首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
An important function of the tight junction is to act as a selective barrier to ions and small molecules, although no molecule responsible for the barrier function has been identified. Here we report evidence that the localization of the 7H6 tight junction-associated antigen identified in our laboratory at tight junctions correlates with the barrier function of MDCK cells. MDCK cells in a confluent monolayer possessed a polarized morphology, having an apical plasma membrane and a basolateral membrane, which is separated from the former by tight junctions. MDCK cells expressed both ZO-1 and 7H6 antigen at tight junctions, which maintain a tight barrier as determined by resistance to lanthanum permeation and high transepithelial electrical resistance (TER, 1500 ohm-cm2). The 7H6 antigen disappeared as tight junctions became permeable to lanthanum with a decrease in TER (below 100 ohm-cm2) due to treatment with metabolic inhibitors (10 μm antimycin A and 10 mM 2-deoxyglucose) for 30 min, while leaving ZO-1 at the cell border. The 7H6 antigen appeared at tight junctions again as TER recovered to a high level (1500 ohm-cm2) within 3 h after withdrawal of metabolic inhibitors. In addition, we found that 7H6 antigen is a phosphorylated protein and that phosphorylation is closely related to the localization of 7H6 antigen in the area of tight junctions.  相似文献   

2.
Summary Protamine is a naturally occurring basic protein (pI; 9.7 to 12.0). We have recently reported that protamine dissolved in the mucosal bath (2 to 20 m), induces about a twofold increase in transepithelial resistance inNecturus gallbladder within 10 min. Conductance decreased concomitantly with cation selectivity.In this leaky epithelium, where >90% of an applied current passes between cells, an increment in resistance of this magnitude suggests a paracellular actiona priori. To confirm this, ionic conductance across the apical cell membrane was studied with microelectrodes. Protamine increased transepithelial resistance without changing apical cell membrane voltage or fractional membrane resistance. Variation in extracellular K concentration (6 to 50mm) caused changes in apical membrane voltage not different from control.To determine if protamine-induced resistance changes were associated with structural alteration of tight junctions, gallbladders were fixedin situ at peak response and analyzed by freeze-fracture electron microscopy. According to a morphometrical analysis, the tight junctional intramembranous domain expands vertically due to incorporation of new strands (fibrils) into the main compact fibrillar meshwork.Since morphologic changes are complete within 10 min, strands are probably recycled into and out of the tight junctional membrane domain possibly by the cytoskeleton either from cytoplasmic vesicles or from intramembranous precursors. Regulation of tight junctional permeability by protamine and other perturbations may constitute a common mechanism by which leaky epithelia regulate transport, and protamine, in concentrations employed in this study, seems reasonably specific for the tight junction.  相似文献   

3.
Summary Two major cell types, goblet and absorptive cells, dominate the epithelial lining of small intestinal villi. We used freezefracture replicas of rat ileal mucosa to examine the possibility that tight junction structure, known to relate to transepithelial resistance, might vary with cell type. Tight junctions between absorptive cells were uniform in structure while those associated with villus goblet cells displayed structural variability. In 23% of villus goblet cell tight junctions the strand count was less than 4 and in 30% the depth was less than 200 nm. In contrast, only 4% of absorptive cell tight junctions had less than 4 strands and only 9% had depth measurements less than 200 nm. Other structural features commonly associated with villus goblet cell tight junctions but less commonly with absorptive cell tight junctions were: deficient strand cross-linking, free-ending abluminal strands, and highly fragmented strands. Bothin vivo ileal segments and everted loops were exposed to ionic lanthanum. Dense lanthanum precipitates in tight junctions and paracellular spaces were restricted to a subpopulation of villus goblet cells and were not found between villus absorptive cells. After exposure of prefixed ileal loops to lanthanum for 1 hour, faint precipitates of lanthanum were found in 14% of tight junctions and paracellular spaces between absorptive cells compared to 42% of tight junctions and paracellular spaces adjacent to villus goblet cells. When tested in Ussing chambers, the methods used for lanthanum exposure did not lower transepithelial resistance. Everted loops exposed to ionic barium and examined by light microscopy showed dense barium precipitates in the junctional zone and region of the paracellular space of villus goblet cells but not in these regions between absorptive cells. However, the macromolecular tracers, microperoxidase, cytochromec and horseradish peroxidase, were excluded from both villus goblet cell and absorptive cell paracellular spaces inin vivo segments. These findings suggest that a subpopulation of villus goblet cells may serve as focal sites of high ionic permeability and contribute to the relatively low resistance to ionic flow which characterizes the small intestinal epithelium.  相似文献   

4.
Summary Electrophysiological experiments were performed onNecturus gallbladder to determine whether the main route of passive ion flow was via the cells or via a paracellular shunt path. In the first approach the following values were determined: the transepithelial resistance, the ratio of the voltage deflections across the luminal and basal cell membrane during transepithelial current flow, and the voltage spread within the epithelial cell layer during intracellular application of current pulses. From these data the luminal and basal cell membrane resistances were calculated to be 4,500 and 2,900 cm2, respectively, whereas the transepithelial resistance was only 310 cm2, indicating that approximately 96% of the transepithelial current bypassed the cells. This result was confirmed in a second approach, in which the intracellular voltage deflections were found to remain approximately constant, when the current pulses were passed from a cell into the interstitial compartment with the luminal compartment being empty or when they were passed from the cell into both external compartments simultaneously. In the third approach current was passed through the epithelium and a voltage-scanning microelectrode was moved across the surface of the epithelium to explore the induced electrical field. Significant distortions of the field were observed in the immediate vicinity of the cell borders. This result indicated that the paracellular shunt, which carries the main part of the transepithelial current, leads through the terminal bars and that the terminal bars or tight junctions arenot tight for transepithelial movement of small ions in gallbladder epithelium.  相似文献   

5.
Summary Fetal bovine serum (FBS) or heat-inactivated FBS (56° C for 30 min, HFBS) caused a dose-dependent decrease in the transepithelial electrical resistance of an epithelial monolayer (MDCK). A saturating concentration of HFBS (30%) caused an average fall of 25 ± 2% within 60 min. Upon removal of HFBS, the resistance returned to its starting value within 1 h. Flux studies with [3H]mannitol demonstrate that the fall in resistance is due to an increased permeability of the tight junctions. Thirty percent heat inactivated sera from goat, newborn calf, calf, bovine, and horse caused falls ranging from 26 to 47%. In contrast with the basolateral preference of human and bovine adult sera, fetal bovine and newborn calf sera elicit this response primarily by interacting with the apical surface of the epithelium. HFBS-treated monolayers show a significant increase in the condensation of F-actin at points where ≥3 cells meet. These results demonstrate that FBS and other sera used as nutritional supplements can increase the permeability of the tight junctions of cultured epithelial cells.  相似文献   

6.
Summary Protein uptake from cerebral ventricles into the epithelium of the choroid plexus, and transport across the epithelium were studied ultrastructurally in rats. Horseradish peroxidase (HRP, MW 40,000) was used as protein tracer. Steady-state ventriculo-cisternal perfusion with subatmospheric pressure (-10cm of water) in the ventricular system was applied. HRP dissolved in artificial CSF was perfused from the lateral ventricles to cisterna magna for various times, and ventriculo-cisternal perfusion, vascular perfusion or immersion fixation with a formaldehyde-glutaraldehyde solution was performed.Coated micropinocytic vesicles containing HRP were seen both connected with the apical, lateral and basal epithelial surface and within the cells. Heavily HRP-labeled vesicles were often fused with the lining membrane of slightly labeled or unlabeled intercellular spaces. Since the apical tight junctions of the epithelium never appeared open or never contained HRP in the spaces between the fusion points, and since the intercellular spaces between adjacent epithelial cells below the junctions only infrequently contained tracer after 5 min, by increasing amounts after 15–60 min of HRP perfusion, a vesicular transport of HRP from the apical epithelial surface to the intercellular spaces, bypassing the tight junctions, is suggested.In addition to the transepithelial transport, micropinocytic vesicles also transported HRP to the lysosomal apparatus of the epithelial cells. With increasing length of exposure to HRP, a sequence of HRP-labeled structures could be evaluated, from slightly labeled apical vacuoles and multivesicular bodies to very heavily labeled dense bodies.  相似文献   

7.
Neutrophil (PMN) transepithelial migration is dependent on the leukocyte beta(2) integrin CD11b/CD18, yet the identity of epithelial counterreceptors remain elusive. Recently, a JAM protein family member termed JAM-C was implicated in leukocyte adhesive interactions; however, its expression in epithelia and role in PMN-epithelial interactions are unknown. Here, we demonstrate that JAM-C is abundantly expressed basolaterally in intestinal epithelia and localizes to desmosomes but not tight junctions. Desmosomal localization of JAM-C was further confirmed by experiments aimed at selective disruption of tight junctions and desmosomes. In assays of PMN transepithelial migration, both JAM-C mAbs and JAM-C/Fc chimeras significantly inhibited the rate of PMN transmigration. Additional experiments revealed specific binding of JAM-C to CD11b/CD18 and provided evidence of other epithelial ligands for CD11b/CD18. These findings represent the first demonstration of direct adhesive interactions between PMN and epithelial intercellular junctions (desmosomes) that regulate PMN transepithelial migration and also suggest that JAM-C may play a role in desmosomal structure/function.  相似文献   

8.
High transepithelial electrical resistance (TEER) demonstrates a functional permeability barrier of the normal urothelium, which is maintained by a layer of highly differentiated superficial cells. When the barrier is challenged, a quick regeneration is induced. We used side-by-side diffusion chambers as an ex vivo system to determine the time course of functional and structural urothelial regeneration after chitosan-induced injury. The exposure of the urothelium to chitosan caused a 60 % decrease in TEER, the exposure of undifferentiated urothelial cells to the luminal surface and leaky tight junctions. During the regeneration period (350 min), TEER recovered to control values after approximately 200 min, while structural regeneration continued until 350 min after injury. The tight junctions are the earliest and predominant component of the barrier to appear, while complete barrier regeneration is achieved by delayed superficial cell terminal differentiation. The barrier function and the structure of untreated urothelium were unaffected in side-by-side diffusion chambers for at least 6 h. The urinary bladder tissue excised from an animal thus retains the ability to maintain and restore the transepithelial barrier and cellular ultrastructure for a sufficient period to allow for studies of regeneration in ex vivo conditions.  相似文献   

9.
Morphology of branchial chloride cells in the freshwater teleosts Plecoglossus altivelis, Cyprinus carpio, and Oreochromis mossambicus was studied by light and transmission electron microscopy. The chloride cell has an apical membrane directly in contact with the outer medium. Generally, two or more neighboring chloride cells share an apical pit, forming a multicellular complex. The chloride cells form a multicellular complex in which cells differ in cytoplasmic electron density, development of tubular system, and in cell size. Chloride cells are linked by junctions which are shallower than the tight junctions that occur between neighboring pavement cells or between pavement and chloride cells. Multicellular complexes of chloride cells create additional paracellular pathways marked apically by the shallower junctions. Since junctional structure affects transepithelial permeability, development of multicellular complexes of chloride cells in freshwater fishes may be related to the transport of some substances as in the gills of marine fishes.  相似文献   

10.
Occludin modulates transepithelial migration of neutrophils   总被引:9,自引:0,他引:9  
Neutrophils cross epithelial sheets to reach inflamed mucosal surfaces by migrating along the paracellular route. To avoid breakdown of the epithelial barrier, this process requires coordinated opening and closing of tight junctions, the most apical intercellular junctions in epithelia. To determine the function of epithelial tight junction proteins in this process, we analyzed neutrophil migration across monolayers formed by stably transfected epithelial cells expressing wild-type and mutant occludin, a membrane protein of tight junctions with four transmembrane domains and both termini in the cytosol. We found that expression of mutants with a modified N-terminal cytoplasmic domain up-regulated migration, whereas deletion of the C-terminal cytoplasmic domain did not have an effect. The N-terminal cytosolic domain was also found to be important for the linear arrangement of occludin within tight junctions but not for the permeability barrier. Moreover, expression of mutant occludin bearing a mutation in one of the two extracellular domains inhibited neutrophil migration. The effects of transfected occludin mutants on neutrophil migration did not correlate with their effects on selective paracellular permeability and transepithelial electrical resistance. Hence, specific domains and functional properties of occludin modulate transepithelial migration of neutrophils.  相似文献   

11.
Summary It has been reported that cAMP controls the transepithelial Cl conductance in fish intestine (Bakker, R., Groot, J.A., 1984,Am. J. Physiol. 246:G213–G217; Krasny, E.J., Madara, J.L., DiBona, D.L., Frizzell, R.A., 1983,Fed. Proc. 42:1100). In both studies, the cAMP effect was interpreted as an increase in tight junction Cl conductance, because cAMP did not change the membrane potential or membrane resistance ratio. However, the activation of a Cl conductance in the membranes of a subset of the epithelial cells might be difficult to discern from an increase in tight junction Cl conductance. Here we report experiments that were designed to distinguish a tight junction Cl conductance from a membrane Cl conductance in a subpopulation of the epithelial cells. The effect of hypotonicity on the cAMP-induced increase in transepithelial conductance showed that cAMP-induced conductance is located in series with the lateral intercellular spaces. Transepithelial serosa to mucosa direct current caused an increase in resistance due to so-called transport number effects. Forskolin abolished the transport number effects, indicating that cAMP increases the Cl conductance of the tight junctions. Increasing cAMP did not change mannitol fluxes, whereas Cl fluxes more than doubled. Changes in dilution potential and transepithelial resistance demonstrated that the cAMP-induced conductance is specific for Cl and Br as opposed to I, NO 3 , SO 4 2– and gluconate. In contranst, cytochalasin D also decreased the transepithelial resistance and dilution potential in Nagluconate Ringer's. This demonstrates that cAMP acts on the tight junctions in a more specific manner than cytochalasin D.  相似文献   

12.
The pathway for the voltage-activated chloride current across isolated toad skin was analyzed using a scanning 2D-vibrating voltage probe technique, which permits discrimination of local current peaks if their origins are more than 50 μm apart. The epithelium was separated from the corial connective tissue after enzymatic digestion with collagenase. Cl current was activated by voltage clamping the transepithelial potential to 60–100 mV, serosa positive. Activated inward current was between 85 and 450 μA/cm2. In more than 25 tissue areas of 150 × 100 μm from 10 animals, which were automatically scanned with the vibrating probe, between 0 and 4 peaks of elevated local current (up to 800 μA/cm2) could be identified in individual fields. The density of current peaks, which were generally located at sites of mitochondria-rich (MR) cells, was less than 10% of the density of microscopically identified MR cells. The total current across individual sites of elevated conductance was 3.9 ± 0.6 nA. Considering the density of peaks, they account for 17 ± 2.5% of the applied transepithelial clamping current. The time course of current activation over previously identified conductive sites was in most cases unrelated to that of the total transepithelial current. Moreover, initially active sites could spontaneously inactivate. The results indicate that detection of elevated current above some MR cells is not sufficient to verify these cells as the pathway for transepithelial voltage-activated Cl current. Since the major fraction of activated current is apparently not associated with a route through MR cells, channel-like structures in the tight junctions of the paracellular pathway must be considered as an alternative possibility. Current peaks over MR cells could be due to high density of such sites in tight junctions between MR and surrounding principal cells. Improvement of the spatial resolution of the vibrating probe is required to verify this view. Received: 29 May 1997/Revised: 29 September 1997  相似文献   

13.
In this communication we report observations on the tight junctions of the frog choroid plexus obtained by thin section and freeze-fracture electron microscopy. It is shown that the choroid plexus epithelial tight junctions comprise a relatively high number (mean 5-6, range 3-10) of continuous, anastomosing strands. This is remarkable in relation to: (1) recent observations that the frog choroidal epithelium has a very low transepithelial resistance, and (2) current concepts of the proportional relationship between transepithelial resistance and number of tight junction strands. It is concluded that there exists a marked lack of correlation between tight junction structure and function in the frog choroid plexus epithelium.  相似文献   

14.
Vectorial transport in the thyroid epithelium requires an efficient barrier against passive paracellular flux, a role which is principally performed by the tight junction (zonula occludens). There is increasing evidence that tight junction integrity is determined by integral and peripheral membrane proteins which interact with the cell cytoskeleton. Although the contribution of the actin cytoskeleton to tight junction physiology has been intensively studied, less is known about possible interactions with microtubules. In the present study we used electrophysiological and immunohistochemical approaches to investigate the contribution of microtubules to the paracellular barrier in cultured thyroid cell monolayers which displayed a high transepithelial electrical resistance (6000-9000 ohm · cm2). Colchicine (1 μM) caused a progressive fall in electrical resistance to <10% of baseline after 6 h and depolarization of the transepithelial electrical potential difference consistent with a significant increase in paracellular permeability. The effect of colchicine on TER was not affected by agents which inhibit the major apical conductances of thyroid cells but was reversed upon removal of the drug. Immunofluorescent staining for tubulin combined with confocal laser scanning microscopy demonstrated that thyroid cells possessed a dense microtubule network extending throughout the cytoplasm which was destroyed by colchicine. Colchicine also produced changes in the localization of the tight junction-associated protein, ZO-1: its normally continuous junctional distribution was disrupted by striking discontinuities and the appearance of many fine strands which extended into the cytoplasm. A similar disruption in E-cadherin staining was also observed, but colchicine did not affect the distribution of vinculin associated with adherens junctions nor the integrity of the perijunctional actin ring. We conclude that microtubules are necessary for the functional and structural integrity of tight junctions in this electrically tight, transporting epithelium.  相似文献   

15.
Migration of polymorphonuclear leukocytes across epithelia is a hallmark of many inflammatory disease states. Neutrophils traverse epithelia by migrating through the paracellular space and crossing intercellular tight junctions. We have previously shown (Nash, S., J. Stafford, and J.L. Madara. 1987. J. Clin. Invest. 80:1104-1113), that leukocyte migration across T84 monolayers, a model human intestinal epithelium, results in enhanced tight junction permeability--an effect quantitated by the use of a simple, standard electrical assay of transepithelial resistance. Here we show that detailed time course studies of the transmigration-elicited decline in resistance has two components, one of which is unrelated to junctional permeability. The initial decrease in resistance, maximal 5-13 min after initiation of transmigration, occurs despite inhibition of transmigration by an antibody to the common beta subunit of neutrophil beta 2 integrins, and is paralleled by an increase in transepithelial short-circuit current. Chloride ion substitution and inhibitor studies indicate that the early-phase resistance decline is not attributable to an increase in tight junction permeability but is due to decreased resistance across epithelial cells resulting from chloride secretion. Since T84 cells are accepted models for studies of the regulation of Cl- and water secretion, our results suggest that neutrophil transmigration across mucosal surfaces (for example, respiratory and intestinal tracts) may initially activate flushing of the surface by salt and water. Equally important, these studies, by providing a concrete example of sequential transcellular and paracellular effects on transepithelial resistance, highlight the fact that this widely used assay cannot simply be viewed as a direct functional probe of tight junction permeability.  相似文献   

16.
In this study, we examine the effect of Hymenolepis diminuta on ion transport in the ileum and on tight junctions in the ileum and colon of rats. We also evaluate the effect of H. diminuta on C-fiber endings in the ileum, the direct habitat of H. diminuta, before and after mechanical stimulation and pharmacological modification by capsaicin (C-fiber irritant).Wistar rats were orally infected with five cysticercoids of H. diminuta. Using a modified Ussing chamber, electrophysiological parameters of the ileum were measured (transepithelial electrical potential difference and transepithelial electrical resistance) as well as the deposition of occludin (a tight junction protein) in the ileum and colon of the rats 8, 16, 25, 35, 40 and 60 days post infection.We observed a significant reduction in transepithelial electrical potential difference in the ileum of rats infected with H. diminuta. In both the ileum and colon of rats infected with H. diminuta we also observed a decrease in occludin deposition, which indicates leakage of tight junctions, correlating with the decrease in transepithelial electrical resistance of these tissues. The application of capsaicin confirmed the hypothesis that H. diminuta in rats affects the C-fiber sensory receptors, causing changes in ion transport in the ileum.The results of the performed electrophysiological and immunohistochemical examinations indicate hymenolepidosis-related changes in the active transport of ions and the passive movement of ions.  相似文献   

17.
Aldosterone classically modulates Na transport in tight epithelia such as the renal collecting duct (CD) through the transcellular route, but it is not known whether the hormone could also affect paracellular permeability. Such permeability is controlled by tight junctions (TJ) that form a size- and charge-selective barrier. Among TJ proteins, claudin-4 has been highlighted as a key element to control paracellular charge selectivity. In RCCD2 CD cells grown on filters, we have identified novel early aldosterone effects on TJ. Endogenous claudin-4 abundance and cellular localization were unaltered by aldosterone. However, the hormone promoted rapid (within 15-20 min) and transient phosphorylation of endogenous claudin-4 on threonine residues, without affecting tyrosine or serine; this event was fully developed at 10 nM aldosterone and appeared specific for aldosterone (because it is not observed after dexamethasone treatment and it depends on mineralocorticoid receptor occupancy). Within the same delay, aldosterone also promoted an increased apical-to-basal passage of 125I (a substitute for 36Cl), whereas 22Na passage was unaffected; paracellular permeability to [3H]mannitol was also reduced. Later on (45 min), a fall in transepithelial resistance was observed. These data indicate that aldosterone modulates TJ properties in renal epithelial cells.  相似文献   

18.
We have previously shown that PGE(2) and PGI(2) induce recovery of transepithelial resistance (TER) in ischemia-injured porcine ileal mucosa, associated with initial increases in Cl(-) secretion. We believe that the latter generates an osmotic gradient that stimulates resealing of tight junctions. Because of evidence implicating phosphatidylinositol 3-kinase (PI3K) in regulating tight junction assembly, we postulated that this signaling pathway is involved in PG-induced mucosal recovery. Porcine ileum was subjected to 45 min of ischemia, after which TER was monitored for a 180-min recovery period. Endogenous PG production was inhibited with indomethacin (5 microM). PGE(2) (1 microM) and PGI(2) (1 microM) stimulated recovery of TER, which was inhibited by serosal application of the osmotic agent urea (300 mosmol/kgH(2)O). The PI3K inhibitor wortmannin (10 nM) blocked recovery of TER in response to PGs or mucosal urea. Immunofluorescence imaging of recovering epithelium revealed that PGs restored occludin and zonula occludens-1 distribution to interepithelial junctions, and this pattern was disrupted by pretreatment with wortmannin. These experiments suggest that PGs stimulate recovery of paracellular resistance via a mechanism involving transepithelial osmotic gradients and PI3K-dependent restoration of tight junction protein distribution.  相似文献   

19.
Trichomonas vaginalis: Ultrastructural Bases of the Cytopathic Effect   总被引:1,自引:0,他引:1  
ABSTRACT. The in vitro cytopathic effect of Trichomonas vaginalis on epithelial cells was explored through the interaction of trophozoites of the virulent strain GT-10 with MDCK monolayers. The interaction was analyzed through electrophysiology, video microscopy, and transmission and scanning electron microscopy. Electrical measurements revealed that living parasites produced severe damage to the cell monolayers within 30 min, manifested as a rapid decrease in transepithelial resistance. Microscopic observations demonstrated that when placed in contact with epithelial cells, trichomonas formed clumps through interdigitations and transient plasma membrane junctions between adjacent parasites. Also, attached trophozoites adopted an ameboid shape. The in vitro cytopathic action of T. vaginalis on MDCK cells was initially evident by modifications of the plasma membrane, resulting in opening of tight junctions, membrane blebbing, and monolayer disruption. After 15 min of interaction the damage was focal, concentrating at sites where parasite clumps adhered to the monolayer. At 30 min practically all MDCK cells were dead, whether or not trichomonas were attached to them. These events were followed by detachment of lysed cells and complete disruption of the monolayer at 60 min. Electron microscopy demonstrated a peculiar form of adhesion that appears to be specific for trichomonas, in which the basal surface of T. vaginalis formed slender channels through which microvilli and cytoplasmic fragments of epithelial cells were internalized. The same sequence of lytic events was found with the less virulent GT-3 strain. However, the time course of cytolysis with GT-3 parasites was much slower, and lysis was limited to areas of attachment of T. vaginalis.  相似文献   

20.
We investigated the effects of cryoprotectants (glycerol, propane-1, 2-diol, dimethyl sulfoxide) on the ability of epithelial cells to assemble intercellular junctions. Madin-Darby canine kidney cells (MDCK, type II) were grown in S-MEM containing only 5 micromol/L Ca(2+) to allow attachment of cells to the growth surface but not the development of the junctional complex. In a first set of experiments, cells were exposed to 10% v/v cryoprotectant at room temperature for 30 min. After removal of the cryoprotectant, [Ca(2+)] was increased to 1.8 mmol/L (Ca-switch) and the assembly of junctions was followed immunocytochemically and by monitoring transepithelial resistance (TER). In a second set of experiments, the development of junctions was followed in the presence of 1% cryoprotectant. Addition and removal of 10% cryoprotectant had little effect on the assembly of junctions following the Ca-switch, with TER peaking >300 ohm cm(2) after 24 h. Immunocytochemical staining showed recruitment to cell borders of components of tight junctions, adherens junctions, and desmosomes and the presence of a distinct circumferential bundle of actin filaments. In the presence of 1% cryoprotectant, there was a lag of more than 20 h before TER began to rise. There was then a progressive rise in TER in all three cryoprotectant groups, indicating junction assembly, albeit at a lower rate than that in the absence of cryoprotectant. These results suggest that exposure to cryoprotectants per se will not inhibit cellular repair mechanisms aimed at restoring the integrity of epithelial cell layers, but incomplete removal of cryoprotectant may delay repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号