologous DNA strand exchange. Gene 2.5 protein stimulates homologous base pairing of two DNA molecules containing complementary single-stranded regions. The formation of a joint molecule consisting of circular, single-stranded M13 DNA, annealed to homologous linear, duplex DNA having 3'- or 5'-single-stranded termini of approximately 100 nucleotides requires stoichiometric amounts of gene 2.5 protein. In the presence of gene 4 helicase, strand transfer proceeds at a rate of > 120 nucleotides/s in a polar 5' to 3' direction with respect to the invading strand, resulting in the production of circular duplex M13 DNA. Strand transfer is coupled to the hydrolysis of a nucleoside 5'-triphosphate. The reaction is dependent on specific interactions between gene 2.5 protein and gene 4 protein.  相似文献   

4.
Decottignies A 《Genetics》2007,176(3):1403-1415
Two DNA repair pathways are known to mediate DNA double-strand-break (DSB) repair: homologous recombination (HR) and nonhomologous end joining (NHEJ). In addition, a nonconservative backup pathway showing extensive nucleotide loss and relying on microhomologies at repair junctions was identified in NHEJ-deficient cells from a variety of organisms and found to be involved in chromosomal translocations. Here, an extrachromosomal assay was used to characterize this microhomology-mediated end-joining (MMEJ) mechanism in fission yeast. MMEJ was found to require at least five homologous nucleotides and its efficiency was decreased by the presence of nonhomologous nucleotides either within the overlapping sequences or at DSB ends. Exo1 exonuclease and Rad22, a Rad52 homolog, were required for repair, suggesting that MMEJ is related to the single-strand-annealing (SSA) pathway of HR. In addition, MMEJ-dependent repair of DSBs with discontinuous microhomologies was strictly dependent on Pol4, a PolX DNA polymerase. Although not strictly required, Msh2 and Pms1 mismatch repair proteins affected the pattern of MMEJ repair. Strikingly, Pku70 inhibited MMEJ and increased the minimal homology length required for efficient MMEJ. Overall, this study strongly suggests that MMEJ does not define a distinct DSB repair mechanism but reflects "micro-SSA."  相似文献   

5.
Histamine stimulated the enzymatic synthesis of phosphatidylcholine from phosphatidylethanolamine in crude synaptic membranes of rat brain containing the methyl donor S-adenosyl-L-methionine (SAM). In the presence of, but not in the absence of SAM, histamine increased cyclic AMP accumulation at the concentrations that stimulate phospholipid methylation. S-Adenosyl-L-homocysteine, an inhibitor of phospholipid methyltransferases, inhibited histamine-stimulated phospholipid methylation and histamine-induced cyclic AMP accumulation in the presence of SAM in a concentration-dependent manner. Histamine-induced [3H]methyl incorporation into phospholipids exhibited a marked regional heterogeneity in rat brain in the order of cortex greater than medulla oblongata greater than hippocampus greater than striatum greater than midbrain greater than hypothalamus. The regional distribution of histamine-induced cyclic AMP accumulation exactly paralleled histamine-stimulated [3H]methyl incorporation in rat brain. Histamine-induced cyclic AMP accumulation was inhibited by the addition of cimetidine or famotidine, but not by mepyramine or diphenhydramine. The accumulation of cyclic AMP in the presence of SAM was observed by the addition of impromidine or dimaprit, but not by 2-pyridylethylamine. These results indicate that phospholipid methylation is induced by histamine and may participate in H2-receptor-mediated stimulation of adenylate cyclase in rat brain.  相似文献   

6.
Abstract Plasmid DNA (pCSL17) isolated from Corynebacterium glutamicum transformed recipient McrBC+ strains of Escherichia coli with lower efficiency than McrBC strains, confirming a previous report by Tauch et al. (FEMS Microbiol. Lett. 123 (1994) 343–348) which inferred that C. glutamicum DNA contains methylcytidine. Analysis of nucleotides in C. glutamicum -derived chromosomal and plasmid DNA failed to detect significant levels of methylated adenosine, but methylated cytidine was readily detected. Restriction enzymes which are inhibited by the presence of methylcytidine in their recognition sequence failed to cut pCSL17 from C. glutamicum , whereas enzymes which require methylation at adenosine in GATC sequences failed to cut. Failure of Hae III to cut two specific sites of C. glutamicum -denved pCSL17 identified the first cytidine in the sequence GGCCGC as one target of methylation in this species, which contains the methyltransferase recognition sequence. Although Brevibacterium lactofermentum -derived DNA showed a similar methylation pattern by HPLC analysis, Hae III cleaved these GGCCGC sites, suggesting differences in the specificity of methylation between these two species. Results for all analyses of B. flavum DNA were identical to those for C. glutamicum .  相似文献   

7.
In C6 cells norepinephrine and dopamine caused transient increases in cyclic GMP and cyclic AMP, as well as an induction of lactate dehydrogenase. All of these responses were blocked by l-propranolol, suggesting mediation by a β-receptor. Phentolamine potentiated the NE-increased cAMP levels by 5-fold when NE was used at suboptimal doses, suggesting the presence of α-adrenergic receptors in C6 cells. Carbamylcholine decreased the levels of both cyclic nucleotides, with hexamethonium partially reversing the effect on cyclic GMP. Dibutyryl-cyclic GMP or carbamylcholine reduced catecholamine-induced cyclic AMP levels. Serotonin increased cyclic GMP levels 60% and decreased cyclic AMP levels 36%. Calcium- and magnesium-free media inhibited the norepinephrine-induced levels of cyclic GMP and cyclic AMP respectively.  相似文献   

8.
Previous publications showed that a covalently closed circular (CCC) Rts1 plasmid deoxyribonucleic acid (DNA) that confers kanamycin resistance upon the host bacteria inhibits host growth at 42 degrees C but not at 32 degrees C. At 42 degrees C, the CCC Rts1 DNA is not formed, and cells without plasmids emerge. To investigate the possible role of cyclic adenosine 3',5'-monophosphate (cAMP) in the action of Rts1 on host bacteria, Rts1 was placed in an Escherichia coli mutant (CA7902) that lacks adenylate cyclase or in E. coli PP47 (a mutant lacking cAMP receptor protein). Rts1 did not exert the thermosensitive effect on these cells, and CCC Rts1 DNA was formed even at 42 degrees C. Upon addition of cAMP to E. coli CA7902(Rts1), cell growth and formation of CCC Rts1 DNA were inhibited at 42 degrees C. The addition of cAMP to E. coli PP47(Rts1) did not cause inhibitory effects on either cell growth or CCC Rts1 DNA formation at 42 degrees C. The inhibitory effect of cAMP on E. coli CA7902(Rts1) is specific to this cyclic nucleotide, and other cyclic nucleotides such as cyclic guanosine 3',5'-monophosphate did not have the effect. For this inhibitory effect, cells have to be preincubated with cAMP; the presence of cAMP at the time of CCC Rts1 DNA formation is not enough for the inhibitory effect. If the cells are preincubated with cAMP, one can remove cAMP during the [(3)H]thymidine pulse and still observe its inhibitory effect on the formation of CCC Rts1 DNA. The presence of chloramphenicol during this preincubation period abolished the inhibitory effect of cAMP. These observations suggest that cAMP is necessary to induce synthesis of a protein that inhibits CCC Rts1 DNA formation and cell growth at 42 degrees C.  相似文献   

9.
The effect of 2-chloroacetaldehyde, CAA, a metabolite of vinyl chloride and 2-chloroacetal, CAC, an ethyl diester of chloroacetaldehyde, on DNA synthesis in animal cells has been investigated. Both compounds drastically inhibited DNA synthesis at 10 to 20 microM. The inhibitory effect of the chemicals appears to be directly on DNA synthesis rather than on the uptake of thymidine or the formation of nucleotides. Residual DNA made in the presence of CAA had an average chain length of 300 nucleotides compared to a length of several thousand nucleotides in the absence of CAA. Synchronization experiments revealed that the inhibitory effect is reversible if 2-chloroacetaldehyde is removed within two hours but not after longer exposures.  相似文献   

10.
1. The effect of cyclic nucleotides on aggregates of dispersed embryonic neural retina cells was examined in order to study their influence upon macromolecular synthesis, i.e. protein and DNA. 2. Cyclic AMP, dibutyryl cAMP, cyclic GMP and dibutyryl cGMP were used at various concentrations (5 x 10(-4) -5 mM). 3. The incorporation of labeled precursors into DNA and protein were used to monitor the effect of cyclic nucleotides on cultured aggregates. 4. All nucleotides exhibited a stimulatory effect at 5 x 10(-4) and 5 x 10(-3) mM on macromolecular synthesis, with resulting growth and proliferation of chick neural retina cells. 5. High concentrations (5 x 10(-1) and 5 mM) of cyclic nucleotides exhibited an inhibitory effect upon macromolecular synthesis and a marked cytotoxic effect.  相似文献   

11.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

12.
Hydrolysis of phosphatidylcholine by phospholipase A2 of synaptic membranes i n Tris-CHl buffer was stimulated by cyclic AMP, cyclic GMP, cyclic CMP, cyclic UMP and adenosine (0.1 mm). In the presence of 1 mm-NaF and cofactors, the same cyclic nucleotides and adenosine (10 mm) stimulated the incorporation of added oleate into the choline glycerophospholipids of synaptic membranes. Cyclic AMP and noradrenaline stimulated the incorporation of added oleate into position 2 of choline glycerophospholipid. Stimulation of net acylation was increased by preincubation in conditions which stimulated hydrolysis of phosphatidylcholine. Cyclic AMP only slightly stimulated the transfer of oleate from oleoyl-CoA into choline glycerophospholipid. The optimum concentration of CaCl2 for the stimulation of hydrolysis by phospholipase A2 by cyclic AMP was 1 mum. Stimulation of the incorporation of added oleate was maximal in the CaCl2 concentration range 1 mum-1mm. MgCl2 also enhanced stimulations, maximum effects being obtained with concentrations of 10 mum and 0.5 mm for hydrolysis by phospholipase A2 and incorporation of added oleate respectively. ATP enhanced the stimulation of incorporation of oleate but had no effect on the cyclic nucleotide stimulation of hydrolysis of added phosphatidylcholine by phospholipase A2. Adenosine, guanosine, ADP and 5'-AMP (all at 1 mm) inhibited the stimulation of incorporation of oleate by cyclic nucleotides and inhibited the transfer of oleate from oleoyl-CoA to phospholipid. They did not inhibit the stimulation of hydrolysis of added phosphatidylcholine (by phospholipase A2) by cyclic nucleotides, but inhibited the stimulation by noradrenaline, acetylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine) and histamine. Preincubation of synaptic membranes in the water or buffer increased the net activity of phospholipase A2. Preincubation with a mixture of ATP and MgCl2 increased the initial rate of acylation of membrane lipid.  相似文献   

13.
Evidence from comparative determination of DNA radioactivity methylation degree of acidic extraction and chlorophormic deproteination of the samples suggest that the former technique is a more efficient one. The properties of the DNA-methylase reaction in isolated rat liver nuclei were studied. The DNA-methylase activity is found to be considerably stable during incubation of the nuclei at 37 degrees C; a broad pH-optimum in the alkaline region is observed (pH 8.6--9.8); this activity is inhibited by Mn2+, nucleotides, actynomycin and S-adenosyl methionine analogs and is activated by Mg2+; the incorporation of methyl groups into DNA is reversible. The data suggest that the DNA-methylase activities of the nuclei isolated at different stages of regeneration do not show substantial variations. No differences in DNA methylation before and after DNA synthesis in the regenerating nuclei were observed. Inhibition of DNA synthesis in the course of regeneration does not decrease the level of DNA methylation. The interrelationship between methylation and replication of DNA is discussed.  相似文献   

14.
Salivary-gland homogenates contain 5-hydroxytryptamine-stimulated adenylate cyclase. Half-maximal stimulation was obtained with 0.1 microM-5-hydroxytryptamine in the presence of added guanine nucleotides. Gramine antagonized the stimulation of cyclase caused by 5-hydroxytryptamine. In the presence of hormone, guanosine 5'-[gamma-thio]triphosphate produced a marked activation of adenylate cyclase activity. Stimulation of adenylate cyclase by forskolin or fluoride did not require the addition of guanine nucleotides or hormone. In the presence of EGTA, Ca2+ produced a biphasic activation of cyclase activity. Ca2+ at 1-100 microM increased activity, whereas 2000 microM-Ca2+ inhibited cyclase activity. The neuroleptic drugs trifluoperazine and chlorpromazine non-specifically inhibited adenylate cyclase activity even in the absence of Ca2+. The cyclic AMP phosphodiesterase activity in homogenates was not affected by Ca2+ or exogenous calmodulin. This enzyme was also inhibited by trifluoperazine in the absence of Ca2+. These results indicate that Ca2+ elevates adenylate cyclase activity, but had no effect on cyclic AMP phosphodiesterase of salivary-gland homogenates.  相似文献   

15.
16.
The pairing of single- and double-stranded DNA molecules at homologous sequences promoted by recA and single-stranded DNA-binding proteins of Escherichia coli follows apparent first-order kinetics. The initial rate and first-order rate constant for the reaction are maximal at approximately 1 recA protein/3 and 1 single-stranded DNA-binding protein/8 nucleotides of single-stranded DNA. The initial rate increases with the concentration of duplex DNA; however, the rate constant is independent of duplex DNA concentration. Both the rate constant and extent of reaction increase linearly with increasing length of duplex DNA over the range 366 to 8623 base pairs. In contrast, the rate constant is independent of the size of the circular single-stranded DNA between 6,400 and 10,100 nucleotides. No significant effect on reaction rate is observed when a single-stranded DNA is paired with 477 base pairs of homologous duplex DNA joined to increasing lengths of heterologous DNA (627-2,367 base pairs). Similarly, heterologous T7 DNA has no effect on the rate of pairing. These findings support a mechanism in which a recA protein-single-stranded DNA complex interacts with the duplex DNA to produce an intermediate in which the two DNA molecules are aligned at homologous sequences. Conversion of the intermediate to a paranemic joint then occurs in a rate-determining unimolecular process.  相似文献   

17.
Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs whose nucleotides are longer than 200 bp. Previous studies have shown that they play an important regulatory role in many developmental processes and biological pathways. However, the contributions of lncRNAs to placental development are largely unknown. Here, our study aimed to investigate the lncRNA expression signatures in placental development by performing a microarray lncRNA screen. Placental samples were obtained from pregnant C57BL/6 female mice at three key developmental time points (embryonic day E7.5, E13.5, and E19.5). Microarrays were used to analyze the differential expression of lncRNAs during placental development. In addition to the genomic imprinting region and the dynamic DNA methylation status during placental development, we screened imprinted lncRNAs whose expression was controlled by DNA methylation during placental development. We found that the imprinted lncRNA Rian may play an important role during placental development. Its homologous sequence lncRNA MEG8 (RIAN) was abnormally highly expressed in human spontaneous abortion villi. Upregulation of MEG8 expression in trophoblast cell lines decreased cell proliferation and invasion, whereas downregulation of MEG8 expression had the opposite effect. Furthermore, DNA methylation results showed that the methylation of the MEG8 promoter region was increased in spontaneous abortion villi. There was dynamic spatiotemporal expression of imprinted lncRNAs during placental development. The imprinted lncRNA MEG8 is involved in the regulation of early trophoblast cell function. Promoter methylation abnormalities can cause trophoblastic cell defects, which may be one of the factors that occurs in early unexplained spontaneous abortion.  相似文献   

18.
Worm-conditioned saline (WCS) was prepared by incubating Hymenolepis diminuta from crowded infections for 12 hr in a balanced salt solution. The effect of the WCS on the incorporation of [3H] thymidine into DNA in the anterior regions of fresh H. diminuta was compared to effects produced by the cyclic nucleotides in the WCS. Cyclic AMP and cGMP were found in the WCS, and cGMP but not cAMP (at the concentration in WCS) caused some inhibition of DNA synthesis. For further study of the effects of cyclic nucleotides, worms were incubated with theophylline, caffeine, 3-isobutyl-1-methyl xanthine, 2-deoxy cGMP, and L-ascorbic acid, all of which produced some inhibition of [3H] thymidine incorporation. Treatment of WCS with 3',5' cyclic nucleotide phosphodiesterase abolished part of its inhibitory activity, i.e., that part presumed to be due to cGMP. When worms were incubated in the presence of succinate, acetate, D-glucosaminic acid, and cGMP simultaneously and in the concentrations each was found in the WCS, DNA synthesis was inhibited to a degree equal to that found in the WCS. Thus these substances apparently represent the putative crowding factors in the WCS. WCS prepared with worms from different population densities contained the same levels of cAMP but varied in content of cGMP, which decreased as the worm density increased. WCS prepared with patent worms contained high levels of cAMP, but the same amounts of cGMP as WCS prepared with 10-day-old worms. At least some inhibitors of cyclic nucleotide phosphodiesterase inhibited the secretion of cGMP by the worms. Levels of cGMP in the host intestine varied with the presence or absence of worms, number of worms, and area of the intestine.  相似文献   

19.
20.
Mouse thymocyte populations composed principally of θ-bearing cells exhibited a fourfold or greated enhancement in DNA synthesis when cultured in the presence of adenosine or adenine nucleotides. In contrast θ-bearing cells derived from spleen were markedly inhibited under the same circumstances. The effects of a variety of other nucleosides and nucleotides on DNA synthesis by spleen and thymus cells are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号