首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The betaine aldehyde dehydrogenases (BADH; EC 1.2.1.8) are so-called because they catalyze the irreversible NAD(P)+-dependent oxidation of betaine aldehyde to glycine betaine, which may function as (i) a very efficient osmoprotectant accumulated by both prokaryotic and eukaryotic organisms to cope with osmotic stress, (ii) a metabolic intermediate in the catabolism of choline in some bacteria such as the pathogen Pseudomonas aeruginosa, or (iii) a methyl donor for methionine synthesis. BADH enzymes can also use as substrates aminoaldehydes and other quaternary ammonium and tertiary sulfonium compounds, thereby participating in polyamine catabolism and in the synthesis of γ-aminobutyrate, carnitine, and 3-dimethylsulfoniopropionate. This review deals with what is known about the kinetics and structural properties of these enzymes, stressing those properties that have only been found in them and not in other aldehyde dehydrogenases, and discussing their mechanistic and regulatory implications.  相似文献   

2.
C Corbier  F Della Seta  G Branlant 《Biochemistry》1992,31(49):12532-12535
NAD(P) aldehyde dehydrogenases (EC 1.2.1.3) are a family of enzymes that oxidize a wide variety of aldehydes into acid or activated acid compounds. Using site-directed mutagenesis, the essential nucleophilic Cys 149 in the NAD-dependent phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Escherichia coli has been replaced by alanine. Not unexpectedly, the resulting mutant no longer shows any oxidoreduction phosphorylating activity. The same mutation, however, endows the enzyme with a novel oxidoreduction nonphosphorylating activity, converting glyceraldehyde 3-phosphate into 3-phosphoglycerate. Our study further provides evidence for an alternative mechanism in which the true substrate is the gem-diol entity instead of the aldehyde form. This implies that no acylenzyme intermediate is formed during the catalytic event. Therefore, the mutant C149A is a new enzyme which catalyzes a distinct reaction with a chemical mechanism different from that of its parent phosphorylating glyceraldehyde-3-phosphate dehydrogenase. This finding demonstrates the possibility of an alternative route for the chemical reaction catalyzed by classical nonphosphorylating aldehyde dehydrogenases.  相似文献   

3.
Aldehyde dehydrogenases catalyze the pyridine nucleotide-dependent oxidation of aldehydes to acids. Seventeen enzymes are currently viewed as belonging to the human aldehyde dehydrogenase superfamily. Summarized herein, insofar as the information is available, are the structural composition, physical properties, tissue distribution, subcellular location, substrate specificity, and cofactor preference of each member of this superfamily. Also summarized are the chromosomal locations and organization of the genes that encode these enzymes and the biological consequences when enzyme activity is lost or substantially diminished. Broadly, aldehyde dehydrogenases can be categorized as critical for normal development and/or physiological homeostasis (1). even when the organism is in a friendly environment or (2). only when the organism finds itself in a hostile environment. The primary, if not sole, evolved raison d'être of first category aldehyde dehydrogenases appears to be to catalyze the biotransformation of a single endobiotic for which they are relatively specific and of which the resultant metabolite is essential to the organism. Most of the human aldehyde dehydrogenases for which the relevant information is available fall into this category. Second category aldehyde dehydrogenases are relatively substrate nonspecific and their evolved raison d'être seems to be to protect the organism from potentially harmful xenobiotics, specifically aldehydes or xenobiotics that give rise to aldehydes, by catalyzing their detoxification. Thus, the lack of a fully functional first category aldehyde dehydrogenase results in a gross pathological phenotype in the absence of any insult, whereas the lack of a functional second category aldehyde dehydrogenase is ordinarily of no consequence with respect to gross phenotype, but is of consequence in that regard when the organism is subjected to a relevant insult.  相似文献   

4.
The effect of ethanol ingestion on aldehyde dehydrogenase activity in the subcellular fractions of livers from 14 pair-fed male Sprague-Dawley rats was tested. Enzymatic assays were performed at two different concentrations of propionaldehyde (0.068 and 13.6 mM) sufficient to saturate enzymes with high and low affinities for propionaldehyde, respectively. The effect of alcohol ingestion varied depending on the subcellular fraction tested and the propionaldehyde concentration used in the assay. There was a 60% increase in the activity of aldehyde dehydrogenase with high affinity for propionaldehyde in the mitochondrial membranes. Conversely there was a 50% decrease in the activity of aldehyde dehydrogenases with high affinity for propionaldehyde in the microsomal fraction. There was also a 58% decrease in the activity of enzymes from the mitochondrial matrix with low affinity for propionaldehyde. The results suggest that differences in the assay systems employed may account for the conflicting results obtained by previous investigators of the effect of ethanol feeding.  相似文献   

5.
The effect of ethanol ingestion on aldehyde dehydrogenase activity in the subcellular fractions of livers from 14 pair-fed male Sprague-Dawley rats was tested. Enzymatic assays were performed at two different concentrations of propionaldehyde (0.068 and 13.6 mM) sufficient to saturate enzymes with high and low affinities for propionaldehyde, respectively. The effect of alcohol ingestion varied depending on the subcellular fraction tested and the propionaldehyde concentration used in the assay. There was a 60% increase in the activity of aldehyde dehydrogenase with high affinity for propionaldehyde in the mitochondrial membranes. Conversely there was a 50% decrease in the activity of aldehyde dehydrogenases with high affinity for propionaldehyde in the microsomal fraction. There was also a 58% decrease in the activity of enzymes from the mitochondrial matrix with low affinity for propionaldehyde. The results suggest that differences in the assay systems employed may account for the conflicting results obtained by previous investigators of the effect of ethanol feeding.  相似文献   

6.
Antisera against metal(Mo)-containing dye-linked dehydrogenases from sulphate-reducing bacteria were used to screen for immunological similarities with NAD+-linked dehydrogenases detected in aerobic methanol-utilizing bacterial isolates. Out of eleven strains tested, the strains #5, 8, 9 and 11 were shown to have specific formate and aldehyde dehydrogenases displaying antibody cross-reaction against highly purified Mo-containing dye-linked dehydrogenases. The apparent molecular mass of the identified proteins observed during the antibody reaction correlated with the molecular mass of the dehydrogenases obtained after native PAGE electrophoresis. The strains #8 and 11 exhibited one formate dehydrogenase apparently of identical molecular mass 140–145 kDa, whereas strains #5, 9 and 11 synthesized aldehyde dehydrogenases with apparent molecular masses of about 110, 120 and 155 kDa (two forms) and 120 kDa, respectively. All these aerobic enzymes shared antigenic properties with the anaerobic metalloproteins, indicating the existence of structural similarities between those enzymes in spite of having different cofactor moieties.  相似文献   

7.
The activities of the enzymes ethanolamine ammonia-lyase, CoA-dependent and CoA-independent aldehyde dehydrogenases, and isocitrate lyase were assayed in Escherichia coli which had been grown on various sources of carbon and nitrogen. Induction of ethanolamine ammonia-lyase and of maximal levels of both aldehyde dehydrogenases required the concerted effects of ethanolamine and vitamin (or coenzyme) B12. Molecular exclusion chromatography revealed that, in the absence of one or both co-inducers, two repressible isoenzymes of CoA-dependent aldehyde dehydrogenase (mol. wts 900000 and 120000) were produced, these being replaced by two inducible isoenzymes (mol. wts 520000 and 370000) in the presence of both co-inducers. A similar inducible repressible series of isoenzymes was also observed for CoA-independent aldehyde dehydrogenase. No evidence was found for structural relationships between ethanolamine ammonia-lyase, CoA-dependent aldehyde dehydrogenase and CoA-independent aldehyde dehydrogenase, but mutant and physiological studies demonstrated that the induction of the first two enzymes is under common control. Evidence is presented for the operation of a previously unreported pathway of ethanolamine metabolism in E. coli.  相似文献   

8.
Purification and comparative studies of alcohol dehydrogenases   总被引:2,自引:0,他引:2  
Alcohol dehydrogenases from various animal and plant sources were purified by a common procedure which employed DEAE, Sephadex-G100 and affinity chromatographies. The procedure achieves an 80-130 fold purification for animal enzymes. However, only a 5-15 fold purification for plant enzymes was attained because of the instability of these enzymes. Purified alcohol dehydrogenases from animal and plant sources differ in coenzyme and substrate specificities. The enzymes from mammalian, avian and fish livers display aldehyde oxidizing and esterolytic activities in addition to alcohol oxidizing activity. However, the enzymes from plants and yeast show only the oxidative activity toward alcohols. Chemical modifications have been performed to identify amino acid residues which are essential to the oxidative and esterolytic activities of alcohol dehydrogenases.  相似文献   

9.
1. The properties and distribution of the NAD-linked unspecific aldehyde dehydrogenase activity (aldehyde: NAD+ oxidoreductase EC 1.2.1.3) has been studied in isolated cytoplasmic, mitochondrial and microsomal fractions of rat liver. The various types of aldehyde dehydrogenase were separated by ion exchange chromatography and isoelectric focusing. 2. The cytoplasmic fraction contained 10-15, the mitochondrial fraction 45-50 and the microsomal fraction 35-40% of the total aldehyde dehydrogenase activity, when assayed with 6.0 mM propionaldehyde as substrate. 3. The cytoplasmic fraction contained two separable unspecific aldehyde dehydrogenases, one with high Km for aldehydes (in the millimolar range) and the other with low Km for aldehydes (in the micromolar range). The latter can, however, be due to leakage from mitochondria. The high-Km enzyme fraction contained also all D-glucuronolactone dehydrogenase activity of the cytoplasmic fraction. The specific formaldehyde and betaine aldehyde dehydrogenases present in the cytoplasmic fraction could be separated from the unspecific activities. 4. In the mitochondrial fraction there was one enzyme with a low Km for aldehydes and another with high Km for aldehydes, which was different from the cytoplasmic enzyme. 5. The microsomal aldehyde dehydrogenase had a high Km for aldehydes and had similar properties as the mitochondrial high-Km enzyme. Both enzymes have very little activity with formaldehyde and glycolaldehyde in contrast to the other aldehyde dehydrogenases. They are apparently membranebound.  相似文献   

10.
Purification and characterization of enzymes metabolizing retinaldehyde, propionaldehyde, and octanaldehyde from four human livers and three kidneys were done to identify enzymes metabolizing retinaldehyde and their relationship to enzymes metabolizing other aldehydes. The tissue fractionation patterns from human liver and kidney were the same, indicating presence of the same enzymes in human liver and kidney. Moreover, in both organs the major NAD(+)-dependent retinaldehyde activity copurified with the propionaldehyde and octanaldehyde activities; in both organs the major NAD(+)-dependent retinaldehyde activity was associated with the E1 isozyme (coded for by aldh1 gene) of human aldehyde dehydrogenase. A small amount of NAD(+)-dependent retinaldehyde activity was associated with the E2 isozyme (product of aldh2 gene) of aldehyde dehydrogenase. Some NAD(+)-independent retinaldehyde activity in both organs was associated with aldehyde oxidase, which could be easily separated from dehydrogenases. Employing cellular retinoid-binding protein (CRBP), purified from human liver, demonstrated that E1 isozyme (but not E2 isozyme) could utilize CRBP-bound retinaldehyde as substrate, a feature thought to be specific to retinaldehyde dehydrogenases. This is the first report of CRBP-bound retinaldehyde functioning as substrate for aldehyde dehydrogenase of broad substrate specificity. Thus, it is concluded that in the human organism, retinaldehyde dehydrogenase (coded for by raldH1 gene) and broad substrate specificity E1 (a member of EC 1. 2.1.3 aldehyde dehydrogenase family) are the same enzyme. These results suggest that the E1 isozyme may be more important to alcoholism than the acetaldehyde-metabolizing enzyme, E2, because competition between acetaldehyde and retinaldehyde could result in abnormalities associated with vitamin A metabolism and alcoholism.  相似文献   

11.
Three alcohol dehydrogenases have been identified in Acinetobacter calcoaceticus sp. strain HO1-N: an NAD(+)-dependent enzyme and two NADP(+)-dependent enzymes. One of the NADP(+)-dependent alcohol dehydrogenases was partially purified and was specific for long-chain substrates. With tetradecanol as substrate an apparent Km value of 5.2 microM was calculated. This enzyme has a pI of 4.5 and a molecular mass of 144 kDa. All three alcohol dehydrogenases were constitutively expressed. Three aldehyde dehydrogenases were also identified: an NAD(+)-dependent enzyme, an NADP(+)-dependent enzyme and one which was nucleotide independent. The NAD(+)-dependent enzyme represented only 2% of the total activity and was not studied further. The NADP(+)-dependent enzyme was strongly induced by growth of cells on alkanes and was associated with hydrocarbon vesicles. With tetradecanal as substrate an apparent Km value of 0.2 microM was calculated. The nucleotide-independent aldehyde dehydrogenase could use either Würster's Blue or phenazine methosulphate (PMS) as an artificial electron acceptor. This enzyme represents approximately 80% of the total long-chain aldehyde oxidizing activity within the cell when the enzymes were induced by growing the cells on hexadecane. It is particulate but can be solubilized using Triton X-100. The enzyme has an apparent Km of 0.36 mM for decanal.  相似文献   

12.
Human aldehyde dehydrogenases (ALDHs) comprise a family of 17 homologous enzymes that metabolize different biogenic and exogenic aldehydes. To date, there are relatively few general ALDH inhibitors that can be used to probe the contribution of this class of enzymes to particular metabolic pathways. Here, we report the discovery of a general class of ALDH inhibitors with a common mechanism of action. The combined data from kinetic studies, mass spectrometric measurements, and crystallographic analyses demonstrate that these inhibitors undergo an enzyme-mediated β-elimination reaction generating a vinyl ketone intermediate that covalently modifies the active site cysteine residue present in these enzymes. The studies described here can provide the basis for rational approach to design ALDH isoenzyme-specific inhibitors as research tools and perhaps as drugs, to address diseases such as cancer where increased ALDH activity is associated with a cellular phenotype.  相似文献   

13.
The C-terminal 222 residues of human liver aldehyde dehydrogenase can be aligned with the C-terminal 226 residues of a thiol protease from Dictyostelium discoideum to yield 47 residue identities, including matching active site cysteine residues. A multiple alignment with three more aldehyde dehydrogenases and three more thiol proteases yields three regions with clustered residue similarities. In the tertiary structure of papain, these three regions are in close proximity although widely separated in primary structure, and many conserved residues are located in the active site groove. The three-dimensional relationships, the common thiol ester mechanisms of the enzymes, the locations of exon boundaries in the dehydrogenase and protease genes, and the conservation of internal salt-bridging and disulfide-paired residues in papain, all appear compatible with the hypothesis of an ancestral relationship between thiol proteases and aldehyde dehydrogenases.  相似文献   

14.
Whole cells of Pseudomonas putida N.C.I.B 9869, when grown on either 3,5-xylenol or p-cresol, oxidized both m- and p-hydroxybenzyl alcohols. Two distinct NAD+-dependent m-hydroxybenzyl alcohol dehydrogenases were purified from cells grown on 3,5-xylenol. Each is active with a range of aromatic alcohols, including both m- and p-hydroxybenzyl alcohol, but differ in their relative rates with the various substrates. An NAD+-dependent alcohol dehydrogenase was also partially purified from p-cresol grown cells. This too was active with m- and p-hydroxybenzyl alcohol and other aromatic alcohols, but was not identical with either of the other two dehydrogenases. All three enzymes were unstable, but were stabilized by dithiothreitol and all were inhibited with p-chloromercuribenzoate. All were specific for NAD+ and each was shown to catalyse conversion of alcohol into aldehyde.  相似文献   

15.
Plasma contains many enzymes that are probably derived from damaged cells. These enzymes are cleared at characteristic rates. We showed previously that in rats the rapid clearance of alcohol dehydrogenase, lactate dehydrogenase M4 and the mitochondrial and cytosolic isoenzymes of malate dehydrogenase is largely due to endocytosis by macrophages in liver, spleen and bone marrow. We now demonstrate that uptake of each of the enzymes by these tissues is in general decreased by simultaneous injection of a high dose of one of the other dehydrogenases or a high dose of adenylate kinase or creatine kinase. A similar dose of colloidal albumin did not significantly decrease uptake of the four dehydrogenases. Nor was uptake of colloidal albumin, apo-peroxidase from horseradish or multilamellar liposomes influenced by a high dose of mitochondrial malate dehydrogenase. These results indicate that the four dehydrogenases and the two kinases are specifically endocytosed via the same receptor. We suggest that this receptor contains a group, possibly a nucleotide, with affinity for the nucleotide-binding sites of the enzymes.  相似文献   

16.
1. A series of aldehyde dehydrogenase isozymes (aldehyde:NAD (P)+ oxidoreductase, EC 1.2.1.5), has been purified from hepatomas induced in Sprague-Dawley rats by 2-acetylaminofluorene. 2. The functional hepatoma-specific aldehyde dehydrogenase isozymes exist as 105 000-dalton dimers composed to two subunits of 53 000 daltons. Isoelectric points of the purified isozymes are 6.9-7.2. 3. Antiserum to these purified hepatoma-specific aldehyde dehydrogenases has been produced and the immunological relationships of these isozymes to their normal liver counterpart have been studied. Results of Ouchterlony double diffusions, agar-gel immunoelectrophoresis and polyacrylamide gel and agar immunoelectrophoresis indicate that anti-hepatoma aldehyde dehydrogenase antiserum cross-reacts with normal liver aldehyde dehydrogenase.  相似文献   

17.
1. Isoelectric focusing (IEF) and zymogram methods were used to examine the tissue distribution, multiplicity and substrate specificities of alcohol dehydrogenases (ADHs), aldehyde dehydrogenases (ALDHs) and ocular oxidases (EOXs) from mammalian anterior eye tissues. 2. Baboon, cattle, pig and sheep corneal extracts exhibited high ALDH activities; the corneal ALDHs were distinct from the major liver ALDHs and distinguished by their preference for medium-chain aldehydes. 3. Baboon and pig corneal extracts also showed high ADH activities, by comparison with ovine and bovine samples. Moreover, the ADHs were distinct from the major liver isozymes in pI value and substrate specificity. 4. Mammalian lens extracts exhibited significant ALDH activity of a form corresponding to the major liver cytosolic isozyme. Minor activity of the corneal enzyme was also observed in some species. 5. Lens ADH phenotypes were species-specific, and consisted of either Class II activity (baboon and sheep), Class III ADH activity (pig), or activities of both ADH classes (cattle). 6. Lens extracts also exhibited a complex pattern of ocular oxidase (EOX) activities following IEF. 7. A role in peroxidatic aldehyde detoxification is proposed for these enzymes in anterior eye tissues.  相似文献   

18.
Freshly obtained human term placentae were subjected to subcellular fractionation to study the localization of NAD-dependent aldehyde dehydrogenases. Optimal conditions for the cross-contamination-free subcellular fractionation were standardized as judged by the presence or the absence of appropriate marker enzymes. Two distinct isozymes, aldehyde dehydrogenase I and II, were detected in placental extracts after isoelectric focusing on polyacrylamide gels. Based on a placental wet weight, about 80% of the total aldehyde dehydrogenase activity was found in the cytosolic acid and about 10% in the mitochondrial fraction. The soluble fraction (cytosol) contained predominantly aldehyde dehydrogenase II which has a relatively high Km (9 mmol/l) for acetaldehyde and is strongly inhibited by disulfiram. The results indicate that cytosol is the main site for acetaldehyde oxidation, but the enzyme activity is too slow to prevent the placental passage of normal concentrations of blood acetaldehyde (less than 1 mumol/l) produced by maternal ethanol metabolism.  相似文献   

19.
T Koivula 《Life sciences》1975,16(10):1563-1569
The subcellular distribution of human liver aldehyde dehydrogenases (E.C. 1.2.1.3) have been studied and the different types have been separated by ion exchange chromatography. The cytoplasmic fraction contained at least two chromatographically separable aldehyde dehydrogenases, which accounted for about 30% of the total activity. One of the cytoplasmic aldehyde dehydrogenases had a high Km for aldehydes (in the millimolar range). A considerable part of the activity found in this fraction was due to an enzyme with a low Km for aldehydes (in the micromolar range). It had properties similar to those of the mitochondrial main enzyme fraction, from where it may have originated as a contamination during subcellular fractionation. Specific betaine aldehyde and formaldehyde dehydrogenases were separated from these unspecific activities in the cytoplasmic fraction. In mitochondria, where more than 50% of the total aldehyde dehydrogenase activity was found, there was also evidence for slight high-Km activity. The microsomal fraction contained only a high-Km aldehyde dehydrogenase, which accounted for about 10% of the total activity.  相似文献   

20.
The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号