首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liquefying alpha-amylase from Bacillus amyloliquefaciens was inactivated by treatment with tetranitromethane and N-acetylimidazole. The loss of activity occurred with modification of five tyrosine residues. Preincubation of the enzyme with either the substrate or the competitive inhibitor at saturating levels provided complete protection against inactivation. However, the presence of substrate/inhibitor in the reaction mixture protected only two of the five modifiable tyrosine residues, suggesting the involvement of only two tyrosine residues at the active center. This was confirmed when hydroxylamine treatment of the acetylated enzyme fully restored the enzymatic activity. Both nitration and acetylation increased the apparent Km of the enzyme for soluble starch, which indicated that the tyrosine residues are involved in substrate binding. Reduction of nitrotyrosine residues to aminotyrosine residues failed to restore the enzymatic activity. So, the loss of activity on modification of tyrosine residues was ascribed to conformational perturbances and not simply to the changes in the ionic character of tyrosine residues.  相似文献   

2.
The role of tyrosine phosphorylation in the regulation of tyrosine protein kinase activity was investigated using site-directed mutagenesis to alter the structure and environment of the three tyrosine residues present in the C terminus of avian pp60c-src. Mutations that change Tyr 527 to Phe or Ser activate in vivo tyrosine protein kinase activity and induce cellular transformation of chicken cells in culture. In contrast, alterations of tyrosine residues present at positions 511 or 519 in c-src do not induce transformation or in vivo tyrosine protein kinase activity. Amber mutations, which alter the structure of the pp60c-src C terminus by inducing premature termination of the c-src protein at either residue 518 or 523 also induce morphological transformation and increase in vivo tyrosine phosphorylation, whereas removal of the last four residues of c-src by chain termination at residue 530 does not alter the kinase activity or the biological activity of the resultant c-src protein. We conclude from these studies that C-terminal alterations which either remove or replace Tyr 527 serve to activate the c-src protein resulting in cellular transformation and increased in vivo tyrosine protein kinase activity.  相似文献   

3.
The role of tyrosine residues in the biological activity of cytotoxin-1 was evaluated using N-bromo succinimide. N-bromo succinimide effected the oxidation of tyrosine residues in cytotoxin-1 with an increase in absorption at 260 nm. N-chloro succinimide was ineffective in the oxidation of tyrosine residues in the toxin. Oxidation of a single tyrosine residue (at 3.50 equivalents of N-bromo succinimide/mole of the toxin) resulted in complete loss of lethal activity of the toxin. The lytic activity of the toxin (lysis of erythrocytes) remained uneffected even after three of the four tyrosine residues in the toxin were oxidised.  相似文献   

4.
Cinnamomin is a type II ribosome-inactivating protein (RIP) and its A-chain (CTA) is a RNA N-glycosidase. It is observed that modification of tyrosine residues by N-acetylimidazole (N-AI) causes almost complete loss of CTA activity. Adenine partially protects tyrosine residues from modification by N-AI. It is proposed that tyrosine residues are involved in the active site of CTA and they are crucial in recognition and binding of ribosomal RNA. Tryptophan residues of CTA are also studied by NBS modification.  相似文献   

5.
The only tyrosine recombinase so far studied in archaea, the SSV1 integrase, harbors several changes in the canonical residues forming the catalytic pocket of this family of recombinases. This raised the possibility of a different mechanism for archaeal tyrosine recombinase. The residues of Int(SSV) tentatively involved in catalysis were modified by site-directed mutagenesis, and the properties of the corresponding mutants were studied. The results show that all of the targeted residues are important for activity, suggesting that the archaeal integrase uses a mechanism similar to that of bacterial or eukaryotic tyrosine recombinases. In addition, we show that Int(SSV) exhibits a type IB topoisomerase activity because it is able to relax both positive and negative supercoils. Interestingly, in vitro complementation experiments between the inactive integrase mutant Y314F and all other inactive mutants restore in all cases enzymatic activity. This suggests that, as for the yeast Flp recombinase, the active site is assembled by the interaction of the tyrosine from one monomer with the other residues from another monomer. The shared active site paradigm of the eukaryotic Flp protein may therefore be extended to the archaeal tyrosine recombinase Int(SSV).  相似文献   

6.
The effect of protein-modifying reagents on the activity of a purified preparation of a thyroliberin-hydrolysing pyroglutamate aminopeptidase, solubilised from synaptosomal membranes of guinea-pig brain by treatment with papain, was investigated. The results indicated that tyrosine, histidine, arginine, and possibly lysine residues were necessary for expression of catalytic activity and that these tyrosine, histidine, and arginine residues were probably located at the active site of the enzyme. Cysteine, serine, glutamate, and aspartate residues were not involved in the expression of catalytic activity.  相似文献   

7.
Recent studies from this laboratory have demonstrated that human manganese superoxide dismutase (MnSOD) is a target for tyrosine nitration in several chronic inflammatory diseases including chronic organ rejection, arthritis, and tumorigenesis. Furthermore, we demonstrated that peroxynitrite (ONOO-) is the only known biological oxidant competent to inactivate enzymatic activity, nitrate critical tyrosine residues, and induce dityrosine formation in MnSOD. To elucidate the differential contributions of tyrosine nitration and oxidation during enzymatic inactivation, we now compare ONOO- treatment of native recombinant human MnSOD (WT-MnSOD) and a mutant, Y34F-MnSOD, in which tyrosine 34 (the residue most susceptible to ONOO--mediated nitration) was mutated to phenylalanine. Both WT-MnSOD (IC50 = 65 microM, 15 microM MnSOD) and Y34F-MnSOD (IC50 = 55 microM, 15 microM Y34F) displayed similar dose-dependent sensitivity to ONOO--mediated inactivation. Compared to WT-MnSOD, the Y34F-MnSOD mutant demonstrated significantly less efficient tyrosine nitration and enhanced formation of dityrosine following treatment with ONOO-. Collectively, these results suggest that complete inactivation of MnSOD by ONOO- can occur independent of the active site tyrosine residue and includes not only nitration of critical tyrosine residues but also tyrosine oxidation and subsequent formation of dityrosine.  相似文献   

8.
The tyrosine residues of equine chorionic gonadotropin have been nitrated with tetranitromethane and the resulting effects on the biological and immunological activities of the hormone studied. All of the tyrosine residues in equine chorionic gonadotropin were found to react with tetranitromethane when a 100-fold molar excess of reagent was used or with an 8.6 molar excess in the presence of 5 M guanidine hydrochloride. Complete nitration abolished the biological activities and decreased the immunological activity of the hormone. The nitration of one tyrosine residue resulted in the loss of 70% of the LH activity of equine chorionic gonadotropin; the FSH activity declined in a similar fashion. Maximal nitration resulted in the loss of about 50% of the immunological activity of the native hormone. Nitrated derivatives of equine chorionic gonadotropin were unable to compete with the native hormone in the rat Leydig cell assay for LH. The results indicate that the tyrosine residues of equine chorionic gonadotropin play an important role in the manifestation of both the FSH and LH activity of the hormone.  相似文献   

9.
A function-structure model for NGF-activated TRK.   总被引:1,自引:0,他引:1       下载免费PDF全文
Mechanisms regulating transit of receptor tyrosine kinases (RTKs) from inactive to active states are incompletely described, but require autophosphorylation of tyrosine(s) within a kinase domain 'activation loop'. Here, we employ functional biological assays with mutated TRK receptors to assess a 'switch' model for RTK activation. In this model: (i) ligand binding stimulates activation loop tyrosine phosphorylation; (ii) these phosphotyrosines form specific charge pairs with nearby basic residues; and (iii) the charge pairs stabilize a functionally active conformation in which the activation loop is restrained from blocking access to the kinase catalytic core. Our findings both support this model and identify residues that form specific charge pairs with each of the three TRK activation loop phosphotyrosines.  相似文献   

10.
G Weinmaster  M J Zoller  M Smith  E Hinze  T Pawson 《Cell》1984,37(2):559-568
The 130 kd transforming protein of Fujinami sarcoma virus (FSV P130gag -fps) possesses a tyrosine-specific protein kinase activity and is itself phosphorylated at several tyrosine and serine residues in FSV-transformed cells. We have used oligonucleotide-directed mutagenesis of the FSV genome to change the TAT codon for tyrosine (1073), the major site of P130gag -fps phosphorylation, to a TTT codon for phenylalanine that cannot be phosphorylated. This mutant FSV induces the transformation of rat-2 cells but with a long latent period as compared with wild-type FSV. The P130gag -fps protein encoded by the mutant retains the ability to phosphorylate tyrosine, but is five times less active as a kinase in vitro than wild-type FSV P130gag -fps. These data indicate that tyrosine phosphorylation stimulates the biochemical and biological activities of FSV P130gag -fps, and they set a precedent for the ability of this amino acid modification to modulate protein function.  相似文献   

11.
α-半乳糖苷酶进行氨基酸组分分析,结果为含有较多的酸性及巯水性氨基酸,较少的组氨酸、酪氨酸及半胱氨酸。 用几种蛋白质侧链修饰试剂对α-半乳糖苷酶进行化学修饰。在一定条件下,当巯基及酪氨酸残基分别被NEM、IAA及NAI修饰后,酶活力不受影响,说明这些基团与活力无关。当羟基、组氨酸及色氨酸残基分别被EDC、DEP、NBS及HNBB修饰后,酶活力大幅度下降,说明这些基团或者参与了酯催化作用或者位于酯活性位区附近。  相似文献   

12.
The mechanism by which enzymatic E colicins such as colicin E3 (ColE3) and ColE9 cross the outer membrane, periplasm, and cytoplasmic membrane to reach the cytoplasm and thus kill Escherichia coli cells is unique in prokaryotic biology but is poorly understood. This requires an interaction between TolB in the periplasm and three essential residues, D35, S37, and W39, of a pentapeptide sequence called the TolB box located in the N-terminal translocation domain of the enzymatic E colicins. Here we used site-directed mutagenesis to demonstrate that the TolB box sequence in ColE9 is actually larger than the pentapeptide and extends from residues 34 to 46. The affinity of the TolB box mutants for TolB was determined by surface plasmon resonance to confirm that the loss of biological activity in all except one (N44A) of the extended TolB box mutants correlates with a reduced affinity of binding to TolB. We used a PCR mutagenesis protocol to isolate residues that restored activity to the inactive ColE9 D35A, S37A, and W39A mutants. A serine residue at position 35, a threonine residue at position 37, and phenylalanine or tyrosine residues at position 39 restored biological activity of the mutant ColE9. The average area predicted to be buried upon folding (AABUF) was correlated with the activity of the variants at positions 35, 37, and 39 of the TolB box. All active variants had AABUF profiles that were similar to the wild-type residues at those positions and provided information on the size, stereochemistry, and potential folding pattern of the residues of the TolB Box.  相似文献   

13.
Spectrophotometric titration of Formosan cobra cardiotoxin showed that two of the three tyrosyl residues were titrated freely with a normal apparent pKa of 9.6 whereas the remaining one ionized at pH above 11.0. Nitration of cardiotoxin in Tris . HCl buffer with tetranitromethane resulted in the selective nitration of tyrosine 11 and tyrosine 22. It also revealed that tyrosine 51 was the abnormal one in the spectrophotometric titration. Complete nitration occurred in the presence of 6.0 M guanidine hydrochloride. Compared with the conformation of native cardiotoxin, the peptide conformation of the partially nitrated cardiotoxin did not change significantly but the conformation of the completely nitrated cardiotoxin changed remarkably. The biological activity of cardiotoxin was indeed affected by nitration, but the immunological activity was nearly intact even when all the tyrosine residues were nitrated.  相似文献   

14.
Mutation analysis of the rolling circle (RC) replication initiator protein RepA of plasmid pC194 was targeted to tyrosine and acidic amino acids (glutamate and aspartate) which are well conserved among numerous related plasmids. The effect of mutations was examined by an in vivo activity test. Mutations of one tyrosine and two glutamate residues were found to greatly impair or abolish activity, without affecting affinity for the origin, as deduced from in vitro gel mobility assays. We conclude that all three amino acids have a catalytic role. Tyrosine residues were found previously in active sites of different RC plasmid Rep proteins and topoisomerases, but not in association with acidic residues, which are a hallmark of the active sites of DNA hydrolyzing enzymes, such as the exo- and endonucleases. We propose that the active site of RepA contains two different catalytic centers, corresponding to a tyrosine and a glutamate. The former may be involved in the formation of the covalent DNA-protein intermediate at the initiation step of RC replication, and the latter may catalyze the release of the protein from the intermediate at the termination step.  相似文献   

15.
To assess the contribution of the intracellular domain tyrosine residues to the signaling capacity of fibroblast growth factor receptor 1 (FGFR1), stably transfected chimeras bearing the ectodomain of the platelet-derived growth factor receptor (PDGFR) and the endodomain of FGFR1 were systematically altered by a tyrosine to phenylalanine bloc and individual conversions. The 15 tyrosine residues of the endodomain of this construct (PFR1) were divided into four linear segments (labeled A, B, C, and D) that contained 4, 4, 2, and 5 tyrosine residues, respectively. When stimulated by platelet-derived growth factor, derivatives in which the A, B, or A + B blocs of tyrosines were mutated were about two-thirds as active as the unmodified chimera at 48 h but achieved full activity by 96 h in a neurite outgrowth assay in transfected PC12 cells. Elimination of only the two activation loop tyrosines (C bloc) also inactivated the receptor. All derivatives in which 4 (or 5) of the D bloc tyrosines were mutated were inactive in producing differentiation but showed low levels of kinase activity in in vitro assays. Derivatives in which 1, 2, or 3 tyrosines of the D bloc in different combinations were systematically changed demonstrated that 2 residues (Tyr(677) and Tyr(701), using hFGFR1 numbering) were essential for bioactivity, but the remaining 3 residues, including Tyr(766), the previously identified site for phospholipase C gamma (PLC gamma) activation, were not. Differentiation activity was paralleled by the activation (phosphorylation) of FRS2, SOS, and ERK1/2. PLC gamma activity was dependent on the presence of Tyr(766) but also required Tyr(677) and/or Tyr(701). Although fully active chimeras did not require PLC gamma, the responses of chimeras showing reduced activation of FRS2 were significantly enhanced by this activity. These results establish that PFR1 does not utilize any tyrosine residues, phosphorylated or not, to activate FRS2. However, it does require Tyr(677) and/or Tyr(701), which may function to stabilize the active conformation directly or indirectly.  相似文献   

16.
The interaction of clostridiopeptidase of Clostridium histolyticum with EDC, TNM and MA, the specific reagents for COOH-groups, tyrosine and lysine residues was studied. It was shown that at pH 6.0 EDC inactivates the enzyme. The inactivation process follows the pseudo-first order kinetics and is described by a second order rate constant equal to 1 M-1 min-1. The synthetic substrate does not prevent, in practical terms, the enzyme inactivation by EDC. At pH 8.0 TNM modifies about 19 tyrosine residues in the clostridiopeptidase molecule which is accompanied by marked inhibition of the enzyme activity (down to 70-90%). In this case, the inactivation process is not described by simple pseudo-first order kinetics but is characterized by two steps (fast and slow) with second order rate constants of approximately 14 and 3.5 M-1 min-1, respectively. The synthetic substrate partly prevents the inactivation of the enzyme by TNM and protects 11 tyrosine residues. The MA-induced incorporation of 13 +/- 3 maleyl groups into the clostridiopeptidase molecule in partially prevented by the synthetic substrate with protects the enzyme against inactivation. The data obtained suggest that lysine residues are seemingly included into the active center of clostridiopeptidase, whereas tyrosine residues provide for the maintenance of active conformation of the enzyme.  相似文献   

17.
Based on the regeneration of the hormonal activity following recombination, the alpha and beta subunits of human follicle-stimulating hormone have been designated as 'functional' or 'nonfunctional'. Chemical modifications of the tryptophan, methionine, tyrosine and arginine residues of human follicle-stimulating hormone, luteinizing hormone, and the 'functional' human follicle-stimulating hormone alpha and beta subunits have indicated that the tryptophan in human follicle-stimulating hormone-beta and human luteinizing hormone-beta is essential for the biological activity. The iodination of human follicle-stimulating hormone-alpha did not interfere with the hormonal activity. The modification of arginine abolishes the biological activity of the hormones. The accessibility of tyrosine and methionine in human follicle-stimulating hormone-alpha, of arginine in both native hormones and subunits, and the non-availability of the tryptophan residues to 2-hydroxy 5-nitrobenzyl bromide suggest that the alpha subunit lies on the surface of the native molecule.  相似文献   

18.
Regulation of Akt/PKB activation by tyrosine phosphorylation.   总被引:7,自引:0,他引:7  
  相似文献   

19.
Phosphatidylinositol 3-kinase enhancer-activating Akt (PIKE-A) binds Akt and upregulates its kinase activity, preventing apoptosis. PIKE-A can be potently phosphorylated on tyrosine residues 682 and 774, leading to its resistance to caspase cleavage. However, the upstream tyrosine kinases responsible for PIKE-A phosphorylation and subsequent physiological significance remain unknown. Here, we show that PIKE-A can be cleaved by the active apoptosome at both D474 and D592 residues. Employing fyn-deficient mouse embryonic fibroblast cells and tissues, we demonstrate that fyn is essential for phosphorylating PIKE-A and protects it from apoptotic cleavage. Active but not kinase-dead fyn interacts with PIKE-A and phosphorylates it on both Y682 and Y774 residues. Tyrosine phosphorylation in PIKE-A is required for its association with active fyn but not for Akt. Mutation of D into A in PIKE-A protects it from caspase cleavage and promotes cell survival. Thus, this finding provides a molecular mechanism accounting for the antiapoptotic action of src-family tyrosine kinase.  相似文献   

20.
In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号