共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of cholesterol absorption in rats by plant sterols 总被引:8,自引:0,他引:8
The extent and site(s) of inhibition of cholesterol absorption by plant sterols, sitosterol and fucosterol, were studied in rats. The intragastric administration of a single emulsified lipid meal containing 25 mg [3H]cholesterol and 25 mg of either sitosterol or fucosterol inhibited the lymphatic absorption of cholesterol by 57% and 41%, respectively, in 24 hr. Less than 2% of each plant sterol was absorbed in the 24-hr period. In contrast, neither plant sterol (50 microM) inhibited cholesterol absorption when co-administered with equimolar amounts of cholesterol in phospholipid-bile salt micelles nor was either absorbed from the micellar solution. A series of in vitro studies was conducted to identify the site(s) of plant sterol inhibition of cholesterol absorption and to account for the difference in inhibitory effectiveness of sitosterol and fucosterol. A comparison of the micellar solubility of each sterol alone and in equimolar binary mixtures (to 2.0 mM) revealed that the solubility of individual sterols decreased in the following order: cholesterol, fucosterol, sitosterol, and that in binary mixtures cholesterol solubility was decreased by sitosterol and, to a lesser extent, by fucosterol relative to its solubility alone. A comparison between micellar-solubilized cholesterol and either sitosterol or fucosterol for binding to isolated brush border membranes, intestinal mucin, or for esterification by either cholesterol esterase or acyl coenzyme A:cholesterol acyltransferase revealed moderate to no competition. The data suggest that plant sterols displace cholesterol from bile salt (taurocholate) micelles and that sitosterol is more effective than fucosterol in this capacity. 相似文献
2.
Guenther Silbernagel Guenter Fauler Michael M. Hoffmann Dieter Lütjohann Bernhard R. Winkelmann Bernhard O. Boehm Winfried M?rz 《Journal of lipid research》2010,51(8):2384-2393
Moderately elevated levels of plasma plant sterols have been suspected to be causally involved in atherosclerosis. The aim of this study was to investigate whether plant sterols and other markers of sterol metabolism predicted all-cause and cardiovascular mortality in participants of the Ludwigshafen Risk and Cardiovascular health (LURIC) study. A total of 1,257 individuals who did not use statins and at baseline had a mean (± SD) age of 62.8 (± 11.0) years were included in the present analysis. Lathosterol, cholestanol, campesterol, and sitosterol were measured to estimate cholesterol synthesis and absorption. The mean (± SD) time of the follow-up for all-cause and cardiovascular mortality was 7.32 (± 2.3) years. All-cause (P = 0.001) and cardiovascular (P = 0.006) mortality were decreased in the highest versus the lowest lathosterol to cholesterol tertile. In contrast, subjects in the third cholestanol to cholesterol tertile had increased all-cause (P < 0.001) and cardiovascular mortality (P = 0.010) compared with individuals in the first tertile. The third campesterol to cholesterol tertile was associated with increased all-cause mortality (P = 0.025). Sitosterol to cholesterol tertiles were not significantly related to all-cause or cardiovascular mortality. The data suggest that high absorption and low synthesis of cholesterol predict increased all-cause and cardiovascular mortality in LURIC participants. 相似文献
3.
Jakulj L Trip MD Sudhop T von Bergmann K Kastelein JJ Vissers MN 《Journal of lipid research》2005,46(12):2692-2698
Consumption of plant sterols and treatment with ezetimibe both reduce cholesterol absorption in the intestine. However, the mechanism of action differs between the two treatments, and the consequences of combination treatment are unknown. Therefore, we performed a double-blind, placebo-controlled, crossover study for the plant sterol component with open-label ezetimibe treatment. Forty mildly hypercholesterolemic subjects were randomized to the following treatments for 4 weeks each: 10 mg/day ezetimibe combined with 25 g/day control spread; 10 mg/day ezetimibe combined with 25 g/day spread containing 2.0 g of plant sterols; 25 g/day spread containing 2.0 g of plant sterols; and placebo treatment consisting of 25 g/day control spread. Combination treatment of plant sterols and ezetimibe reduced low density lipoprotein cholesterol (LDL-C) by 1.06 mmol/l (25.2%; P < 0.001) compared with 0.23 mmol/l (4.7%; P = 0.006) with plant sterols and 0.94 mmol/l (22.2%; P < 0.001) with ezetimibe monotherapy. LDL-C reduction conferred by the combination treatment did not differ significantly from ezetimibe monotherapy (-0.12 mmol/l or -3.5%; P = 0.13). Additionally, the plasma lathosterol-to-cholesterol ratio increased with all treatments. Sitosterol and campesterol ratios increased after plant sterol treatment and decreased upon ezetimibe and combination therapy. Our results indicate that the combination of plant sterols and ezetimibe has no therapeutic benefit over ezetimibe monotherapy in subjects with mild hypercholesterolemia. 相似文献
4.
We have studied the concentration and temperature dependent influence of cholesterol, stigmasterol, and sitosterol on the global structure and the bending fluctuations of fluid dimyristoyl phosphatidylcholine and palmitoyl oleoyl phosphatidylcholine bilayers applying small-angle x-ray scattering, as well as dilatometry and ultrasound velocimetry. Independent of the lipid matrix, cholesterol was found to be most efficient in modulating bilayer thickness and elasticity, followed by sitosterol and stigmasterol. This can be attributed to the additional ethyl groups and double bond at the C17 alkyl side-chain of the two plant sterols. Hence, it seems that some flexibility of the sterol hydrocarbon chain is needed to accommodate within the lipid bilayer. In addition, we did not observe two populations of membranes within the putative liquid-ordered/liquid-disordered phase coexistence regime of binary sterol/lipid mixtures. Instead, the diffraction patterns could be interpreted in terms of a uniform phase. This lends further support to the idea of compositional fluctuations of unstable sterol rich domains recently brought up by fluorescence microscopy experiments, which contrasts the formation of stable domains within the miscibility gap of binary lipid/sterol mixtures. 相似文献
5.
Silbernagel G Fauler G Renner W Landl EM Hoffmann MM Winkelmann BR Boehm BO März W 《Journal of lipid research》2009,50(2):334-341
Changes in the balance of cholesterol absorption and synthesis and moderately elevated plasma plant sterols have been suggested to be atherogenic. Measuring cholestanol, lathosterol, campesterol, and sitosterol, we investigated the relationships of cholesterol metabolism and plasma plant sterols with the severity of coronary artery disease (CAD) in 2,440 participants of the Ludwigshafen Risk and Cardiovascular health (LURIC) study. The coronary status was determined by angiography, and the severity of CAD was assessed by the Friesinger Score (FS). An increase in the ratio of cholestanol to cholesterol was associated with high FS (P = 0.006). In contrast, a high ratio of lathosterol to cholesterol went in parallel with low FS (P < 0.001). Whereas the campesterol to cholesterol ratio significantly correlated with the FS (P = 0.026), the relationship of the sitosterol to cholesterol ratio with the FS did not reach statistical significance in the whole group. Increased campesterol, sitosterol, and cholestanol to lathosterol ratios were associated high FS (P < 0.001). To conclude, there is a modest association of high cholesterol absorption and low cholesterol synthesis with an increased severity of CAD. An atherogenic role of plasma plant sterols themselves, however, seems unlikely in subjects without sitosterolaemia. 相似文献
6.
Plant sterols and stanols are natural food ingredients found in plants. It was already shown in 1950 that they lower serum low-density lipoprotein cholesterol (LDL-C) concentrations. Meta-analysis has reported that a daily intake of 2.5 g plant sterols/stanols reduced serum LDL-C concentrations up to 10%. Despite many studies, the underlying mechanism remains to be elucidated. Therefore, the proposed mechanisms that have been presented over the past decades will be described and discussed in the context of the current knowledge. In the early days, it was suggested that plant sterols/stanols compete with intestinal cholesterol for incorporation into mixed micelles as well as into chylomicrons. Next, the focus shifted toward cellular processes. In particular, a role for sterol transporters localized in the membranes of enterocytes was suggested. All these processes ultimately lowered intestinal cholesterol absorption. More recently, the existence of a direct secretion of cholesterol from the circulation into the intestinal lumen was described. First results in animal studies suggested that plant sterols/stanols activate this pathway, which also explains the increased fecal neutral sterol content and as such could explain the cholesterol-lowering activity of plant sterols/stanols. 相似文献
7.
Smahelová A Hyspler R Haas T 《Physiological research / Academia Scientiarum Bohemoslovaca》2007,56(6):749-755
Using non-cholesterol sterols investigation several authors postulated a hypothesis that in the metabolic syndrome cholesterol endogenous synthesis is increased and its absorption decreased. Our study is the first attempt to evaluate the direct relation of cholesterol metabolism to the principal pathogenetic phenomenon of the metabolic syndrome--namely to insulin resistance. We have measured insulin sensitivity by two methods--Quicki (Quantitative Sensitivity Check Index) and intravenous insulin tolerance test (Kitt) and 3 indirect markers--fasting insulin level, fasting C-peptide level and SHBG (sex hormone binding globulin). The investigation was performed in three groups of subjects with a different prevalence of insulin resistance: 72 non-diabetics with ischemic heart disease, 117 young blood donors and 63 type 2 diabetics on diet therapy only. Analyzing altogether 60 relationships--between four sterols (lathosterol, squalene, sitosterol and campesterol) and five markers of insulin resistance in three groups of subjects--we have found only six significant relations between cholesterol synthesis and absorption and insulin resistance in all groups of patients. Our results indicate that there exists a significant relationship between insulin sensitivity and indices of either increased cholesterol synthesis or decreased cholesterol absorption. Insulin resistance explains only a part of both abnormalities mentioned above. 相似文献
8.
We measured the cholestanol, cholesterol precursor (lathosterol), and plant sterol (campesterol and sitosterol) concentrations of serum and bile in 11 patients with cerebrotendinous xanthomatosis. The mean values of serum cholestanol, lathosterol, campesterol, and sitosterol were, respectively, 8.4-, 2.5-, 2.7-, and 1.4-times higher in the patients than in normal control subjects (n = 26). Cholestanol (6.7-fold) and campesterol (3.7-fold) levels in bile (n = 4) were also elevated in the patients. There was no significant difference of serum sterol levels between patients with coronary artery disease and those without it. Chenodeoxycholic acid treatment for periods ranging from 6 months to 3 years and 4 months lowered serum lathosterol (57.7% reduction) and campesterol (57.8%) levels in parallel with cholestanol (70.8%) level, but the sitosterol level (19.7%) decreased less. Thus, increased levels of cholesterol precursor (lathosterol), plant sterols (campesterol and sitosterol), and cholestanol were found in the serum and bile in cerebrotendinous xanthomatosis. Chenodeoxycholic acid treatment effectively reduced the levels of these sterols, except for sitosterol. 相似文献
9.
Levi O Lütjohann D Devir A von Bergmann K Hartmann T Michaelson DM 《Journal of neurochemistry》2005,95(4):987-997
Alzheimer's disease is associated with genetic risk factors, of which the allele E4 of apolipoprotein E (apoE4) is the most prevalent, and it is also affected by environmental factors such as early life education. We have recently shown, utilizing apoE-deficient and apoE transgenic mice, that synaptogenesis in the hippocampus following environmental stimulation is affected by apoE. In view of the pivotal role of cholesterol in synaptic plasticity, and of its suggested role in synaptogenesis, we presently examined the effects of apoE and environmental stimulation on brain cholesterol homeostasis. The hippocampal levels of cholesterol and its precursors and metabolites in control mice were not affected by exposure to environmental stimulation. In contrast, the hippocampal levels of cholesterol and its precursors lathosterol and desmosterol and metabolite 24S-hydroxycholesterol were lower in apoE-deficient mice that were maintained in a regular environmental than those of corresponding control mice, whereas they were markedly elevated following environmental stimulation. Histological and immunohistochemical experiments revealed that the combined stimulatory effects of apoE deficiency and environmental stimulation on cholesterol metabolism were associated with marked activation of hippocampal astrocytes and with the abnormal accumulation of cholesterol in neurons and astrocytes. These effects were rescued similarly in apoE3 and apoE4 transgenic mice. These findings suggest that apoE plays an important role in the translocation of cholesterol from astrocytes to neurons in vivo and in the regulation and homeostasis of this process. 相似文献
10.
Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin 总被引:6,自引:0,他引:6
Grimm MO Grimm HS Pätzold AJ Zinser EG Halonen R Duering M Tschäpe JA De Strooper B Müller U Shen J Hartmann T 《Nature cell biology》2005,7(11):1118-1123
Amyloid beta peptide (Abeta) has a key role in the pathological process of Alzheimer's disease (AD), but the physiological function of Abeta and of the amyloid precursor protein (APP) is unknown. Recently, it was shown that APP processing is sensitive to cholesterol and other lipids. Hydroxymethylglutaryl-CoA reductase (HMGR) and sphingomyelinases (SMases) are the main enzymes that regulate cholesterol biosynthesis and sphingomyelin (SM) levels, respectively. We show that control of cholesterol and SM metabolism involves APP processing. Abeta42 directly activates neutral SMase and downregulates SM levels, whereas Abeta40 reduces cholesterol de novo synthesis by inhibition of HMGR activity. This process strictly depends on gamma-secretase activity. In line with altered Abeta40/42 generation, pathological presenilin mutations result in increased cholesterol and decreased SM levels. Our results demonstrate a biological function for APP processing and also a functional basis for the link that has been observed between lipids and Alzheimer's disease (AD). 相似文献
11.
Regulation of plant glucosinolate metabolism 总被引:11,自引:0,他引:11
Glucosinolates and their degradation products are known to play important roles in plant interaction with herbivores and micro-organisms.
In addition, they are important for human life. For example, some degradation products are flavor compounds and some exhibit
anticarcinogenic properties. Recent years have seen great progress made in the understanding of glucosinolate biosynthesis
in Arabidopsis thaliana. The core glucosinolate biosynthetic pathway has been revealed using biochemical and reverse genetics approaches. Future
research needs to focus on questions related to regulation and control of glucosinolate metabolism. Here we review current
status of studies on the regulation of glucosinolate metabolism at different levels, and highlight future research towards
elucidating the signaling and metabolic network that control glucosinolate metabolism. 相似文献
12.
Börner T 《Journal of plant physiology》2011,168(12):1309-1310
13.
T. Sanclemente I. Marques-Lopes J. Puzo A. L. García-Otín 《Journal of physiology and biochemistry》2009,65(1):87-98
Cardiovascular disease is a major health problem in developed countries although its incidence is relatively lower in Mediterranean countries which is partly ascribed to dietary habits. Epidemiologic evidence shows that elevated serum cholesterol, specifically low-density lipoprotein cholesterol (c-LDL), increases cardiovascular disease. Phytosterols are bioactive compounds, found in all vegetable foods, which inhibit intestinal cholesterol absorption and, therefore, have a serum cholesterollowering effect. Intestinal cholesterol absorption is a multistep process where, plant sterols and stanols may act:a) attenuating the NPC1L1 gene expression, which may result in a lower cholesterol uptake from the lumen;b) lowering the cholesterol esterification rate by the ACAT2 (acyl-CoA cholesterol acyltransferase) and, consequently, the amount of cholesterol secreted via the chylomicrons andc) upregulating the expression of ABC-transporters ABCG5 and ABCG8 in intestinal cells, which may result in an increased excretion of cholesterol by the enterocyte back in the lumen. Many clinical trials proved that commercial products enriched with phytosterols reduce cholesterol levels. Likewise, recent studies show that phytosterols present in natural food matrices are also effective and could be an important component of cardioprotective dietary patterns such as the Mediterranean diet. 相似文献
14.
Lily Jakulj Hussein Mohammed Theo H. van Dijk Theo Boer Scott Turner Albert K. Groen Maud N. Vissers Erik S. G. Stroes 《Journal of lipid research》2013,54(4):1144-1150
The validation of the use of plasma plant sterols as a marker of cholesterol absorption is frail. Nevertheless, plant sterol concentrations are routinely used to describe treatment-induced changes in cholesterol absorption. Their use has also been advocated as a clinical tool to tailor cholesterol-lowering therapy. Prior to wider implementation, however, the validity of plant sterols as absorption markers needs solid evaluation. Therefore, we compared plasma plant sterol concentrations to gold-standard stable isotope-determined cholesterol absorption. Plasma campesterol/TC concentrations (camp/TC) were measured in a population of 175 mildly hypercholesterolemic individuals (age: 59.7 ± 5.6 years; BMI: 25.5 ± 2.9kg/m2; LDL-C: 4.01 ± 0.56 mmol/l). We compared cholesterol absorption according to the plasma dual-isotope method in subjects with the highest camp/TC concentrations (N = 41, camp/TC: 2.14 ± 0.68 μg/mg) and the lowest camp/TC concentrations (N = 39, camp/TC: 0.97 ± 0.22 μg/mg). Fractional cholesterol absorption did not differ between the groups (24 ± 12% versus 25 ± 16%, P = 0.60), nor was it associated with plasma camp/TC concentrations in the total population of 80 individuals (β = 0.13; P = 0.30, adjusted for BMI and plasma triglycerides). Our findings do not support a relation between plasma plant sterol concentrations and true cholesterol absorption and, therefore, do not favor the use of these sterols as markers of cholesterol absorption. This bears direct consequences for the interpretation of earlier studies, as well as for future studies targeting intestinal regulation of cholesterol metabolism. 相似文献
15.
Helske S Miettinen T Gylling H Mäyränpää M Lommi J Turto H Werkkala K Kupari M Kovanen PT 《Journal of lipid research》2008,49(7):1511-1518
The pathogenesis of aortic valve stenosis (AS) is characterized by the accumulation of LDL-derived cholesterol in the diseased valves. Since LDL particles also contain plant sterols, we investigated whether plant sterols accumulate in aortic valve lesions. Serum samples were collected from 82 patients with severe AS and from 12 control subjects. Aortic valves were obtained from a subpopulation of 21 AS patients undergoing valve surgery and from 10 controls. Serum and valvular total cholesterol and noncholesterol sterols were measured by gas-liquid chromatography. Noncholesterol sterols, including both cholesterol precursors and sterols reflecting cholesterol absorption, were detected in serum samples and aortic valves. The higher the ratios to cholesterol of the cholesterol precursors and absorption markers in serum, the higher their ratios in the stenotic aortic valves (r=0.74, P<0.001 for lathosterol and r=0.88, P<0.001 for campesterol). The valvular ratio to cholesterol of lathosterol correlated negatively with the aortic valve area (r= -0.47, P=0.045), suggesting attenuation of cholesterol synthesis with increasing severity of AS. The higher the absorption of cholesterol, the higher the plant sterol contents in stenotic aortic valves. These findings suggest that local accumulation of plant sterols and cholesterol precursors may participate in the pathobiology of aortic valve disease. 相似文献
16.
We measured the interactive effects of dietary cholesterol and fat on the regulation of hepatic acyl-CoA:cholesterol acyltransferase (ACAT) activity and its relationship to hepatic microsomal lipid composition in guinea pigs fed 15 g/100 g (w/w) fat diets (corn oil, olive oil, or lard) with 0.01, 0.08, 0.17, or 0.33 g/100 g (w/w) added cholesterol. Guinea pigs exhibited a dose dependent increase in hepatic microsomal ACAT activity, with increasing levels of cholesterol intake (P < 0.001) in all dietary fat groups. Animals fed monounsaturated olive oil had the highest hepatic ACAT activity with the exception of the 0.33 g/100 g cholesterol diet (P < 0.001). There were no differences in ACAT activity with intake of polyunsaturated corn oil or saturated lard. Dietary cholesterol resulted in increased microsomal free cholesterol (FC) concentrations in a dose dependent manner but had no effects on microsomal phosphatidylcholine (PC) concentrations. Guinea pigs fed olive oil generally had the highest microsomal FC/PC molar ratios, and hepatic ACAT activities correlated significantly with this parameter. After modification of the lipid compositions of the microsomes from guinea pigs fed the 12 test diets with FC/PC liposome treatment, microsomal ACAT activities remained significantly related to the microsomal FC/PC molar ratios, and dietary fat type did not affect this correlation. Our findings do not support the hypothesis that the stimulation of hepatic ACAT activity with cholesterol intake is enhanced by polyunsaturated fat intake. The data demonstrate that although dietary fat type and cholesterol amount have differential effects on hepatic ACAT activity, substrate availability, expressed as microsomal FC/PC molar ratio, is a major regulator of hepatic microsomal ACAT activity. 相似文献
17.
J A Aguilera A Linares V Arce E Garcia-Peregrin 《Biochemical and biophysical research communications》1984,122(3):945-948
Results in the present communication demonstrate for the first time that the shunt pathway of mevalonate not leading to sterols is regulated by cholesterol feeding in a reverse fashion to the sterol pathway. Mevalonate incorporation into nonsaponifiable lipids by liver slices was inhibited by cholesterol feeding while the shunt pathway was clearly enhanced. Moreover, inhibition of renal sterologenesis by dietary cholesterol is also reported. These changes in the mevalonate metabolism are closely correlated with the increase observed in the esterified cholesterol content in neonatal chick liver and kidneys after 10 days of 2% cholesterol supplementation of the diet. 相似文献
18.
Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. 总被引:4,自引:0,他引:4
Male rats were fed a cholesterol-free diet or the same diet supplemented with either 0.05, 0.1, 0.25, 0.5, 1, or 2% C for 21 days to investigate the effects of cholesterol on secretion of very low density lipoprotein (VLDL). Cholesterol feeding increased plasma and hepatic concentrations of triglyceride (TG) and cholesteryl esters (CE) in a dose-dependent manner. Plasma VLDL and low density lipoprotein (LDL) lipids were elevated by cholesterol feeding, while the high density lipoprotein (HDL) lipids were reduced. The secretion of the VLDL by perfused livers from these cholesterol-fed rats was examined to establish the relationship between the accumulation of lipids in the liver and the concurrent hyperlipemia. Liver perfusions were carried out for 4 h with a medium containing bovine serum albumin (3% w/v), glucose (0.1% w/v), bovine erythrocytes (30% v/v), and a 10-mCi 3H2O initial pulse. Oleic acid was infused to maintain a concentration of 0.6 mM. Hepatic secretion of VLDL-TG, PL (phospholipid), free cholesterol (FC), and CE increased in proportion to dietary cholesterol and was maximal at 0.5% cholesterol in these experiments in which TG synthesis was stimulated by oleic acid. Secretion of VLDL protein and apoB by the perfused liver was also increased. The molar ratios of surface (sum of PL and cholesterol) to core (sum of TG and CE) lipid components of the secreted VLDL, regardless of cholesterol feeding, were the same, as were the mean diameters of the secreted particles. The molar ratios of surface to core lipid of VLDL isolated from the plasma also were not affected by cholesterol feeding. During perfusion with oleic acid of livers from the rats fed the higher levels of cholesterol, the hepatic concentration of CE decreased, while the level of TG was not changed. We conclude that the hypercholesterolemia and hypertriglyceridemia that occur in vivo from cholesterol feeding, concurrent with accumulation of CE and TG in the liver, must result, in part, from increased hepatic secretion of all VLDL lipids and apoB. The VLDL particles produced by the liver of the cholesterol-fed rat are assembled without modification of the surface lipid ratios (PL/FC), but contain a greater proportion of cholesteryl esters compared to triglyceride in the core, because of the stimulated transport of CE from the expanded pool in the liver.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
19.