首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method was developed to evaluate growth of a reductively dechlorinating bacterial population within a pentachlorophenol (PCP)- and acetate-fed, mixed, methanogenic culture. In 6- to 12-day experiments, a computer-monitored/feedback-controlled bioreactor was used to maintain constant pH, temperature, and acetate concentration, while transformation of multiple PCP additions was monitored. The potential at a platinum electrode, EPt, was not controlled externally, but was maintained constant at -0.25 +/- 0.002 V (vs. SHE) by iron sulfides in the medium and the activity of the culture. PCP was reductively dechlorinated at the ortho position, yielding 3, 4,5-trichlorophenol (3,4,5-TCP) via 2,3,4,5-tetrachlorophenol (2,3,4, 5-TeCP). Below an initial PCP concentration of 0.5 microM, PCP was transformed to 3,4,5-TCP within 3 to 6 h. Biomass concentration changes were small during this period, and PCP and 2,3,4,5-TeCP transformations were modeled as pseudo-first-order reactions. Increases in pseudo-first-order rate constants for PCP and 2,3,4, 5-TeCP were directly related to the amount of PCP transformed to 3,4, 5-TCP, suggesting enrichment of a PCP-catabolizing population. Moreover, rate constant increases were independent of the amount of acetate consumed, changes in the overall volatile suspended solids (VSS) concentration, and the experimental duration. When PCP was added to the reactor at increasingly shorter time intervals in an exponential pattern, pseudo-first-order rate constants increased exponentially. An average rate constant doubling time of 1.7 days (1. 4 to 2.3 d) was estimated. While the VSS concentration of the culture increased 60% in an 8-day period, pseudo-first-order rate constants increased by a factor of approximately 6. This large increase in transformation rate constants suggests growth of a bacterial population capable of using PCP and 2,3,4,5-TeCP as terminal electron acceptors.  相似文献   

2.
Summary An actinomycete, Rhodococcus chlorophenolicus, isolated from a pentachlorophenol-degrading mixed bacterial culture is a polychlorophenol degrader. It was shown to oxidize pentachlorophenol into carbon dioxide and to metabolize also 2,3,4,5-,2,3,4,6-, and 2,3,5,6-tetrachlorophenol, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6-, and 2,4,5-trichlorophenol, 2,5-, and 2,6-dichlorophenol and tetrachloro-p-hydroquinone in an inducible manner. Pentachlorophenol set on the synthesis of enzymes required for the metabolism of all these chlorophenols and of tetrachloro-p-hydroquinone. 2,4,5-, and 2,4,6-trichlorophenol and 2,5-, and 2,6-dichlorophenol were degraded by R. chlorophenolicus cells only if these had previous contact to pentachlorophenol. Other chlorophenols mentioned were able to set on the synthesis of enzymes for their own degradation. 2,3,4,5-, and 2,3,4,6-tetrachlorophenol, and 2,3,5-, 2,4,5-, and 3,4,5-trichlorophenol were more toxic to R. chlorophenolicus than the other chlorophenols, but nevertheless 2,3,4,5-, and 2,3,4,6-tetrachlorophenol and 2,3,5-trichlorophenol were readily degraded by the bacteria.Abbreviations DCP dichlorophenol - TCP trichlorophenol - TeCP tetrachlorophenol - PCP pentachlorophenol - TeCH tetrachloro-p-hydroquinone An example of numeration: 2345-TeCP, 2,3,4,5-tetrachlorophenol  相似文献   

3.
The transformation of 2,4,6-trichlorophenol (TCP) into 4-chlorophenol (4CP) was studied using a stable methanogenic enrichment culture derived from an anaerobic fixed bed reactor. Using acetate as a growth substrate, different inhibitors of methanogenesis exhibited distinct effects on TCP dechlorination. Whereas reductive dechlorination activity was not affected by 2% ethylene in the gas phase, 25 mM bromoethanesulfonic acid (BESA) had a direct inhibitory effect on this process. The choice of BESA as a specific inhibitor for identifying the subpopulations involved in reductive dechlorination of chloroaromatics is thus questionable. Inhibitors of sulfate reduction such as molybdate (20 mM) and selenate (20 mM) had a direct inhibitory effect on reductive dechlorination independently of the presence of sulfate in the medium supplemented with acetate as growth substrate. Consequently much more care must also be taken with these inhibitors to prove that reductive chlorination is coupled to sulfate reduction.  相似文献   

4.
Thermodynamic calculations were coupled with time-series measurements of chemical species (parent and daughter chlorinated solvents, H(2), sulfite, sulfate and methane) to predict the anaerobic transformation of cis-1,2-dichloroethene (cis-1,2-DCE) and 1,2-dichloroethane (1,2-DCA) in constructed wetland soil microcosms inoculated with a dehalorespiring culture. For cis-1,2-DCE, dechlorination occurred simultaneously with sulfite and sulfate reduction but competitive exclusion of methanogenesis was observed due to the rapid H(2) drawdown by the dehalorespiring bacteria. Rates of cis-1,2-DCE dechlorination decreased proportionally to the free energy yield of the competing electron acceptor and proportionally to the rate of H(2) drawdown, suggesting that H(2) competition between dehalorespirers and other populations was occurring, affecting the dechlorination rate. For 1,2-DCA, dechlorination occurred simultaneously with methanogenesis and sulfate reduction but occurred only after sulfite was completely depleted. Rates of 1,2-DCA dechlorination were unaffected by the presence of competing electron-accepting processes. The absence of a low H(2) threshold suggests that 1,2-DCA dechlorination is a cometabolic transformation, occurring at a higher H(2) threshold, despite the high free energy yields available for dehalorespiration of 1,2-DCA. We demonstrate the utility of kinetic and thermodynamic calculations to understand the complex, H(2)-utilizing reactions occurring in the wetland bed and their effect on rates of dechlorination of priority pollutants.  相似文献   

5.
The anaerobic degradation of 2,4,6-trichlorophenol (246TCP) has been studied in batch experiments. Granular sludges previously acclimated to 2,4-dichlorophenol (24DCP) and then adapted to at a load of 330 μM 246TCPd(-1) in two expanded granular sludge bed (EGSB) reactors were used. One of the reactors had been bioaugmented with Desulfitobacterium strains whereas the other served as control. 246TCP was tested at concentrations between 250 and 760 μM. The study focused on the fate of both fermentation products and chlorophenols derived from dechlorination of 246TCP. This compound mainly affected the biodegradation of acetate and propionate, which were inhibited at 246TCP concentrations above 380 μM. Lactate and ethanol were also accumulated at 760 μM 246TCP. Methanogenesis was strongly inhibited at 246TCP concentrations higher than 380 μM. A diauxic production of methane was observed, which can be described by a kinetic model in which acetoclastic methanogenesis was inhibited, whereas hydrogenotrophic methanogenesis was hardly affected by 246TCP. The similarity of the kinetic parameters obtained for the control and the bioaugmented sludges (K(i)=175-200 μM 246TCP and n=7) suggests that methanogenesis is not affected by the bioaugmentation. Moreover, the 246TCP dechlorination occurred mainly at ortho position, successively generating 24DCP and 4-chlorophenol (4CP), which was identified as final product. The bioaugmentation does not significantly improve the anaerobic biodegradation of 246TCP. It has been shown that the active biomass is capable of bioaccumulating 246TCP and products from dechlorination, which are subsequently excreted to the bulk medium when the biomass becomes active again. A kinetic model is proposed which simultaneously explains 246TCP and 24DCP reductive dechlorinations and includes the 246TCP bioaccumulation. The values of the kinetic parameters for 246TCP dechlorination were not affected by bioaugmentation (V(max)=5.3 and 5.1 μM h(-1) and K(s)=5.8 and 13.1 μM for control and bioaugmented sludges, respectively).  相似文献   

6.
We studied the degradation of pentachlorophenol (PCP) under methanogenic and sulfate-reducing conditions with an anaerobic mixed culture derived from sewage sludge. The consortium degraded PCP via 2,3,4,5-tetrachlorophenol, 3,4,5-trichlorophenol, and 3,5-dichlorophenol and eventually accumulated 3-chlorophenol. Dechlorination of PCP and metabolites was inhibited in the presence of sulfate, thiosulfate, and sulfite. A decrease in the rate of PCP transformation was noted when the endogenous dissolved H2 was depleted below 0.11 μM in sulfate-reducing cultures. The effect on dechlorination observed with sulfate could be relieved by addition of molybdate, a competitive inhibitor of sulfate reduction. Addition of H2 reduced the inhibition observed with sulfuroxy anions. The inhibitory effect of sulfuroxy anions may be due to a competition for H2 between sulfate reduction and dechlorination. When cultured under methanogenic conditions, the consortium degraded several chlorinated and brominated phenols.  相似文献   

7.
Pentachlorophenol (PCP) use as a general biocide, particularly for treating wood, has led to widespread environmental contamination. Biodegradation has emerged as the main mechanism for PCP degradation in soil and groundwater and a key strategy for remediation. Examining the microbial biodegrading potential for PCP at a contaminated site is crucial in determining its fate. Hundreds of studies have been published on PCP microbial degradation, but few have described the biodegradation of PCP that has been in contact with soils for many years. The bioavailability of “aged” hydrophobic organics is a significant concern. PCP- and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)-contaminated soil samples from several depths at a former wood treatment site were placed under varying conditions in the laboratory to determine the anaerobic and aerobic potential for biodegradation of chlorophenols at the site. PCP biodegradation occurred in both anaerobic and aerobic soil samples. Rapid aerobic degradation occurred in samples spiked with 2- and 4-chlorophenol, but not with 3-chlorophenol. Reductive dechlorination of PCP in anaerobic samples resulted in the accumulation of 3-chlorophenol. In most anaerobic replicates, 3-chlorophenol was degraded with the appearance of detectable, but not quantifiable amounts of phenol. These results indicate excellent potential for remediation at the site using the indigenous microorganisms under both aerobic and anaerobic conditions. However, a fraction of the PCP was unavailable for degradation.  相似文献   

8.
Methanogenesis and homoacetogenesis occur simultaneously in the hindguts of almost all termites, but the reasons for the apparent predominance of methanogenesis over homoacetogenesis in the hindgut of the humivorous species is not known. We found that in gut homogenates of soil-feeding Cubitermes spp., methanogens outcompete homoacetogens for endogenous reductant. The rates of methanogenesis were always significantly higher than those of reductive acetogenesis, whereas the stimulation of acetogenesis by the addition of exogenous H(2) or formate was more pronounced than that of methanogenesis. In a companion paper, we reported that the anterior gut regions of Cubitermes spp. accumulated hydrogen to high partial pressures, whereas H(2) was always below the detection limit (<100 Pa) in the posterior hindgut, and that all hindgut compartments turned into efficient H(2) sinks when external H(2) was provided (D. Schmitt-Wagner and A. Brune, Appl. Environ. Microbiol. 65:4490-4496, 1999). Using a microinjection technique, we found that only the posterior gut sections P3/4a and P4b, which harbored methanogenic activities, formed labeled acetate from H(14)CO(3)(-). Enumeration of methanogenic and homoacetogenic populations in the different gut sections confirmed the coexistence of both metabolic groups in the same compartments. However, the in situ rates of acetogenesis were strongly hydrogen limited; in the P4b section, no activity was detected unless external H(2) was added. Endogenous rates of reductive acetogenesis in isolated guts were about 10-fold lower than the in vivo rates of methanogenesis, but were almost equal when exogenous H(2) was supplied. We conclude that the homoacetogenic populations in the posterior hindgut are supported by either substrates other than H(2) or by a cross-epithelial H(2) transfer from the anterior gut regions, which may create microniches favorable for H(2)-dependent acetogenesis.  相似文献   

9.
ABSTRACT: BACKGROUND: Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3-) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3- also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2). We studied the effect of HCO3- as a buffering agent and the effect of HCO3--consuming reactions in a range of concentrations (2.5-30 mM) with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens. RESULTS: Rate differences in TCE dechlorination were observed as a result of added varying HCO3- concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7) from biological HCO3- consumption. Significantly faster dechlorination rates were noted at all HCO3- concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3- concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3- were provided initially. CONCLUSIONS: Our study reveals that HCO3- is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3- and the changes in pH exerted by methanogens and homoacetogens.  相似文献   

10.
Studies were conducted on the response of 2,4,6-trichlorophenol (1), 2,3,4,5-tetrachloro-phenol (2) and 4,5-dichloroguaiacol (3) toward advanced oxidation processes, such as UV-, O2/UV-, H2O2/UV-, O3/UV- and O3-H2O2/UV-photolyses with irradiation of 254 nm photons. The compounds 1-3 are among the chlorophenols found in the Kraft-pulp bleach plant E-1 effluents. The studies were extended to treatment of these compounds with ozonation and O3-H2O2 oxidation systems in alkaline aqueous solution. Except for the O2/UV-photolysis of 1 and H2O2/UV-photolysis of 2, the dechlorination of 1-3 by O2/UV- and H2O2/UV-potolyses were less effective than the corresponding N2UV-potolysis of 1-3. Guaiacol-type chlorophenols were more readily able to undergo dechlorination than non-guaiacol type chlorophenols by N2/UV-, O2/UV- and H2O2/UV-potolyses. In addition, the efficiency for the dechlorination of 1-3 by N2/UV-, O2/UV- and H2O2/UV-potolyses appeared to be dependent upon the inductive and resonance effects of substituents as well as number and position of chlorine substituent in the aromatic ring of the compounds. The dechlorination of 2 by treatment with O3 alone is slightly more effective than the corresponding the O3/UV-photlysis, whereas the dechlorination of 2 by treatment with the combination of O3 and H2O2 was slightly less effective than the corresponding O3-H2O2/UV-photolysis. In contrast, the dechlorination of 3 on treatment with O3 alone was slightly less effective than the corresponding the O3/UV-photolysis, whereas the dechlorination of 3 on treatment with the combination of O3 and H2O2 was slightly more effective than the corresponding the O3-H2O2/UV-photolysis. In the dechlorination of 2 and 3, chemical species derived from ozone and hydrogen peroxide in alkaline solution were dominant reactions in the O3/UV- and O3-H2O2/UV-photolysis systems as in the O3 and O3-H2O2 oxidation systems. Possible dechlorination mechanisms involved were discussed on the basis of kinetic data.  相似文献   

11.
Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3−) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2). We studied the effect of HCO3− as a buffering agent and the effect of HCO3−-consuming reactions in a range of concentrations (2.5-30 mM) with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens. Rate differences in TCE dechlorination were observed as a result of added varying HCO3− concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7) from biological HCO3− consumption. Significantly faster dechlorination rates were noted at all HCO3− concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3− concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3− were provided initially. Our study reveals that HCO3− is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3− and the changes in pH exerted by methanogens and homoacetogens.  相似文献   

12.
The dechlorination and mineralization of pentachlorophenol (PCP) was investigated by simultaneously or sequentially combining two different anaerobic microbial populations, a PCP-dechlorinating culture capable of the reductive dechlorination of PCP to phenol and phenol- degrading cultures able to mineralize phenol under sulfate- or iron-reducing conditions. In the simultaneously combined mixture, PCP (about 35 microM) was mostly dechlorinated to phenol after incubation for 17 days under sulfate-reducing conditions or for 22 days under iron-reducing conditions. Thereafter, the complete removal of phenol occurred within 40 days under both conditions. In the sequentially combined mixture, most of the phenol, the end product of PCP dechlorination, was degraded within 12 days of inoculation with the phenol degrader, without a lag phase, under both sulfate- and iron-reducing conditions. In a radioactivity experiment, [14C-U]-PCP was mineralized to 14CO2 and 14CH4 by the combined anaerobic microbial activities. Analysis of electron donor and acceptor utilization and of the production and consumption of H2, CO2, and CH4 suggested that the dechlorinating and degrading microorganisms compete with other microorganisms to perform PCP dechlorination and part of the phenol degradation in complex anoxic environments in the presence of electron donors and acceptors. The presence of a small amount of autoclaved soil slurry in the medium was possibly another advantageous factor in the successful dechlorination and mineralization of PCP by the combined mixtures. This anaerobic-anaerobic combination technology holds great promise as a cost-effective strategy for complete PCP bioremediation in situ.  相似文献   

13.
Methanogenesis from formaldehyde or formaldehyde + H2, as carried out by Methanosarcina barkeri, was strictly dependent on sodium ions whereas methane formation from methanol + H2 or methanol + formaldehyde was Na+-independent. This indicates that the reduction of formaldehyde to the formal redox level of methanol exhibits a Na+ requirement. During methanogenesis from formaldehyde, a delta pNa in the range of -62 mV to -80 mV was generated by means of a primary, electron-transport-driven sodium pump. This could be concluded from the following results obtained on cell suspensions of M. barkeri. 1. The addition of proton conductors or inhibitors of the Na+/H+ antiporter had no effect on sodium extrusion. 2. During methanogenesis from formaldehyde + H2 a delta psi of -60 mV to -70 mV was generated even in the presence of proton conductors. 3. ATPase inhibitors, applied in the presence of proton conductors, had no effect on primary sodium extrusion or generation of a delta psi. Evidence for a Na+-translocating ATPase could not be obtained.  相似文献   

14.
A study with H(2)-based membrane biofilm reactors (MBfRs) was undertaken to examine the effectiveness of direct H(2) delivery in ex-situ reductive dechlorination of chlorinated ethenes. Trichloroethene (TCE) could be reductively dechlorinated to ethene with up to 95% efficiency as long as the pH-increase effects of methanogens and homoacetogens were managed and dechlorinators were selected for during start-up by creating H(2) limitation. Based on quantitative PCR, the dominant bacterial groups in the biofilm at the end of reactor operation were Dehalococcoides, Geobacter, and homoacetogens. Pyrosequencing confirmed the dominance of the dechlorinators and identified Acetobacterium as the key homoacetogen. Homoacetogens outcompeted methanogens for bicarbonate, based on the effluent concentration of acetate, by suppressing methanogens during batch start-up. This was corroborated by the methanogenesis functional gene mcrA, which was 1-2 orders of magnitude lower than the FTHFS functional gene for homoacetogens. Imaging of the MBfR fibers using scanning electron microscopy showed a distinct Dehalococcoides-like morphology in the fiber biofilm. These results support that direct addition of H(2) can allow for efficient and complete reductive dechlorination, and they shed light into how H(2)-fed biofilms, when operated to manage methanogenic and homoacetogenic activity, can be used for ex-situ bioremediation of chlorinated ethenes.  相似文献   

15.
A variety of food-grade organic substrates were evaluated to identify materials that could be used to support long-term anaerobic bioremediation processes in the subsurface. In this work, the rate and extent of biogas production was used as an indicator of the potential for substrate fermentation to H2 and acetate, the primary electron donors used in reductive dechlorination. The rate and extent of biogas (primarily CO2+ CH4) evolution varied widely between the different substrates. For many of the substrates, biogas generation declined to very low levels within 100 days of substrate addition. However, a few substrates including several vegetable oils and sucrose esters of fatty acid (SEFAs) did support biogas production for extended time periods. Column studies demonstrated that both soybean oil and a SEFA could support sulfate reduction, methanogenesis and reductive dechlorination of perchloroethene (PCE) to cis-dichloroethene (cis-DCE) for over 14 months. The slower degradation rate of the SEFAs could be used to control substrate degradation rate in the subsurface, increasing substrate lifetime and reducing the required reinjection frequency.  相似文献   

16.
Tetrachloroethylene (perchloroethylene, PCE) is a suspected carcinogen and a common groundwater contaminant. Although PCE is highly resistant to aerobic biodegradation, it is subject to reductive dechlorination reactions in a variety of anaerobic habitats. The data presented here clearly establish that axenic cultures of Methanosarcina sp. strain DCM dechlorinate PCE to trichloroethylene and that this is a biological reaction. Growth on methanol, acetate, methylamine, and trimethylamine resulted in PCE dechlorination. The reductive dechlorination of PCE occurred only during methanogenesis, and no dechlorination was noted when CH4 production ceased. There was a clear dependence of the extent of PCE dechlorination on the amount of methanogenic substrate (methanol) consumed. The amount of trichloroethylene formed per millimole of CH4 formed remained essentially constant for a 20-fold range of methanol concentrations and for growth on acetate, methylamine, and trimethylamine. These results suggest that the reducing equivalents for PCE dechlorination are derived from CH4 biosynthesis and that the extent of chloroethylene dechlorination can be enhanced by stimulating methanogenesis. It is proposed that electrons transferred during methanogenesis are diverted to PCE by a reduced electron carrier involved in methane formation.  相似文献   

17.
We have employed a method of enrichment that allows us to significantly increase the rate of reductive polychlorinated biphenyl (PCB) dechlorination. This method shortens the time required to investigate the effects that culture conditions have on dechlorination and provides an estimate of the potential activity of the PCB-dechlorinating anaerobes. The periodic supplementation of sterile sediment and PCB produced an enhanced, measurable, and sustained rate of dechlorination. We observed volumetric rates of the dechlorination of 2,3,6-trichlorobiphenyl (2,3,6-CB) to 2,6-dichlorobiphenyl (2,6-CB) of more than 300 μmol liter-1 day-1 when the cultures were supplemented daily. A calculation of this activity that is based on an estimate of the number of dechlorinating anaerobes present indicates that 1.13 pmol of 2,3,6-CB was dechlorinated to 2,6-CB day-1 bacterial cell-1. This rate is similar to that of the reductive dechlorination of 3-chlorobenzoate by Desulfomonile tiedjei. Methanogenesis declined from 585.3 to 125.9 μmol of CH4 liter-1 day-1, while dechlorination increased from 8.2 to 346.0 μmol of 2,3,6-CB dechlorinated to 2,6-CB liter-1 day-1.  相似文献   

18.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

19.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

20.
AIMS: To determine whether composting with animal manure can be used to effectively remediate soil from a pentachlorophenol (PCP)-contaminated site, and to establish the fate of the degraded xenobiotic. METHODS AND RESULTS: Contaminated soil from a sawmill site was mixed with farm animal manure and composted in a 0.5 m3 silo under fully aerobic conditions. The disappearance and fate of PCP was monitored by gas chromatography (GC-ECD) and extensive mineralization confirmed in experiments with 14C-radiolabelled PCP. The disappearance of PCP was rapid and virtually complete within 6 days, prior to the onset of thermophilic conditions. Dechlorination of the PCP was found to be both reductive and sequential. CONCLUSIONS: PCP removal from contaminated soil by aerobic composting with animal manure is efficient and proceeds via reductive dechlorination to virtually complete mineralization. This contrasts with other chlorophenol composting regimes in which mineralization is achieved but dechlorination intermediates do not accumulate to detectable levels. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study demonstrate that anaerobic reductive dechlorination can proceed in an aerobic composting environment and contribute to efficient pentachlorophenol removal. Farmyard manure composts may represent a rapid, low-cost, low-technology option for treatment of chlorophenol-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号