首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three metE mutations of Bacillus subtilis, which cause cells to have a 25- to 200-fold decrease in L-methionine S-adenosyltransferase (EC 2.5.1.6) activity, were mapped between bioB and thr. The corresponding three metE mutants contained three- to fourfold less intracellular S-adenosylmethionine (SAM) but at least sevenfold more methionine than the metE+ strain when grown in synthetic medium. This indicates a strong feedback control of SAM on its synthesis. However, only the metE2 strain, with the lowest SAM concentration, grew at a slightly lower rate than the parent, which showed that an intracellular concentration of about 25 microM SAM was critical for growth at the normal rate. Neither DNA methylation (measured by bacteriophage luminal diameter 105 restriction) nor sporulation was affected at this low SAM concentration. Addition of methionine to the growth medium caused an increase in the pool of SAM in some but not all metE mutants. Coaddition of adenine did not change this result. However, the extent of sporulation (induced by mycophenolic acid) was decreased 50-fold in all mutants by the addition of methionine and adenine. Therefore, the combination of methionine and adenine suppresses sporulation regardless of whether it causes an increase in the level of SAM.  相似文献   

2.
3.
The effects of mutations occurring at three independent loci, eth2, eth3, and eth10, were studied on the basis of several criteria: level of resistance towards two methionine analogues (ethionine and selenomethionine), pool sizes of free methionine and S-adenosyl methionine (SAM) under different growth conditions, and susceptibility towards methionine-mediated repression and SAM-mediated repression of some enzymes involved in methionine biosynthesis (met group I enzymes). It was shown that: (i) the level of resistance towards both methionine analogues roughly correlates with the amount of methionine accumulated in the pool; (ii) the repressibility of met group I enzymes by exogenous methionine is either abolished or greatly lowered, depending upon the mutation studied; (iii) the repressibility of the same enzymes by exogenous SAM remains, in at least three mutants studied, close to that observed in a wild-type strain; (iv) the accumulation of SAM does not occur in the most extreme mutants either from endogenously overproduced or from exogenously supplied methionine: (v) the two methionine-activating enzymes, methionyl-transfer ribonucleic acid (tRNA) synthetase and methionine adenosyl transferase, do not seem modified in any of the mutants presented here; and (vi) the amount of tRNAmet and its level of charging are alike in all strains. Thus, the three recessive mutations presented here affect methionine-mediated repression, both at the level of overall methionine biosynthesis which results in its accumulation in the pool, and at the level of the synthesis of met group I enzymes. The implications of these findings are discussed.  相似文献   

4.
HP1 is essential for DNA methylation in neurospora   总被引:6,自引:0,他引:6  
Methylation of cytosines silences transposable elements and selected cellular genes in mammals, plants, and some fungi. Recent findings have revealed mechanistic connections between DNA methylation and features of specialized condensed chromatin, "heterochromatin." In Neurospora crassa, DNA methylation depends on trimethylation of Lys9 in histone H3 by DIM-5. Heterochromatin protein HP1 binds methylated Lys9 in vitro. We therefore investigated the possibility that a Neurospora HP1 homolog reads the methyl-Lys9 mark to signal DNA methylation. We identified an HP1 homolog and showed that it is essential for DNA methylation, is localized to heterochromatic foci, and that this localization is dependent on the catalytic activity of DIM-5. We conclude that HP1 serves as an adaptor between methylated H3 Lys9 and the DNA methylation machinery. Unlike mutants that lack DNA methyltransferase, mutants with defects in the HP1 gene hpo exhibit severe growth defects, suggesting that HP1 is required for processes besides DNA methylation.  相似文献   

5.
Summary Some metK mutants of Salmonella typhimurium with constitutive methionine biosynthesis have no detectable S-adenosylmethionine (SAM) synthetase, the enzyme which converts methionine to SAM, the postulated corepressor of the methionine pathway. However these mutants are not auxotrophic for SAM, an essential compound for many reactions. Here it is shown that these mutants have normal functioning of pathways involving SAM and do in fact produce SAM at as high levels as wild-type. Also, SAM synthetase is shown to be dispensible for growth but not for methionine regulation. These results indicate that there is another route of SAM synthesis independent of SAM synthetase. This route probably also uses methionine as substrate as metK mutants are shown to convert methionine to SAM as efficiently as analogous non-metK strains. The existence of a second route of SAM synthesis makes it necessary to postulate a compartmentalization of SAM made via the SAM synthetase reaction from SAM made in any other way to explain the reduced ability of metK mutants to repress methionine biosynthesis.  相似文献   

6.
Human α-hemoglobin stabilizing protein (AHSP) is a conserved mammalian erythroid protein that facilitates the production of Hemoglobin A by stabilizing free α-globin. AHSP rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ≈10 μm(-1) s(-1) and 0.2 s(-1), respectively, at pH 7.4 at 22 °C. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(30) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P30A and P30W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(30) conformer. Both wild-type and Pro(30)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α·AHSP complex (k(AHSP) ≈ 0.002 s(-1)) is ~100-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers.  相似文献   

7.
The enzymatic conversion of L-lysine, epsilon-N-trimethyl-L-lysine the first series of reactions in the biosynthesis of carnitine in Neurospora crassa, proceeds via sequential methylation of free L-lysine, epsilon-N-methyl-L-lysine, and epsilon -N-dimethyl-L-lysine. The latter two compounds have been shown to be intermediates in the biosynthesis of carnitine by radioisotope dilution and incorporation experiments in growing cultures of N. crassa 33933 (lys-) and 38706 (met-). Methionine but not choline, has been recognized as an effective methyl donor in vivo. Inclusion of choline in the growth medium of strain 33933 does, however, enhance incorporation of the methyl groups of L-[methyl-3H]methionine into carnitine in an apparent "sparing" effect on methionine synthesis. Studies in cell-free extracts of the lysine auxotroph strain 33933 of N. crassa have established that lysine and epsilon-N-methyl and epsilon-N-dimethyllysine are enzymatically methylated, with S-adenosyl-L-methionine as the methyl group donor. The enzyme system appears to have no essential cofactors. Lysine does not induce synthesis of the enzyme system in the wild-type strain 262, whereas both carnitine and epsilon-N-trimethyllysine repress its synthesis in strain 33933.  相似文献   

8.
Under the conditions of nitrogen starvation, illumination by blue light of wc-1 and wc-2 mutants of the ascomycete Neurospora crassa failed to stimulate the formation of protoperithecia and inhibit conidiation (contrary to what was observed in the mycelium of the wild-type fungus). The data obtained indicate that wc-1 and wc-2 genes of N. crassa are involved in light-dependent formation of protoperithecia and conidia. The effects of 5-azacytidine (an inhibitor of DNA methylation) under the same experimental conditions suggest that the balance between the formation of sexual and asexual reproductive structures, maintained in N. crassa, depends on genome methylation processes sensitive to the action of light, which is mediated by the photoreceptor complex of WC proteins.  相似文献   

9.
Summary In wild-type bacteria, S-adenosylmethionine (SAM) synthetase activity was repressed by growth in methionine. MetJ regulatory mutants had elevated activities which did not show this repression. Two metK mutants with normal regulation of the methionine biosynthetic enzymes had elevated Km's (methionine) for SAM synthetase while five metK mutants with constitutive methionine enzymes showed no measurable SAM synthetase activity. One mutant, metK X 721, similar in phenotype to these five had a wild-type level of SAM synthetase in conditions where SAM decarboxylase activity was blocked. By using an F-factor carrying the metK region of the genome, this mutant was shown to complement six other metK mutants.These results indicate that SAM or a derivative of it, rather than methionine itself, is the co-repressor of the methionine system, regulatory abnormalities resulting from the absence or reduction of the amount of SAM formed by the SAM synthetase reaction. As SAM is essential for bacteria it is likely that there is some alternative biosynthetic route for SAM.  相似文献   

10.
The effect of inhibitors of DNA methylation on light-sensitive developmental stages of the filamentous fungus Neurospora crassa was studied. Under conditions of nitrogen starvation, when blue light induced protoperithecia development and inhibited conidia formation, 5-azacytidine (3-300 microM) inhibited protoperithecia formation and stimulated conidia formation (a 700-fold increase after light induction). After treatment of the mycelium with 5-azacytidine, the protoperithecia formation was accompanied by inversely proportional changes in the formation of conidia, both in the dark and after illumination. In the mycelium cultivated on the Vogel's medium, 5-azacytidine (up to 30 microM) and methotrexate (up to 3 microM) stimulated the light-induced carotenoid synthesis by 30%, whereas higher concentrations of these agents were toxic to carotenoid synthesis and growth.  相似文献   

11.
Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet's effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet's effects on genomic stability and DNA methylation.  相似文献   

12.
Cells respond to the deprivation of nutrients by inducing autophagy. However, mechanisms through which cells coordinately regulate autophagy with metabolic state remain incompletely understood. We previously observed that prototrophic strains of yeast induce autophagy upon switch from a rich to minimal medium in the absence of severe nitrogen starvation. We determined that the sulfur-containing amino acid methionine and its downstream metabolite S-adenosylmethionine (SAM) are sufficient to strongly inhibit such autophagy. These metabolites function through Ppm1, an enzyme that methylates the catalytic subunit of the protein phosphatase PP2A. As such, methionine and SAM act as critical signals of amino acid sufficiency that reciprocally regulate autophagy and cell growth by modulating the methylation status of PP2A.  相似文献   

13.
《Autophagy》2013,9(2):386-387
Cells respond to the deprivation of nutrients by inducing autophagy. However, mechanisms through which cells coordinately regulate autophagy with metabolic state remain incompletely understood. We previously observed that prototrophic strains of yeast induce autophagy upon switch from a rich to minimal medium in the absence of severe nitrogen starvation. We determined that the sulfur-containing amino acid methionine and its downstream metabolite S-adenosylmethionine (SAM) are sufficient to strongly inhibit such autophagy. These metabolites function through Ppm1, an enzyme that methylates the catalytic subunit of the protein phosphatase PP2A. As such, methionine and SAM act as critical signals of amino acid sufficiency that reciprocally regulate autophagy and cell growth by modulating the methylation status of PP2A.  相似文献   

14.
The ability to accumulate S-adenosylmethionine (SAM) of 572 yeast strains isolated from environmental sources were surveyed. An S-adenosylmethionine enriching strain S42-12, identified asCandida sp., was chose to develop a SAM-accumulating mutant successfully. The final SAM-accumulating mutant strain YQ-5 was isolated by UV radiation or by NTG treatment using ethionine selection and nystatin selection method. The mutant strain YQ-5 accumulated 112.1 mg per gram biomass, was 3.14-fold higher than the original strain S42-12. When cultivated in the optimal medium with a favourable fermentation conditions, SAM content of the mutant strain reached at 1740 mg L?1. Trend of SAM and ergosterol contents and methionine adenosyltransferase activity of SAM-accumulating mutants during fermentation were analysed. The results suggested that one of the reasons why the mutants accumulated SAM in significantly high amounts may be the lower consumption of SAM for ergosterol biosynthesis, other than improvement of methionine adenosyltransferase activity.  相似文献   

15.
The SET domain is an evolutionarily conserved domain found predominantly in histone methyltransferases (HMTs). The Neurospora crassa genome includes nine SET domain genes (set-1 through set-9) in addition to dim-5, which encodes a histone H3 lysine 9 HMT required for DNA methylation. We demonstrate that Neurospora set-2 encodes a histone H3 lysine 36 (K36) methyltransferase and that it is essential for normal growth and development. We used repeat induced point mutation to make a set-2 mutant (set-2(RIP1)) with multiple nonsense mutations. Western analyses revealed that the mutant lacks SET-2 protein and K36 methylation. An amino-terminal fragment that includes the AWS, SET, and post-SET domains of SET-2 proved sufficient for K36 HMT activity in vitro. Nucleosomes were better substrates than free histones. The set-2(RIP1) mutant grows slowly, conidiates poorly, and is female sterile. Introducing the wild-type gene into the mutant complemented the defects, confirming that they resulted from loss of set-2 function. We replaced the wild-type histone H3 gene (hH3) with an allele producing a Lys to Leu substitution at position 36 and found that this hH3(K36L) mutant phenocopied the set-2(RIP1) mutant, confirming that the observed defects in growth and development result from inability to methylate K36 of H3. Finally, we used chromatin immunoprecipitation to demonstrate that actively transcribed genes in Neurospora crassa are enriched for H3 methylated at lysines 4 and 36. Taken together, our results suggest that methylation of K36 in Neurospora crassa is essential for normal growth and development.  相似文献   

16.
A simple and sensitive assay for S-adenosylmethionine (SAM) synthetase is described which depends on the quantitative separation of the product, [14CH3]S-adenosylmethionine, from the substrate, L-[14CH3]methionine, on a Bio-Rex 70 column. L-Methionine protects the enzyme during preparation of cell extracts by sonic treatment but causes repression of enzyme activity during growth of Candida utilis. The presence of 5 mM methionine in the growth medium repressed SAM synthetase specific activity threefold compared to the specific acitivity of the enzyme isolated from cells grown in unsupplemented medium. Conversely, the presence of methionine in the growth medium resulted in an 80-fold increase in the intracellular concentration of SAM as compared to the Sam accumulated intracellularly in unsupplemented cultures.  相似文献   

17.
 以 S-腺苷酰 - L-甲硫氨酸 (SAM)为诱导物 ,在 1 0 μmol/L最佳浓度下造成 1 6%的 HL- 60细胞分化 .HPLC检测结果表明 ,细胞基因组 DNA甲基化水平升高 .通过3H甲基同位素参入法研究细胞 DNA甲基化酶活力 ,则发现在细胞分化过程中酶活力未见升高 .说明细胞基因组甲基化水平升高并不是胞内 DNA甲基化酶催化能力改变的结果 ,而是由于 SAM进入细胞提供过量甲基造成的 .  相似文献   

18.
Sequence and characterization of the met-7 gene of Neurospora crassa.   总被引:4,自引:0,他引:4  
J M Crawford  R F Geever  D K Asch  M E Case 《Gene》1992,111(2):265-266
The proteins encoded by the met-7+ and met-3+ genes of Neurospora crassa are required to form a functional cystathionine-gamma-synthase (CGS). The met-7+ gene has been cloned by complementation of a met-7 mutant. The nucleotide sequence of the complementing DNA reveals the presence of a 542-amino acid open reading frame (ORF). Disruption of this ORF abolishes complementation of the met-7 mutation.  相似文献   

19.
We propose a model for heterochromatin assembly that links DNA methylation with histone methylation and DNA replication. The hypomethylated Arabidopsis mutants ddm1 and met1 were used to investigate the relationship between DNA methylation and chromatin organization. Both mutants show a reduction of heterochromatin due to dispersion of pericentromeric low-copy sequences away from heterochromatic chromocenters. DDM1 and MET1 control heterochromatin assembly at chromocenters by their influence on DNA maintenance (CpG) methylation and subsequent methylation of histone H3 lysine 9. In addition, DDM1 is required for deacetylation of histone H4 lysine 16. Analysis of F(1) hybrids between wild-type and hypomethylated mutants revealed that DNA methylation is epigenetically inherited and represents the genomic imprint that is required to maintain pericentromeric heterochromatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号