首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the viability (percentage of dead cells) and the incidence of DNA fragmentation of horse embryos after storage in three different media at 5 degrees C for 6 and 24 h. Forty embryos were stored in Emcare Holding Solution for 6 and 24 h, in Hams'F10 or Vigro Holding Plus for 24 h at 5 degrees C (n = 9-10 per group) and 10 embryos were evaluated immediately after collection. First, embryos were stained, immediately after collection or following storage, to detect dead cells (DAPI) and, subsequently, DAPI-stained embryos were fixed and stained to detect DNA fragmentation (TUNEL). Finally, all the fixed embryos were re-stained with DAPI to determine the total number of cells. The percentage of cells stained with both TUNEL and DAPI or TUNEL-only or DAPI-only were determined. The percent of dead cells (DAPI-labelled) per embryo increased with duration of storage, but no differences were detected between the storage media. The percentage of early apoptotic cells (TUNEL+/DAPI-) in fresh and stored embryo for 6 h or 24 h did not differ significantly (P > 0.05). There was a significant correlation between the percentage of cells labelled by TUNEL and DAPI (R = 0.87) (P < 0.001). These results suggest that cooled storage increases cell death but this does not appear to occur by induction of apoptosis and that DAPI staining proves to be a quick and reliable method for assessing embryo viability.  相似文献   

2.
Equine embryos were collected by transcervical uterine flush 7 d after ovulation. The flush solution was Dulbecco's phosphate buffered saline (PBS) with 1% newborn calf serum and penicillin-streptomycin. Each embryo was washed in modified Dulbecco's PBS with 1% newborn calf serum and 0.4% bovine serum albumin, and placed in 4-ml polystyrene test tube containing this same medium. Embryos were packaged in a commercial semen transport container which cooled (-0.3 degrees C/min) and maintained the embryo at 4 to 6 degrees C. After 24 h, 16 embryos were transcervically transferred into recipient mares. Of the 16 embryos, six were detected as vesicles by ultrasonography at 14 d of pregnancy, of which three were carried to term and resulted in live, normal foals. Sixteen control embryos were directly transferred without prior storage and resulted in five foals.  相似文献   

3.
This study examined the effects of cold storage on plasma membrane, DNA integrity, and fertilizing ability of domestic cat spermatozoa. Intact cat testes were stored at 4°C in Dulbecco's phosphate buffered saline (DPBS) for 7 days. Membrane integrity (experiment 1) and DNA integrity (experiment 2) of extracted spermatozoa were assessed over time during storage. Testicular spermatozoa were also tested for their fertilizing ability via intracytoplasmic sperm injection (ICSI) in term of gamete activation and early embryonic development at 18 h (experiment 3). The membrane integrity of testicular spermatozoa was well preserved in DPBS for 4 days compared to non-preserved control (Day 0) (P<0.05). The incidence of testicular sperm DNA fragmentation was <1% after 7 days of cold storage and was not significantly affected by the duration of cold storage (P>0.05). Finally, testicular spermatozoa could form pronuclei and sustain embryo development following ICSI regardless of the storage time (P>0.05). In conclusion, cat testicular spermatozoa can be preserved at 4°C for up to 7 days without severely compromising of plasma membrane and DNA integrity while retaining a normal fertilizing ability.  相似文献   

4.
Sheep embryos were collected under sterile conditions in Dulbecco's Phosphate Buffered Saline (DPBS) + 10% Fetal Calf Serum (FCS) and cultured in DPBS + 20% FCS at 37 degrees C. They were classified according to their stage of development, from the lowest stage, 13 (less than a morula) to the highest stage, 20 (hatched blastocyst). Morphology was graded from 1 for excellent to 5 for degenerated. All embryos placed in the experiment had a development stage classification of 14 (morula) or higher and morphology classification of 1 to 3. Thirty-four embryos cultured in the laboratory for 24 h (Treatment B) and 32 embryos handled the same way except that they were transported for approximately 12 h (Treatment C) increased an average of 1.8 development classification scores and decreased -0.84 and -0.58 morphology classification scores for the two treatments, respectively. Twelve embryos in Treatment D (the same as Treatment C except that they were cultured in the laboratory for an additional 24 h) progressed 2.2 development classification scores during 48 h culture and did not change (-0.08) in the morphology classification score. The development estimates related to length of culture time but showed no affect of transport. Seventy-five percent of 20 embryos transferred in Treatment C and 42% of 12 embryos in Treatment D survived to parturition, demonstrating that the procedures used to transport and culture them for 24 and 48 h, respectively, maintained embryos capable of post transfer survival. Forty-one percent of the 22 embryos transferred in Treatment A (noncultured) and 20% of 20 embryos in Treatment B survived.  相似文献   

5.
Equine embryos have been successfully transferred after 24h cooled storage in Ham's F-10. The aim of this study was to compare the viability of equine embryos in vitro and in vivo after 6 and 24h cooled storage using three media and to examine the relationship between embryo size and viability after 24h cooled storage. In Experiment 1, the viability of embryos was evaluated using DAPI-staining after 0, 6 or 24h in Ham's F-10, 24h in Emcare embryo holding solution (EHS) or 24h in ViGro holding plus (VHP) (n=10/group). The mean number of dead cells was similar for embryos stored in Ham's F-10, EHS and VHP for 24h. Larger Day 7 embryos appear to withstand 24h cold storage better than small Day 7 embryos. The embryo quality for 24h cold storage was negatively correlated with size. In Experiment 2, 40 embryos were stored (n=20/group) either in Ham's F-10 or in EHS then transferred as pairs in recipient mares. Fifteen of the 20 recipient mares (75%) were pregnant. Out of 17 surviving embryos, 9 embryos (53%) were stored in Ham's F-10 and 8 (47%) in EHS. These results suggest that EHS and VHP offer a good alternative to Ham's F-10 for 24h cooled storage of equine embryos and that larger embryos may have a better viability after 24h of cooled storage than smaller embryos.  相似文献   

6.
This study was conducted to examine the effect of a quick-freezing protocol on morphological survival and in vitro development of mouse embryos cryopreserved in ethylene glycol (EG) at different preimplantation stages. One-cell embryos were harvested from 6-to 8-wk-old CB6F1 superovulated mice, 20 to 23 h after pairing with males of the same strain and hCG injection. The embryos were cultured in human tubal fluid (HTF) containing 4 mg/ml BSA under mineral oil at 37 degrees C in 5% CO(2) plus 95% room air at maximal humidity. Twenty-four to 96 h after collection, the embryos were removed from culture and frozen at the 2 cell, 4 to 8-cell, compact morula, early blastocyst, expanding blastocyst and expanded blastocyst stages. To perform the quick-freeze procedure, embryos were equilibrated in Dulbecco's phosphate buffered saline (DPBS) + 10 % fetal bovine serum (FBS) + 0.25 M sucrose + 3 M ethylene glycol (freeze medium) for 20 min at room temperature (22 to 26 degrees C) and loaded in a single column of freeze medium into 0.25-ml straws (4 to 5 embryos per straw). The straws were held in liquid nitrogen vapor for 2 min and immersed in liquid nitrogen. Embryos were thawed by gentle agitation in a 37 degrees C water bath for 20 sec and transferred to DPBS + 10 % FBS + 0.5 M sucrose (re-hydration medium) for 10 min at room temperature, rinsed 2 times in HTF plus 4 mg/ml BSA and then cultured for 24 to 96 h. Survival of embryos was based on their general morphological appearance after thawing and their ability to continue development upon subsequent culture in vitro. Survival of blastocysts after thawing also required expansion or reexpansion of the blastocoel after several hours in culture. Significant differences were found in the survival and development of mouse embryos at different developmental stages quick-frozen in ethylene glycol and sucrose: 2-cell embryos 43/84 (51%), 4 to 8-cell embryos 44/94 (47%), morulae and early blastocysts 56/70 (80%; P相似文献   

7.
Antifreeze proteins (AFPs) non-colligatively lower the freezing point of aqueous solutions, block membrane ion channels and thereby confer a degree of protection during cooling. Ovine embryos following prolonged hypothermic storage were used to determine 1) the type and concentration of a group of AFPs that can confer hypothermic tolerance, 2) the storage temperature, 3) the cooling rate, and 4) the in vitro and in vivo viability. In Experiment 1, Grade 1 and 2 embryos produced following superovulation were either cultured fresh (control) or stored at 4 degrees C for 4 d in media containing protein from 1 of 3 sources: Winter Flounder (WF; AFP Type 1); Ocean Pout (OP; AFP Type 3) at a concentration of 1 or 10 mg/ml; or bovine serum albumen (BSA) at 4 mg/ml in phosphate buffered saline (PBS). Following 72 h of culture, the viability rates were not different between controls (18 21 ); BSA (9 15 ); WF at 1 mg/ml (14 15 ); WF at 10 mg/ml (13 15 ) or OP at I mg/n-d (15 21 ), but were decreased (P < 0.05) in embryos stored in OP at 1 0 mg/ml (I 1 20 ). Pooled data showed higher (P < 0.05) viability rates for WF (27 30 ) than for OP (26 41 ) or BSA (9 15 ). There was no effect of protein source on hatching rates, but mean hatched diameters of embryos were lower (P < 0.05) following storage in BSA. In Experiment 2, Grade I to 3 embryos were either cultured fresh or stored for 4 d at 0 degrees or 4 degrees C in 4 mg/n-d BSA or 1 mg/ml WF. Embryos stored in WF at 4 degrees C (WF/4 degrees C) had comparable hatching rates (8 12 ) to that of controls (10 10 ), but embryos in the other treatments (WF 0 degrees C, 5 11 , BSA 4 degrees C, 6 11 and BSA 0 degrees C, 3 10 ) had significantly lower hatching rates (P < 0.01) compared with controls. Hatched diameters were comparable between controls and embryos stored in WF 4 degrees C, but embryos stored in WF 0 degrees C and BSA at both temperatures had smaller diameters (P < 0.05). In Experiment 3, Grade 1 to 3 embryos were either transferred fresh or were stored for 4 d at 4 degrees C in 4 mg/ml BSA or 1 mg/ml WF at different cooling rates (T1, BSA > 2 degrees C/min; T2, WF > 2 degrees C/min and T3, WF < 1 degrees C/min) prior to transfer. There were no differences in the number of ewes pregnant (T1, 10 1 1; T2, 6 10 and T3, 8 10 ) or in the number of viable fetuses recovered per treatment (T1, 14 25 ; T2, 10 1 4 and T3, 15 2 1) to indicate a negative effect of cooling rate or protein on embryo survival. In conclusion, ovine embryos can be stored in WF or BSA at 4 degrees C for 4 d, yielding similar pregnancy and embryo survival rates as fresh embryos following transfer to recipient ewes.  相似文献   

8.
These experiments were designed to test the efficacy of storing bovine embryos at 4 degrees C. Of particular interest were the age of embryo at which maximum post-storage survival could be achieved and longevity at 4 degrees C. A greater proportion of day 8 blastocysts developed in vitro at 37 degrees C following refrigeration for 48 hr than did embryos collected 2, 4 or 6 days after estrus (P<0.01). Survival of blastocysts stored at 4 degrees C for 48 hr was similar to that of nonstored blastocysts. In a subsequent experiment, day 8 blastocysts were recovered nonsurgically and assigned to one of the following treatments: (a) immediate transfer; (b) culture at 37 degrees C; or (c) storage at 4 degrees C for 1, 2, 3 or 5 days. Post-storage viability was assessed by either development in culture at 37 degrees C or embryo survival following nonsurgical transfer to synchronized recipients. In vitro survival of nonstored embryos and embryos stored 1 day did not differ. Survival decreased after storage for 2 days (P<0.10) or longer (P<0.05). Similar results were observed for survival after transfer, but embryo viability decreased even more rapidly with increasing duration of storage. In vitro survival was approximately 50% for blastocysts stored for 3 and 5 days, but few pregnancies resulted from transfer of embryos stored for these periods. In another experiment survival after transfer of blastocysts stored at 4 degrees C for up to 2 days was similar to that of nonstored blastocysts.  相似文献   

9.
In the horse industry, milk or milk-based extenders are used routinely for dilution and storage of semen cooled to 4-8 degrees C. Although artificial insemination (AI) with chilled and transported semen has been in use for several years, pregnancy rates are still low and variable related to variable semen quality of stallions. Over the years, a variety of extenders have been proposed for cooling, storage and transport of stallion semen. Fractionation of milk by microfiltration, ultrafiltration, diafiltration and freeze-drying techniques has allowed preparation of purified milk fractions in order to test them on stallion sperm survival. Finally, a high protective fraction, native phosphocaseinate (NPPC), was identified. A new extender, INRA96, based on modified Hanks' salts, supplemented with NPPC was then developed for use with cooled/stored semen.Four experiments were conducted to compare INRA96 and milk-based extenders under various conditions of storage. The diluted semen was maintained under aerobic conditions when stored at 15 degrees C, and anaerobic conditions when stored at 4 degrees C. In experiment 1, split ejaculates from 13 stallions were diluted either in INRA96 extender then stored at 15 degrees C or diluted in Kenney or INRA82 extenders and then stored at 4 degrees C for 24h, until insemination. In experiment 2, semen from two stallions was extended in INRA96 then inseminated immediately or stored at 15 degrees C for 3 days until insemination. In experiment 3, semen from three stallions was diluted in INRA96 then stored at 15 or 4 degrees C for 24h until insemination, finally, in experiment 4, split ejaculates from four stallions were diluted in INRA96 or E-Z Mixin extenders then stored at 4 degrees C for 24h until insemination. Experiment 1 demonstrated that at 15 degrees C, INRA96 extender significantly improved pregnancy rate per cycle compared to Kenney or INRA82 extenders at 4 degrees C after 24h of storage (57%, n=178 versus 40%, n=171, respectively; P<0.01). Experiment 2 showed that semen stored at 15 degrees C for 3 days can achieve pregnancy at a fertility rate per cycle of 48% (n=52) compared to 68% (n=50, immediate insemination, P=0.06). Experiment 3 demonstrated that INRA96 extender can be as efficient at 15 degrees C (54%, n=37) as at 4 degrees C (54%, n=35) after 24h of storage. Finally, experiment 4 showed that INRA96 extender used at 4 degrees C (59%, n=39) seems to improve fertility per cycle compared to E-Z Mixin at 4 degrees C (49%, n=39, P=0.25), but this result has to be confirmed.These results demonstrate that semen diluted in INRA96 extender and stored at 15 degrees C can be an alternative to semen diluted in milk-based extenders and stored at 4 degrees C for "poor cooler" stallions. Furthermore, INRA96 extender can be as efficient at 15 degrees C as at 4 degrees C, for preserving sperm motility and fertility.  相似文献   

10.
DNA fragmentation and its relationship with dead cells were examined in bovine blastocysts produced in vitro and stored at 4 degrees C for 1-5 days. Survival and development to the hatching and hatched blastocyst stage decreased with increasing storage time. Both were significantly lower at 72 hr than at 48 hr. None of the embryos stored for 120 hr developed to the hatching or hatched blastocyst stage. The proportion of dead cells per embryo increased progressively as the time of storage increased, until 69% of embryonic cells were dead after 120 hr of storage. There was no significant difference between the proportions of DNA fragmentation per embryo stored for 0 and 24 hr (12% vs 16%). However, the proportion of DNA fragmentation in embryos stored for longer than 48 hr was significantly greater than that in embryos stored for less than 24 hr. There were no significant differences among those stored for longer than 48 hr (28-33%). These results suggest that the reduced developmental competence of bovine embryos stored at 4 degrees C is characterized by necrotic change rather than apoptotic change.  相似文献   

11.
Vitrification of mouse embryos in two cryoprotectant solutions   总被引:5,自引:0,他引:5  
The objective of this study was to compare the efficiency of 2 media on the vitrification of mouse compacted morulae, early blastocysts and expanded blastocysts after equilibration at room temperature of 4 degrees C. Embryos were equilibrated for 10 min in either 25% VS3 (Rall Equilibration Medium, REM) or 10% glycerol + 20% propylene glycol (Massip Equilibration Medium, MEM) in DPBS at 20 degrees C or 4 degrees C. For vitrification either 100% VS3 (Rall Vitrification Medium, RVM) or 25% glycerol + 25% propylene glycol (Massip Vitrification Medium, MVM) in DPBS was used. Embryos equilibrated at room temperature were loaded in 20 microL of vitrification media into 250 microL straws and then immediately (30 sec) plunged into liquid nitrogen (LN2). After equilibration at 4 degrees C the embryos were put into straws with 20 microL of precooled vitrification medium, and after 20 min at 4 degrees C they were plunged into LN2. Embryos from both groups were thawed in a 20 degrees C water bath for 20 sec, transferred to 1.0 M sucrose in DPBS for 5 min and then cultured for 24 to 48 h in Whitten's medium at 37 degrees C in 5% CO2 in air. In the groups of embryos prepared for vitrification at room temperature the survival rate of compact morulae vitrified in RVM was higher than those vitrified in MVM (65/70, 93% vs 49/74, 66%; P < 0.01). No difference was found in the survival rate of early blastocysts and expanded blastocysts vitrified in RVM or MVM (30/83, 36% vs 25/75, 33% and 4/66, 6% vs 4/76, 5%). No difference was found between the survival rate of compact morulae after equilibration with RVM or MVM at 4 degrees C (62/75, 83% vs 52/74, 70%). Both the early blastocysts and expanded blastocysts equilibrated at 4 degrees C MVM yielded a higher survival rate than RVM (28/74, 38% and 40/70, 57% vs 4/75, 5% and 4/77, 5%; P < 0.01). We conclude that, of the 3 developmental stages, compact morulae withstand the vitrification process best, and reduction of the temperature prior to plunging into LN2 is not required. A 10-fold increase in the survival rate of expanded blastocysts can be achieved using low temperature equilibration (4 degrees C) and MVM.  相似文献   

12.
Two experiments were conducted to examine the effects of cooling rate and storage temperature on motility parameters of stallion spermatozoa. In Experiment 1, specific cooling rates to be used in Experiment 2 were established. In Experiment 2, three ejaculates from each of two stallions were diluted to 25 x 10(6) sperm/ml with 37 degrees C nonfat dry skim milk-glucose-penicillin-streptomycin seminal extender, then assigned to one of five treatments: 1) storage at 37 degrees C, 2) storage at 25 degrees C, 3) slow cooling rate to and storage at 4 degrees C, 4) moderate cooling rate to and storage at 4 degrees C, and 5) fast cooling rate to and storage at 4 degrees C. Total spermatozoal motility (TSM), progressive spermatozoal motility (PSM), and spermatozoal velocity (SV) were estimated at 6, 12, 24, 48, 72, 96 and 120 h postejaculation. The longevity of spermatozoal motility was greatly reduced when spermatozoa were stored at 37 degrees C as compared to lower spermatozoal storage temperatures. At 6 h postejaculation, TSM values (mean % +/- SEM) of semen stored at 37 degrees C, slowly cooled to and stored at 25 degrees C or slowly cooled to and stored at 4 degrees C were 5.4 +/- 1.1, 79.8 +/- 1.6, and 82.1 +/- 1.6, respectively. Mean TSM for semen that was cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a moderate rate for four of seven time periods (6, 24, 72 and 120 h), and it was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a fast rate for five of seven time periods (6, 12, 24, 72 and 120 h). Mean TSM of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 25 degrees C for five of seven time periods (24 to 120 h). A similar pattern was found for PSM. Mean SV of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean SV of semen cooled to 25 degrees C for all time periods. A slow cooling rate (initial cooling rate of -0.3 degrees /min) and a storage temperature of 4 degrees C appear to optimize liquid preservation of equine spermatozoal motility in vitro.  相似文献   

13.
小鼠体外受精、胚胎培养及胚胎快速冷冻的研究   总被引:5,自引:0,他引:5  
目的 为扩大胚胎来源并获取特定胚龄胚胎 ,建立小鼠冷冻胚胎库。方法 运用超数排卵、体外受精与胚胎培养及胚胎冷冻技术系统研究了小鼠受精卵的体内发育与运行规律。卵母细胞的体外成熟与受精、单细胞胚胎培养及胚胎快速冷冻。结果  (1)注射hCG后 12~ 2 0h受精卵发育至原核期 ,4 2~ 4 8h为 2 细胞期 ,4 8~ 6 0h为 4 细胞期 ,6 0~ 6 8h为 8 细胞期 ,以上各期受精卵均处于输卵管中 ;75~ 78h为桑椹胚 ,78~ 80h为致密桑椹胚 ,90~ 92h为早期囊胚 ,92~ 96h为囊胚 ,以上各期均处于子宫角中。 (2 )培养液中添加促性腺激素 (FSH与hCG) ,能显著提高卵母细胞的体外受精率 ,添加FCS和激素组的体外受精率又显著高于单独添加激素组 ,FCS还能显著提高胚胎发育。 (3)在培养液中添加EDTA ,能有效克服小鼠胚胎的 2 细胞阻断 ,其 2 细胞胚的发育率达 10 0 % ,8 细胞胚发育率达 5 5 %以上 ;牛、羊上皮细胞培养液上清也能有效克服 2 细胞阻断。添加乳酸钠和丙酮酸钠可使 2细胞与 8细胞期胚的发育率显著提高。 (4)以D PBS +甘油 +蔗糖为冷冻液 ,以D PBS +蔗糖为稀释液 ,对小鼠胚胎进行快速冷冻 ,桑椹胚的存活率为 6 9 3% ,早期囊胚的存活率为 6 0 4 %。结论 研究为将生物技术应用于小鼠 ,扩大卵子和胚胎来源  相似文献   

14.
15.
K Nakamura  Y Tsunoda 《Cryobiology》1992,29(4):493-499
This study compares the resistance of the nuclei and the cytoplasm of two-cell mouse embryos to short-term storage at low temperature above 0 degrees C. Two-cell embryos were stored at 4 degrees C for 24-96 h in PB1 containing 0.25, 0.5, 0.75, and 1.0 M sucrose. The development to blastocysts in culture was highest in the presence of 0.5 M sucrose. However, only 3% of the embryos developed into blastocysts after 96 h of storage. On the other hand, the viability of the nuclei of two-cell embryos stored at 4 degrees C was significantly prolonged when they were transplanted into a blastomere of enucleated fresh F1 (C57BL/6JXCBA) two-cell embryos. The proportions of chimeric embryos that developed to blastocysts were 88, 67, 76, 71, 64, 45, 32, and 20% following storage for 0, 48, 72, 96, 120, 144, 168, and 192 h, respectively. In addition, there was no difference in the coat color of the young derived from nuclei stored at 4 degrees C or fresh nuclei, although the proportions of chimeric embryos that developed into live young after transfer tended to decrease with increased storage time. Moreover, the viability of nuclei stored at 4 degrees C for 192 h was confirmed in the germ cell population of chimeric mice mated with albino mice. These results demonstrated that the nuclei in the two-cell mouse embryos were more resistant to storage at low temperature than the cytoplasm.  相似文献   

16.
Herr CM  Wright RW 《Theriogenology》1988,29(3):765-770
Experiments were designed to evaluate the survival rates of preimplantation mouse embryos of different stages of development in cold culture at 4 degrees C. Several developmental stages, from one-cell to the blastocyst, were stored at 4 degrees C from 1 to 8 d. Viability following cold culture was determined by blastocyst expansion during culture in Whitten's medium at 37 degrees C. Blastocyst formation of nonstored controls ranged from 93 to 100% for all developmental stages tested. Only 3% of one-cell embryos survived 1 d and none survived 2 days at 4 degrees C. Survival improved using two-cell embryos, with 84, 69 and 15% forming expanded blastocysts following storage for 1, 2 and 3 d, respectively. Eighty five and 38% of eight-cell embryos formed expanded blastocysts following cold storage for 3 and 4 d, respectively. Survival rates for cold stored morulae and blastocysts remained above 75% for 6 d but decreased significantly to 30 and 36%, respectively, when stored for 8 d. A large percentage of blastocysts were observed to collapse when placed in cold storage from 1 to 8 d but almost all expanded when placed in culture at 37 degrees C. This study showed that one-cell embryos were particularly sensitive to cold storage compared to later-stage mouse embryos. Cold storage survival increased with increasing age of the embryo; morula and blastocyst survival rate was similar.  相似文献   

17.
Cow embryos between day 6.5 and 9 were frozen in 1.5M DMSO in PBS at 2 degrees C/min from seeding to -25 degrees C before being plunged into liquid nitrogen directly or after 10 min at -25 degrees C. Cooling rate from 20 degrees C to -5 degrees C was 9 degrees C/min. Seeding was induced automatically at -5 degrees C by injection of liquid nitrogen vapour. Embryos were subsequently thawed by direct transfer to water at 20 degrees C (group I) or at 37 degrees C (group II). Survival was assessed by culture in vitro and by transfer. In group I, 35.7% were degenerated after thawing (compared to 35.4% in group II). Survival rate after culture in vitro for 24h was not significantly different (48.3% vs 42.8%) and hatching rate after 96h culture was quite similar (33.3% vs 34.4%). In group II, four pregnancies were obtained from 10 embryos transferred. Time at -25 degrees C did not improve the results. Automatic seeding did not impair survival. These results show that the quality of the embryo is the determinant factor for survival after freezing and that the plastic straw is the most suitable vessel for freezing, storage and transfer of embryos.  相似文献   

18.
The effects of preservation media for ovaries on in vitro maturation of porcine oocytes was studied. The cumulus-oocyte complexes (COCs) obtained from ovaries that had been preserved in three different media at various temperatures for different time intervals were cultured in the M199 maturation medium. The preservation media used were 0.9% saline solution, BCS (Braun-Collins solution) and Dulbecco's phosphate buffered saline solution (PBS). Mature oocytes obtained from the ovaries preserved in three preservation media for 8 h were electrically activated. The activated oocytes were then cultured in the NCSU23 embryo culture medium for 16 h to observe activation, or for 144 h to observe embryo development. It was found that the preservation temperature significantly affected maturation of the porcine oocytes. A preservation temperature of about 25 degrees C showed an optimal maturation rate for a preservation time of 8 h for the three preservation media. Although the preservation temperature was a major factor influencing the maturation rate, different preservation media at 25 degrees C for 8 h also significantly affected the maturation rate, activation rate and embryo development. Among these three preservation media, PBS exhibited the highest cleavage rate indicating that PBS should be a better preservation medium for porcine ovaries at 25 degrees C for 8 h or longer periods.  相似文献   

19.
The objective of this study was to evaluate the in vitro development of frozen-thawed bovine embryos held at room temperature or refrigerated for 2, 6 or 12 h prior to freezing. After recovery, embryos were randomly assigned to be placed in holding media for 2 h (n=131), 6 h (n=136) or 12h (n=133) prior to freezing. Approximately one-half of the embryos were refrigerated (5 degrees C; n=203) while the remaining half were held at room temperature (22 degrees C; n = 197) until freezing. Embryos were frozen in 10% ethylene glycol and stored in liquid nitrogen. After thawing, embryos were cultured for 72 h in Ham's F-10 media supplemented with 4% fetal bovine serum. Embryos were evaluated for quality and stage of development prior to freezing and after culture. At the end of culture, it was determined if each embryo had developed beyond the stage recorded prior to freezing and if the embryo had hatched from the zona pellucida. The percentage of embryos that developed during culture was greater (P < 0.001) for Grade 1 (81%) than for either Grade 2 (65%) or Grade 3 (48%) embryos. Likewise, a greater proportion (P < 0.001) of Grade 1 embryos developed to hatched blastocysts (60%) than either Grade 2 (40%) or Grade 3 (24%) embryos. The holding temperature from collection to freezing did not influence embryo development, regardless of the interval from embryo collection to freezing. The proportion of embryos that developed to expanded blastocysts and hatched was greater (P < 0.005) for embryos held 2 h prior to freezing (64%) than for embryos held for 12 h (33%). Hatching rate of embryos held 6 h prior to freezing (54%) tended (P < 0.08) to be lower than the hatching percentage for embryos held for 2 h. Thus, post-thaw embryonic development was impaired the longer embryos were held prior to freezing and temperature during the interval from collection to freezing did not affect post-thaw development.  相似文献   

20.
The sensitivity of housefly Musca domestica L. (Diptera: Muscidae) embryos to storage at low temperatures (5 and 10 °C on moist sponges in Petri dishes) and in water at 26 °C was investigated to develop suitable protocols for the storage and transport of housefly eggs. The youngest embryos (aged 0–3 h) were the most sensitive to storage at 5 °C, with 45% survival after storage for 24 h. Storage of embryos aged 3–12 h at 5 °C for 24 h had no negative effect; longer storage resulted in significantly decreased larval survival (30–34% after 48–72 h, compared with 61% in the control group) and reduced hatching rates (83% after 72 h storage). No negative effects were observed when embryos aged 0–9 h were stored at 10 °C for 24 h, but this temperature did not completely inhibit development and eggs began to hatch if stored for longer than 24 h. All age groups of embryos showed high mortality after storage in water at 26 °C for 24 h, with the youngest embryos being least resistant to submersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号