首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3'5'-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

2.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3′5′-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

3.
1. Exposure of platelets to exogenous arachidonic acid results in aggregation and secretion, which are inhibited at high arachidonate concentrations. The mechanisms for this have not been elucidated fully. In our studies in platelet suspensions, peak aggregation and secretion occurred at 2-5 microM-sodium arachidonate, with complete inhibition around 25 microM. 2. In platelets loaded with quin2 or fura-2, the cytoplasmic Ca2+ concentration, [Ca2+]i, rose in the presence of 1 mM-CaCl2 from 60-80 nM to 300-500 nM at 2-5 microM-arachidonate, followed by inhibition to basal values at 25-50 microM. Thromboxane production was not inhibited at 25 microM-arachidonate. Cyclic AMP increased in the presence of theophylline, from 3.5 pmol/10(8) platelets in unexposed platelets to 8 pmol/10(8) platelets at 50 microM-arachidonate; all platelet responses were inhibited with doubling of cyclic AMP contents. 3. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine attenuated the inhibitory effect of arachidonate, suggesting that it is mediated by increased platelet cyclic AMP and that it is unlikely to be due to irreversible damage to platelets. 4. Aspirin or the combined lipoxygenase/cyclo-oxygenase inhibitor BW 755C did not prevent the inhibition by arachidonate of either [Ca2+]i signals or aggregation induced by U46619. 5. Thus high arachidonate concentrations inhibit Ca2+ mobilization in platelets, and this is mediated by stimulation of adenylate cyclase. High arachidonate concentrations influence platelet responses by modulating intracellular concentrations of two key messenger molecules, cyclic AMP and Ca2+.  相似文献   

4.
The equilibrium binding of 14C-labeled ADP to intact washed human blood platelets and to platelet membranes was investigated. With both intact platelets and platelet membranes a similar concentration dependence curve was found. It consisted of a curvilinear part below 20 microM and a rectilinear part above this concentration. At high ADP concentrations, the rectilinear part appeared to be saturable. Because of this, two classes of saturable ADP binding sites were proposed. ADP was partly converted to ATP and AMP with intact platelets while this conversion was virtually absent in isolated platelet membranes. ADP was bound to platelet membranes with the same type of curves found for intact platelets. The ADP binding to the high affinity system, which was stimulated by calcium ions, was nearly independent of temperature and had a pH optimum at 7.8. A number of agents were investigated for inhibiting properties. Of the sulfhydryl reagents only p-chloromercuribenzene sulfonate inhibited both high and low affinity binding systems while iodoacetamide and N-ethylmaleimide were without effect. Compounds acting via cyclic AMP on platelet aggregation, such as adenosine and cyclic AMP itself, had no influence on binding. Some nucleosidediphosphates and nucleotide analogs at a concentration of 100 microM had no, or only a slight, effect on high affinity ADP binding. For some other nucleotides inhibitor constants were determined for both platelet ADP aggregation and ADP binding. The inhibitor constants of ATP, adenyl-5'-yl-(beta,gamma-methylene)diphosphate, IDP, adenosine-5'(2-O-thio)diphosphate, for aggregation and high affinity binding were in good correlation with each other. Exceptions formed fluorosulfonylbenzoyl adenosine and AMP. The ATP formation found with intact platelets could be attributed to a nucleosidediphosphate kinase. It was investigated in some detail. The enzyme was magnesium dependent, had a Q10 value of 1.41, a pH optimum at 8.0, was competitively inhibited by AMP and reacted via a ping pong mechanism. All findings described in this paper indicate that platelets as well as platelet membranes bind ADP with the same characteristics and they suggest that the high affinity binding of ADP is involved in platelet aggregation induced by ADP. The results on nucleosidediphosphate kinase did not permit a firm conclusion about the role of the enzyme in induction of platelet aggregation by ADP.  相似文献   

5.
The effects of forskolin and 1-Methyl-3-isobutyl-xanthine on thrombopathic platelet function and cyclic AMP accumulation were examined. The concentration of forskolin required to inhibit gamma-thrombin- induced platelet aggregation and secretion by 50% was significantly lower for thrombopathic than for normal platelets. This inhibition was accompanied by a marked elevation of cyclic AMP. 1-Methyl-3-isobutyl-xanthine, alone or in combination with forskolin, augmented both the cyclic AMP accumulation and the inhibition of platelet function. These results demonstrate that cyclic AMP metabolism is abnormal in thrombopathic platelets and imply that cyclic AMP-phosphodiesterase activity is impaired.  相似文献   

6.
The receptor for ADP on the platelet membrane, which triggers exposure of fibrinogen-binding sites and platelet aggregation, has not yet been identified. Two enzymes with which ADP interacts on the platelet surface, an ecto-ATPase and nucleosidediphosphate kinase, have been proposed as possible receptors for ADP in ADP-induced platelet aggregation. In the present study, experiments were conducted with washed human platelets to examine if a relationship existed between platelet aggregation, fibrinogen binding and the enzymatic degradation of ADP. With 12 different platelet suspensions, a good correlation (P less than 0.01) was found between the extent of platelet aggregation and the amount of 125I-fibrinogen bound to platelets after ADP stimulation. No correlation was found between these parameters and the rate or extent of transformation of [14C]ADP to [14C]ATP or [14C]AMP. The binding of fibrinogen to platelets was inhibited in parallel with aggregation when ADP stimulation was impaired by the enzymatic degradation of ADP by the system creatine phosphate/creatine phosphokinase, or by the use of specific antagonists, such as ATP and AMP. These antagonists also influenced the enzymatic degradation of ADP. This effect occurred at lower concentrations of ATP or AMP than those required to inhibit ADP-induced platelet aggregation and fibrinogen binding. Our results demonstrate that ATP and AMP may be used as specific antagonists of the ADP-induced fibrinogen binding to platelets. They do not provide evidence to suggest that enzymes which metabolize ADP on the platelet surface are involved in the mechanism of ADP-induced platelet aggregation.  相似文献   

7.
The detailed mechanisms underlying morphine-signaling pathways in platelets remain obscure. Therefore, we systematically examined the influence of morphine on washed human platelets. In this study, washed human platelet suspensions were used for in vitro studies. Furthermore, platelet thrombus formation induced by irradiation of mesenteric venules with filtered light in mice pretreated with fluorescein sodium was used for an in vivo thrombotic study. Morphine concentration dependently (0.6, 1, and 5 microM) potentiated platelet aggregation and the ATP release reaction stimulated by agonists (i.e., collagen and U46619) in washed human platelets. Yohimbine (0.1 microM), a specific alpha(2)-adrenoceptor antagonist, markedly abolished the potentiation of morphine in platelet aggregation stimulated by agonists. Morphine also potentiated phosphoinositide breakdown and intracellular Ca(2+) mobilization in human platelets stimulated by collagen (1 microg/ml). Moreover, morphine (0.6-5 microM) markedly inhibited prostaglandin E(1) (10 microM)-induced cyclic AMP formation in human platelets, while yohimbine (0.1 microM) significantly reversed the inhibition of cyclic AMP by morphine (0.6 and 1 microM) in this study. The thrombin-evoked increase in pH(i) was markedly potentiated in the presence of morphine (1 and 5 microM). Morphine (2 and 5 mg/g) significantly shortened the time require to induce platelet plug formation in mesenteric venules. We concluded that morphine may exert its potentiation in platelet aggregation by binding to alpha(2)-adrenoceptors in human platelets, with a resulting inhibition of adenylate cyclase, thereby reducing intracellular cyclic AMP formation followed by increased activation of phospholipase C and the Na(+)/H(+) exchanger. This leads to increased intracellular Ca(2+) mobilization, and finally potentiation of platelet aggregation and of the ATP release reaction.  相似文献   

8.
Contact of rat platelets with thrombin or the divalent cation ionophore A-23187, in the presence of extracellular calcium, resulted in the secretion of adenosine 3':5'-monophosphate (cyclic AMP) and guanosine 3':5'-monophosphate (cyclic GMP) phosphodiesterases. Significant association of calcium with platelets occurred during platelet surface contact with thrombin. Thrombin concentration to induce association of calcium virtually agreed with that to release the enzyme. The finding that A-23187 (5 to 20 muM) also provoked a rapid and marked association of extracellular calcium with platelets suggests that calcium mobilization into the intracellular environment may account, at least in part, for this association between platelet and calcium. Two different phosphodiesterases, a relatively specific cyclic AMP and a relatively specific cyclic GMP phosphodiesterase were secreted from platelets into the plasma in soluble form. The amounts of the phosphodiesterases secreted were dose- or time-dependent on thrombin (0.1 to 2 units) or A-23187 (5 to 20 muM) within 30 min. The enzyme release by thrombin was completely inhibited by heparin but the release by A-23187 was not. The two phosphodiesterases secreted seemed to correspond to the two enzymes isolated from platelet homogenates in many respects. Rat platelets contained, at least, three cyclic 3':5'-nucleotide phosphodiesterases, namely, two relatively specific cyclic AMP phoshodiesterases and a relatively specific cyclic GMP phosphodiesterase which were clearly separated from each other by Sepharose 6B or DEAE-cellulose column chromatography or sucrose gradient centrifugation. The two platelet cyclic AMP phosphodiesterase (Mr = 180,000 and 280,000) had similar apparent Km values of 0.69 and 0.75 muM with different sedimentation coefficient values of 4.9 S and 7.1 S, respectively. They did not hydrolyze cyclic GMP significantly. A cyclic GMP phosphodiesterase (Mr - 260,000) exhibited abnormal kinetics for cyclic GMP with an apparent Km value of 1.5 muM and normal kinetics for cyclic AMP with a Km of 300 muM. The properties of a platelet cyclic AMP phosphodiesterase (Mr = 180,000) and a platelet cyclic GMP phosphodiesterase were found to agree with those of the two phosphodiesterases released from platelets by thrombin or A-23187. Depletion of extracellular calcium by an addition of citrate, EDTA, or ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) to the blood or platelet suspension resulted in a loss of the activity of the smaller form of platelet cyclic AMP phosphodiesterase (Mr = 180,000) and addition of calcium restored the activity of this cyclic AMP phosphodiesterase. Thus, calcium seemed to be involved in the mechanism of an occurrence of this smaller form of cyclic AMP phosphodiesterase as well as the secretion of this enzyme. Contact of human platelets with thrombin also resulted in the secretion of cyclic nucleotide phosphodiesterase which was dependent on the concentration of calcium. No species difference was observed in this respect.  相似文献   

9.
Summary This reviews summarizes our evidence suggesting that the plasma protein environment influences platelet aggregation potential and metabolic activity.Cationic proteins are capable of restoring the aggregation potential of washed human platelets. The aggregation restoring effect of gamma globulin is inhibited by more anionic proteins in subfractions of Cohn fraction IV and fractions V and VI. Artificial enhancement of the net negative charge of plasma proteins through acylation produces derivatives capable of inhibiting platelet aggregation in platelet rich plasma.The oxygen consumption of washed human platelets is lower than in platelet rich plasma while the lactate production is identical. Autologous plasma, albumin or IgG immunoglobulin restores the oxygen consumption of washed platelets to values comparable to those obtained for platelet rich plasma, while the lactate production is unaffected. Fibrinogen or IgA myeloma protein increases the lactate production, but not the oxygen consumption. Cyclic AMP levels are considerably lower in washed platelets than in platelet rich plasma. Gamma globulin and albumin causes a further decrease, which is progressive with time. Fibrinogen causes no change in platelet cyclic AMP content.It is suggested that these observations may in part be explained by the equilibrium between anionic and cationic proteins in the platelet microenvironment.This hypothesis appears applicable in certain clinical situations.  相似文献   

10.
Thrombin-induced release of arachidonic acid from human platelet phosphatidylcholine is found to be more than 90% impaired by incubation of platelets with 1 mM dibutyryl cyclic adenosine monophosphate (Bt2 cyclic AMP) or with 0.6 mM 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8), an intracellular calcium antagonist. Incorporation of arachidonic acid into platelet phospholipids is not enhanced by Bt2 cyclic AMP. The addition of external Ca2+ to thrombin-treated platelets incubated with Bt2 cyclic AMP or TMB-8 does not counteract the observed inhibition. However, when divalent cation ionophore A23187 is employed as an activating agent, much less inhibition is produced by Bt2 cyclic AMP or TMB-8. The inhibition which does result can be overcome by added Ca2+. Inhibition of arachidonic acid liberation by Bt2 cyclic AMP, but not by TMB-8, can be overcome by high concentrations of A23187. When Mg2+ is substituted for Ca2+, ionophore-induced release of arachidonic acid from phosphatidylcholine of inhibitor-free controls is depressed and inhibition by Bt2 cyclic AMP is slightly enhanced. The phospholipase A2 activity of platelet lysates is increased by the presence of added Ca2+, however, the addition of either A23187 or Bt2 cyclic AMP is without effect on this activity. We suggest that Bt2 cyclic AMP may promote a compartmentalization of Ca2+, thereby inhibiting phospholipase A activity. The compartmentalization may be overcome by ionophore. By contrast, TMB-8 may immobilize platelet Ca2+ stores in situ or restrict access of Ca2+ to phospholipase A in a manner not susceptible to reversal by high concentrations of ionophore.  相似文献   

11.
The events involved in platelet shape change, aggregation, the release reaction and contraction are thought to be mediated by the availability of Ca2+. Increased cytoplasmic calcium, released from intracellular stores, triggers platelet activity, and increased concentration of adenosine 3',5'-cyclic monophosphate (cyclic AMP) inhibits platelet alterations. We have studied the hypothesis that cyclic AMP may regulate the level of platelet cytoplasmic calcium by stimulating calcium removal by a membrane system. Such a hypothesis would be consistent with the reversibility of most manifestations of platelet activation. Human platelets were sonicated and unlysed platelets, mitochondria and granules were removed by centrifugation at 19 000 X g. Electron microscopy shows that the sediment, after centrifugation of the supernatant at 40 000 X g consists to a large extent of membrane vesicles. Such preparations actively concentrate calcium, as measured by the uptake of 45Ca, and also have the maximal calcium-stimulated ATPase activity. Optimal calcium uptake requires ATP and oxalate, and release of calcium from loaded vesicles was stimulated by the calcium ionophore A23187 and inhibited by LaCl3. These data indicate that calcium was being actively concentrated within membrane vesicles. After washing of such preparations in the absence of ATP, their capacity to take up Ca2+ is reduced to an initial value of 2.8 nmol/mg protein per min. In the presence of 2 - 10(6) M cyclic AMP to which was added a protein kinase preparation from human platelets, up to a 3-fold increase of this rate of uptake was observed. These results suggest that in platelets, as in muscle, cyclic AMP is a regulatory factor in the control of cytoplasmic calcium. Although the cyclic nucleotide may have still other functions, it appears likely that the well-known inhibition of many platelet activities by high intracellular cyclic AMP concentrations is directly linked to the stimulation of the removal of Ca2+ from the cytoplasm.  相似文献   

12.
La3+ was found to inhibit the secretion of 5-hydroxytryptamine and the production of thromboxane B2 by washed platelets exposed to collagen or thrombin. In addition, La3+ inhibited secretion in response to sodium arachidonate, although the conversion of arachidonate to thromboxane B2 was not affected. La3+ was also found to enhance the accumulation of cyclic AMP under basal conditions and in response to prostaglandin E1, in washed platelets. The inhibition of cyclic AMP accumulation by ADP was prevented by La3+, suggesting that the effect of ADP on cyclic AMP metabolism was dependent upon the presence or flux of calcium at the platelet membrane. La3+ inhibited the activity of adenylate cyclase in platelet lysates both in response to prostaglandin E1 and to F-, indicating a possible effect at the catalytic subunit of the enzyme. None of the observed effects of La3+ could be reversed by the addition of Ca2+ up to 10 mM. The stimulation of cyclic AMP production by La3+ may largely explain the inhibitory effect of La3+ upon platelet secretion and thromboxane B2 production. These results also suggest that Ca2+ localised at the platelet plasma membrane may be important in the regulation of cyclic AMP metabolism.  相似文献   

13.
Serotonin produced a 6 to 10 fold increase of cyclic GMP over baseline levels of this nucleotide in platelets. Maximum stimulation was reached within 30 sec to 1 min after addition of serotonin and was dependent upon its concentration in the medium. Inhibition of serotonin uptake by methysergide, dihydroergotamine and chloroimipramine did not influence the serotonin-induced stimulation of cyclic GMP but glutaraldehyde and formaldehyde blocked it completely. Cyclic AMP levels in platelets were not affected by serotonin. The serotonin-induced stimulation of cyclic GMP is independent of the uptake of this biogenic amine by platelets and is not due to platelet aggregation.  相似文献   

14.
A sensitive fluorimetric enzyme assay was developed for study of activation of glycogen phosphorylase (EC 2.4.1.1) in intact platelets and in platelet extracts. Activity was calculated as AMP independent (activity in the absence of AMP), total (activity in the presence of 1 mM AMP), and AMP dependent (difference between AMP independent and total). The following observations were made with intact rat platelets. (1) Stimulation of platelets with thrombin caused a 7-fold increase in total activity, with increases in both AMP-dependent and AMP-independent activities. Maximum activation was obtained within 10 s after addition of thrombin. (2) The divalent cation ionophore A23187 caused a similar, though less pronounced, activation of phosphorylase. (3) Acceleration of glycogenolysis by inhibition of respiration with cyanide caused similar changes in phosphorylase activity but with the maximum effect observed only after 45 s. (4) Dibutyryl cyclic AMP had two effects; it partially activated phosphorylase and blocked further activation by thrombin, but not A23187. Similar effects were observed with human platelets, but low resting levels of phosphorylase activity could not be maintained so that changes were not as large as with rat platelets. Experiments with extracts of rat platelets gave the following results. (1) Phosphorylase activity in many extracts of non-stimulated platelets could be increased by incubation with Mg2+-ATP and Ca2+; ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) partially inhibited. (2) In some extracts there was essentially no activation by incubation with Mg2+-ATP and Ca2+, but addition of cyclic AMP GAVE PARTIAL ACTIVATIon while addition of rabbit muscle phosphorylase kinase gave full activation. (3) Incubation of extracts of thrombin-stimulated platelets caused conversion of AMP-dependent to AMP-indeptndent activity. It is concluded that platelet phosphorylase exists in an inactive and two active forms. Conversion of the inactive to the active forms and of the AMP-dependent to the AMP-independent form is catalyzed by a kinase(s) that requires Ca2+ for full activity and is activated through a cyclic AMP-mediated process. The major change following physiological stimulation is an increase in both active forms, with little change in their ratio.  相似文献   

15.
32P phosphorylation of plasma membranes from human blood platelets, under conditions that closely resemble physiological ones (endogeneous phosphate donors and intact platelets in homologous plasma), result in the incorporation of the label mainly in a membrane glycoprotein of apparently high molecular weight (greater than 400 000). Dibutyryl cyclic AMP, an inhibitor of platelet aggregation, specifically increases the degree of phosphorylation of this glycoprotein. Moreover, it has been found that prostaglandin E1 one of the most potent inhibitors of platelet aggregation which also increases phosphorylation of the same glycoprotein, is significantly more effective than cyclic AMP. Cyclic GMP does not have any apparent effect on platelet aggregation. However, incubation of platelet-rich plasma with both cyclic GMP and cyclic AMP results in a partial recovery of the platelet responsiveness towards ADP-induced aggregation. Coincidently, the degree of phosphorylation of the high molecular weight glycoprotein under these conditions, although still higher than in controls (no nucleotides added), is significantly decreased as compared with cyclic AMP-treated cells. Furthermore, cyclic GMP inhibits the cyclic AMP-dependent protein kinase activity in isolated platelet plasma membranes. These results suggest a central role for this membrane phosphoglycoprotein in the triggering of platelet aggregation and, furthermore, suggest that modulation of its degree of phosphorylation may be exerted through some cyclic AMP/cyclic GMP relationship, which in the basal state might be critical for platelet responsiveness.  相似文献   

16.
We have previously reported that intraplatelet "cyclic AMP jumps" produced with newly synthesized photoactivatable cyclic AMP analogue, inhibited washed rat platelet aggregation and serotonin release as induced by thrombin. Using the same approach on human platelets, thrombin-induced platelet aggregation was dose-dependently inhibited only when a flash was delivered. The mechanism of action of intraplatelet cyclic AMP as resulting from photolysis could be by controlling the level of cytosolic Ca2+. In order to test this hypothesis, the same protocol was used on human platelets preloaded with the internal Ca2+ fluorescent indicator, Quin 2, we found that the extent and the rate of the rise of the cytosolic Ca2+ induced by thrombin were dramatically decreased, in the presence of the photoactivatable cyclic AMP, only following photoirradiation. In addition, the flashes were produced, in the presence of photoactivatable cyclic AMP, after the thrombin-induced rise of internal Ca2+ had reached its peak. In these conditions, photoirradiation caused a rapid fall in fluorescence. These experiments provide the first direct evidence that intracellular cyclic AMP is involved in the control of platelet cytosolic Ca2+ by inhibition of its mobilization and by stimulation of its sequestration.  相似文献   

17.
The present study has evaluated the influence of semi-synthetic platelet-aggregating factor, (PAF) i.e., alkylacetylglycerophosphocholine, on human platelet morphology, biochemistry and function in order to determine if PAF serves as the corrective factor restoring sensitivity to refractory platelets after treatment with epinephrine. Threshold concentrations of PAF caused irreversible platelet aggregation which could be blocked by agents elevating endogenous levels or cyclic AMP or inhibited by antagonists of platelet prostaglandin synthesis and secretion. PAF did not stimulate platelets through α-adrenergic receptors or receptors for arachidonate, endoperoxides or thromboxanes. 24 h after aspirin ingestion, platelets could be aggregated irreversibly by high concentrations, but not by threshold amounts of PAF, even though they were still insensitive to arachidonate. Another less potent PAF derivative, alkenylacetylglycerophosphocholine, blocked aggregation of 24-h aspirin platelets by PAF, but did not inhibit restoration of arachidonate sensitivity and irreversible aggregation when the samples were treated first with epinephrine. Our findings indicate that threshold amounts of PAF activate human platelets in a physiologic manner and cause irreversible aggregation which is dependent on prostaglandin synthesis and the release reaction. The results do not support the concept that PAF is the mediator of the mechanism of membrane modulation through which epinephrine induces correction of the refractory state in prostaglandin I2-treated or dissociated platelets, or cells obtained from individuals following aspirin ingestion. Thus, the mechanism of platelet membrane modulation is capable of securing irreversible aggregation of secretion, prostaglandin synthesis or PAF formation.  相似文献   

18.
32P phosphorylation of plasma membranes from human blood platelets, under conditions that closely resemble physiological ones (endogeneous phosphate donors and intact platelets in homologous plasma), result in the incorporation of the label mainly in a membrane glycoprotein of apparently high molecular weight (greater than 400 000). Dibutyryl cyclic AMP, an inhibitor of platelet aggregation, specifically increases the degree of phosphorylation of this glycoprotein. Moreover, it has been found that prostaglandin E1 one of the most potent inhibitors of platelet aggregation which also increases phosphorylation of the same glycoprotein, is significantly more effective than cyclic AMP.Cyclic GMP does not have any apparent effect on platelet aggregation. However, incubation of platelet-rich plasma with both cyclic GMP and cyclic AMP results in a partial recovery of the platelet responsiveness towards ADP-induced aggregation. Coincidently, the degree of phosphorylation of the high molecular weight glycoprotein under these conditions, although still higher than in controls (no nucleotides added), is significantly decreased as compared with cyclic AMP-treated cells. Furthermore, cyclic GMP inhibits the cyclic AMP-dependent protein kinase activity in isolated platelet plasma membranes.These results suggest a central role for this membrane phosphoglycoprotein in the triggering of platelet aggregation and, furthermore, suggest that modulation of its degree of phosphorylation may be exerted through some cyclic AMP/cyclic GMP relationship, which in the basal state might be critical for platelet responsiveness.  相似文献   

19.
Cytoplasmic calcium levels are believed to be important in blood platelet activation. Upon activation, the discrete marginal microtubule band, which maintains the discoid shape of non-activated platelets, becomes disrupted. Present studies demonstrate that the extent of assembly of the marginal microtubule band is related to cytoplasmic calcium levels. The divalent cationophore, A23187, causes platelet aggregation, secretion, and contraction by promoting calcium transport from intraplatelet storage sites into the cytoplasm. A23187 caused disassembly of platelet microtubules. Quantitation of electron micrographs revealed that numbers of microtubules were reduced by approximately 80% after A23187 treatment. Secondly, assembled microtubules in homogenates of platelets, in which microtubules were stabilized prior to homogenization, were decreased in favor of free tubulin in A23187-treated platelets. Thirdly, A23187 increased 14C-colchicine binding by intact platelets; this also indicated a shift in the microtubule subunit equilibrium to favor free, colchicine-binding tubulin subunits. In control experiments, A23187 did not affect the stability of platelet tubulin, the colchicine binding reaction, or the total tubulin content of platelets. Stimulation of colchicine binding depended on A23187 concentration (0.05-0.5 microM) and did not require extracellular calcium. A23187-stimulation of colchicine binding was blocked by dibutyryl cyclic AMP (0.80 mM) and/or 3-isobutyl-1-methylxanthine (50 microM) and by indomethacin (10 microM). Cyclic AMP or indomethacin also interferes with A23187-induced platelet activation, but indomethacin is not likely to completely inhibit the perturbation of intraplatelet calcium gradients by A23187. It is suggested that A23187-induced microtubule disassembly may be an indirect effect of calcium on microtubules.  相似文献   

20.
Supernates of thymic epithelial cell culture (STEC) strongly inhibit aggregation induced by addition of adenosine diphosphate (ADP: 1 microM) or thrombin (0.5 unit per ml) to washed platelet suspensions and accelerated the restoration from ADP-triggered aggregation. At the same time, STEC increased the level of platelet adenosine 3',5'-cyclic monophosphate (cyclic AMP) in a dose-dependent manner. Depending on the concentration used, thymosin fraction 5 increased the level of intracellular cyclic AMP ranging between 5 and 100 micrograms per ml, as well as inhibiting ADP-induced platelet aggregation. The activities of both STEC and thymosin fraction 5 were found to act exclusively on cyclic AMP phosphodiesterase activity in platelets. In contrast the supernates from Chang, HeLa, or HCC-M cells did not affect platelet aggregation induced by ADP, but slightly increased the cyclic AMP level (Chang, HeLa). Within 2 min after the treatment with STEC, more than 50% of the maximum inhibitory activity on platelet aggregation and increases in intracellular cyclic AMP were observed. These activities disappeared following STEC treatment with pronase E. STEC activity was found predominantly in the 1,000-50,000-dalton fractions. These activities were not altered when STEC was treated by adenosine deaminase. The level of prostaglandin E (PGE) derivatives in STEC was about two times that found in the control culture medium. These data suggest that the biological activity of STEC in the platelets might be attributed to thymosinlike polypeptides and PGE1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号