首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The stability of a polyphenol oxidase (PPO) preparation from the white-rot fungus Trametes versicolor during a process for the enzymatic decrease of the phenolic content of commercial canola meal (CM) was investigated. The effects of temperature, pH, protein origin and concentration, and meal particles were considered. The results showed that the thermal stability of the enzyme preparation was significantly increased in the presence of CM. The half-life times for the enzyme preparation, pre-incubated with CM at 50, 60, 70 and 75°C, were 45, 10.5, 3.5 and 1.5 hours, respectively; this represents an increase in the thermal stability of the enzyme preparation of up to four times in the presence of CM compared to the stability in the absence of CM. This effect was caused by the protective actions of both the CM particles and CM proteins, with the former responsible for 90% of the observed effect. The thermal stability of the enzyme in the presence of CM, from which 20% of the extractable proteins was extracted, was 5% lower compared to the stability in the presence of untreated CM. Changes in pH level from 5.0 to 3.2 resulted in a loss of stability comparable to that observed when the pre-incubation temperature was increased from 50 to 70°C. A semi-empirical model describing the changes in the concentration of the active enzyme pre-incubated in the presence and absence of CM at various incubation temperatures was proposed. A very good agreement between the model and experimental data was obtained. The proposed model, together with a general set of model parameters, can be used as a tool for the optimization of a process for the upgrade of CM by enzymatically decreasing the meal's phenolic content.  相似文献   

2.
An enzymatic process to decrease the phenolic content in canola meal was investigated. The new method was based on the addition of an enzyme preparation from the white-rot fungus Trametes versicolor to concentrated meal-buffer slurries. This approach eliminated the extraction of the valuable meal components such as proteins and carbohydrates. Two systems were considered: (i) slurries with canola meal concentrations higher than 33% [w/v]; (ii) slurries with canola meal concentrations equal to or less than 12.5% [w/v] with n-hexane as the main component of the continuous phase. The concentration of sinapic acid esters decreased by 99% after a 1.5, 2 and 3 hour long treatment of the meal with an initial moisture content of 75% at 90°C, 70°C and 50°C, respectively. The process was carried out at temperaturs as high as 110°C. Both the enzyme and the moisture concentrations influenced the enzymatic process and their action was coupled. The concentration of oxygen strongly affected the process. The enzymatic process was able to be carried out in the presence of hexane as the main component of the continuous phase. The optimum temperature for such a process was 30–40°C, At 30°C, after 1 h of treatment, the meal phenolic content was decreased by 97%. The water uptake by the meal was diminished in the presence of hexane.  相似文献   

3.
Solid state fermentation of canola meal was carried out with the fungus Pleurotus ostreatus DAOM 197961, which is a producer of laccase. The aim of this study was to examine the effects of moisture content, inoculum size, homogenisation of inoculum and particle size of canola meal on the growth of the fungus, the production of a laccase and the decrease of the content of sinapic acid esters (SAE) in a solid state process. The results showed that the optimum moisture content, which was varied in the media between 50% and 75%, for the growth and enzyme production was 60%. The initial rate of SAE content decrease was faster in the media with 70% and 75% moisture than in those with lower moisture levels. In the study of the effects of inoculum concentration in the range of 1.1 mg to 5.5 mg/g of the medium, it was found that larger amounts of biomass and enzyme were produced in the media with inoculum concentrations from 1.1 mg to 3.3 mg/g of the medium than in the media with a higher inoculum concentration. The final and approximately the same concentrations of SAE were reached at the same time regardless of the inoculum concentration. Considering that the fungus formed pellets under the conditions at which it was grown during the inoculum preparation, it was necessary to break them by homogenisation prior to their utilisation as an inoculum. The homogenisation was carried out during a period between 15s and 200s. Although higher biomass concentrations and enzyme activities were obtained in the media which were inoculated with the inoculum homogenised for 15s and 30s, the maximum enzyme activities and biomass concentrations were reached in the media inoculated with the inoculum, which was homogenised for 120s and 200s. The time of inoculum homogenisation did not influence the kinetics of the SAE decrease. When the effects of the particle size of canola meal on the process were studied, it was found that larger particles of the meal in the solid media were more favourable for the production of the biomass and enzyme, and for a faster decrease of the SAE content than those of smaller sizes. From the obtained results it can be concluded that the tested variables have a significant influence on the growth of the fungus Pleurotus ostreatus DAOM 197961, the production of laccase and the decrease of the SAE content in canola meal. The data could be useful for the development of a solid state process for the production of laccase and for the decrease of the phenolics content in canola meal.  相似文献   

4.
Monoamine oxidase was purified from pig liver mitochondria to homogeneity. The enzyme sample contained a large amount of phospholipids. Depletion of lipids from the enzyme sample resulted in a decrease in its activity, while activity was restored by the binding of the lipid-depleted enzyme to phosphatidylcholine, phosphatidylethanolamine, or mitochondrial lipids. Upon binding the lipid-depleted enzyme to the mixture of phosphatidylcholine and phosphatidylethanolamine (molar ratio, 1 : 1), the enzymatic activity toward serotonin was elevated over that of the purified enzyme, but not toward benzylamine, suggesting a change in substrate specificity. Upon lipid depletion, inhibition by deprenyl became weaker, while that by clorgyline became stronger. This alteration was reversed by the binding to lipids. By the binding of the lipid-depleted enzyme to some lipids such as the mixture of phosphatidylcholine and phosphatidylethanolamine (molar ratio, 1 : 1), inhibition by clorgyline became even weaker than for the original enzyme sample.  相似文献   

5.
The enzymatic machinery for neurotransmitter synthesis and breakdown have been compared in sister cultures of newborn rat sympathetic neurons grown for 12-28 days either in the presence (CM+ cultures) or in the absence (CM- cultures) of a culture medium conditioned by rat skeletal muscle cells. Neuron numbers, total protein, and lactate dehydrogenase activities were identical in CM+ and CM- cultures. Choline acetyltransferase activity was 27- to 100-fold higher in homogenates of CM+ than CM- cultures, whereas acetylcholinesterase activity was 2.5-fold lower. The activities of tyrosine hydroxylase (TOH), DOPA decarboxylase, and dopamine beta-hydroxylase were all about twofold lower in homogenates from CM+ cultures. All these effects were also observed in homogenates of sympathetic neuron cultures grown with and without a macromolecular factor partially purified from CM (Weber, J. (1981). Biol. Chem. 256, 3447-3453.). Experiments of mixing homogenates from CM+ and CM- cultures suggested that the differences in each of the enzyme activities did not result from differences in the concentrations of hypothetical reversible enzyme activators and/or inhibitors. In addition, the deficit in TOH activity in CM+ cultures resulted from a decrease in the enzymatic Vmax with no significant variation in the apparent Km's for the substrate and the cofactor. An identical decrease in the Vmax was observed if TOH was assayed under phosphorylating or nonphosphorylating conditions, suggesting that this decrease did not result from differences in the state of enzyme phosphorylation. Immunoprecipitation curves of TOH activity by an anti-TOH antiserum were parallel when performed on homogenates from CM+ and CM- cultures, suggesting a difference in the number of enzyme molecules without detectable alteration of their kinetic properties.  相似文献   

6.
Summary An enzyme preparation from Trametes versicolor was used to decrease the tannin content in commercially available canola meal. More than 80% reduction was observed after 30 min of processing using an enzyme concentration equivalent to 20 nkat. The process was optimal at pH 6.0 and at a temperature of 50°C. The buffering capacity of canola meal was shown.  相似文献   

7.
The fragrant rootstocks of Hemidesmus indicus are known to accumulate 2-hydroxy-4-methoxybenzaldehyde (MBALD), yet, the enzymatic route to this hydroxybenzoate is not known. Therefore, root organs of H. indicus hold promises to unravel the biosynthesis related to this phenolic fragrance. Chitosan treatment at 200mg/L concentration to the excised roots effectively increased phenolic accumulation in both the cortex and cork tissues reaching a peak after 24h treatment and decreasing thereafter. The activity of phenylalanine ammonia-lyase (PAL) enzyme in excised roots also increased upon chitosan elicitation, and the maximum specific activity was recorded after 12h of elicitation. Suppression of PAL in vivo by using a specific irreversible inhibitor aminooxyacetic acid (AOAA) resulted in the decrease in MBALD content, indicating its formation via phenylpropanoid pathway.  相似文献   

8.
A process to decrease the phenolic content of canola meal using a polyphenol oxidase preparation from Trametes versicolor was carried out in the presence and absence of cell wall solubilizing enzymes. Eighty five percent of the polysaccharide fraction of the cell wall of canola meal was solubilized in the process. A complete decrease in phenolic content was observed in the presence of xylanase or cellulase preparations after 16 and 36 hours of treatment, respectively. The initial rates of the process decreased by 10% and 5% in the presence of xylanase and cellulase preparations, respectively.  相似文献   

9.
Operating the saccharification and fermentation processes at high‐substrate loadings is a key factor for making ethanol production from lignocellulosic biomass economically viable. However, increasing the substrate loading presents some disadvantages, including a higher concentration of inhibitors (furan derivatives, weak acids, and phenolic compounds) in the media, which negatively affect the fermentation performance. One strategy to eliminate soluble inhibitors is filtering and washing the pretreated material. In this study, it was observed that even if the material was previously washed, inhibitory compounds were released during the enzymatic hydrolysis step. Laccase enzymatic treatment was evaluated as a method to reduce these inhibitory effects. The laccase efficiency was analyzed in a presaccharification and simultaneous saccharification and fermentation process at high‐substrate loadings. Water‐insoluble solids fraction from steam‐exploded wheat straw was used as substrate and Saccharomyces cerevisiae as fermenting microorganism. Laccase supplementation reduced strongly the phenolic content in the media, without affecting weak acids and furan derivatives. This strategy resulted in an improved yeast performance during simultaneous saccharification and fermentation process, increasing significantly ethanol productivity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

10.
Polyphenols content (as catechin equivalents) and tocopherol content were determined in borage defatted meal and borage oil, respectively. In addition, antioxidant activity of extracts obtained from borage defatted meal was evaluated. A cold pressing process was used for the extraction of Borago officinalis oil, resulting in a defatted meal (by-product). Polyphenols from this defatted borage meal were extracted using several solvents. An extract containing highly soluble solids and phenolic compounds with antioxidant activity (as free radical-scavenging, DPPH) was obtained when methanol was used. The tocopherol content was higher in oil extracted by cold pressing than in oil extracted with petroleum ether as organic solvent. An enzymatic treatment was applied (45 °C, 20% moisture, 0.25% E/S ratio, 1:1 Olivex:Celluclast enzymatic mixture) previously to borage oil extraction, which improved the antioxidant content in the borage defatted meal by three-folds, as compared to the values obtained by a nonenzyme-aided process.  相似文献   

11.
Gelatinase activity was detectable in the culture filtrates of 13 of 14 species of marine fungi tested. The fungi were grown under conditions of submerged culture in a medium consisting of corn meal, soybean meal, and CaCO(3). The degree of enzymatic activity did not necessarily correlate with the amino nitrogen content of the filtrates. Eight of the filtrates contained measurable quantities of glutamic acid and alanine. Highest levels of gelatinase were obtained in the culture filtrates of Halosphaeria mediosetigera. Increasing the corn meal concentration of the medium resulted in even greater production of gelatinase by H. mediosetigera, whereas amino acid yields were enhanced by higher concentrations of soybean meal. Supplementation of the high corn meal medium with either a mineral mixture or distillers' solubles brought about a faster rate of production of gelatinase and, in the case of the distillers' solubles, a significantly higher level of enzyme, as well.  相似文献   

12.
It has recently been reported that Pleurotus pulmonarius secretes a versatile peroxidase that oxidizes Mn2+, as well as different phenolic and nonphenolic aromatic compounds; this enzyme has also been detected in other Pleurotus species and in Bjerkandera species. During culture production of the enzyme, the activity of the main peak was as high as 1,000 U/liter (measured on the basis of the Mn3+-tartrate formation) but this peak was very ephemeral due to enzyme instability (up to 80% of the activity was lost within 15 h). In culture filtrates inactivation was even faster; all peroxidase activity was lost within a few hours. Using different inhibitor compounds, we found that proteases were not responsible for the decrease in peroxidase activity. Peroxidase instability coincided with an increase in the H2O2 concentration, which reached 200 μM when filtrates were incubated for several hours. It also coincided with the onset of biosynthesis of anisylic compounds and a decrease in the pH of the culture. Anisyl alcohol is the natural substrate of the enzyme aryl-alcohol oxidase, the main source of extracellular H2O2 in Pleurotus cultures, and addition of anisyl alcohol to filtrates containing stable peroxidase activity resulted in rapid inactivation. A decrease in the culture pH could also dramatically affect the stability of the P. pulmonarius peroxidase, as shown by using pH values ranging from 6 to 3.25, which resulted in an increase in the level of inactivation by 10 μM H2O2 from 5 to 80% after 1 h. Moreover, stabilization of the enzyme was observed after addition of catalase, Mn2+, or some phenols or after dialysis of the culture filtrate. We concluded that extracellular H2O2 produced by the fungus during oxidation of aromatic metabolites is responsible for inactivation of the peroxidase and that the enzyme can protect itself in the presence of different reducing substrates.  相似文献   

13.
The binding of oxygen by the haemocyanin of the gastropod Lymnaea stagnalis was studied by equilibrium and kinetic methods. The studies were performed under conditions in which the haemocyanin molecule was in the native state. Over the pH range 6.8-7.6, in the presence of 10mM-CaCl2 the haemocyanin bound O2 cooperatively. Over this pH range the haemocyanin molecule displayed a normal Bohr effect whereby the O2 affinity of the molecule decreased with a fall in the pH of the solution. The maximum slope of the Hill plot (hmax.) was 3.5, obtained at pH 7.5. An increase in the CaCl2 concentration from 5 to 20 mM at pH 6.8 resulted in a slight increase in the oxygen affinity, with hmax. remaining virtually unchanged. At constant pH and CaCl2 concentration, an increase in NaCl concentration from 0 to 50 mM resulted in a small decrease in O2 affinity, but a significant increase in the value of hmax. from 3.5 to 8.6. Temperature-jump relaxation experiments over a range of O2 concentrations produced single relaxation times. The dependence of the relaxation time on the reactant concentrations indicated a simple bimolecular binding process. The calculated association and dissociation rate constants for this process at pH 7.5 are 29.5 X 10(6) M-1 X S-1 and 49 S-1 respectively. The association rate constant kon was found to be essentially independent of pH and CaCl2 concentration. The dissociation rate constant, koff, however, increased with a decrease in the pH, but was also independent of CaCl2 concentration. These results indicate that the stability of the haemocyanin-O2 complex is determined by the dissociation rate constant.  相似文献   

14.
The metabolic activity of liver of rats fed a diet containing 0.03% 2-N-fluorenylacetamide (FAA) was investigated using the probe of L-[ethyl-14C]ethionine (613 mumol L-E/100 g body wt.). Shortly after the onset of the carcinogenic regimen, the capacity of liver to accumulate S-adenosylethionine (SAE) began to decline, reaching its minimum (30% of the concentration in control rats) within 3 weeks. This decreased capacity to accumulate SAE results from the FAA-induced decrease in activity of ATP-L-methionine adenosyltransferase. The concentration of hepatic ATP assayed without L-ethionine (L-E) probe also declined during the first 2 weeks of the carcinogenic regimen, but then increased, attaining the normal values within 2 more weeks. Administering the L-E probe to the FAA-fed rats produced an even greater drop in hepatic ATP concentration during the first 2 weeks; however from the third week on, the L-E dose produced no depressing effect, despite the SAE accumulation remaining at its same depressed levels and, therefore, trapping the same amount of ATP as in the previous weeks. The results show that the modification of L-E metabolism and of ATP turnover, observed previously in DL-E fed rats, need not be specific for the carcinogen fed and can occur even when the carcinogens are metabolized by different enzymatic systems.  相似文献   

15.
酶法破碎裂殖壶菌提取胞内油脂   总被引:1,自引:0,他引:1  
采用酶法破碎裂殖壶菌提取胞内油脂,进行单因素实验和正交实验优化酶解反应条件,酶解反应的影响因素主次顺序依次为酶用量、温度、时间、pH,最佳酶解工艺参数:55 ℃、pH 9.5、搅拌反应2.5 h、酶用量为菌体生物量的2%.在该条件下,胞内油脂的提取量高达(81.53±0.33) g/L,过氧化值仅为0.15,酸价为0.24.  相似文献   

16.
The use of olive oil mill wastewaters (OMW) as an organic fertilizer is limited by their phytotoxic effect, due to the high concentration of phenolic compounds. As an alternative to physico-chemical methods for OMW detoxification, the laccase from Pycnoporus coccineus, a white-rot fungus with the ability to decrease the chemical oxygen demand (COD) and color of the industrial effluent, is being studied. In this work, the P. coccineus laccase was immobilized on two acrylic epoxy-activated resins, Eupergit C and Eupergit C 250L. The highest activity was obtained with the macroporous Eupergit C 250L, reaching 110 U g?1 biocatalyst. A substantial stabilization effect against pH and temperature was obtained upon immobilization. The soluble enzyme maintained ≥80% of its initial activity after 24 h at pH 7.0–10.0, whereas the immobilized laccase kept the activity in the pH range 3.0–10.0. The free enzyme was quickly inactivated at temperatures >50°C, whereas the immobilized enzyme was very stable up to 70°C. Gel filtration profiles of the OMW treated with the immobilized enzyme (for 8 h at room temperature) showed both degradation and polymerization of the phenolic compounds.  相似文献   

17.
Horseradish peroxidase was reacted with glutaraldehyde under various reaction conditions. The reaction product was, in a second step, bound covalently to aminohexyl groups attached to Sepharose particles. The influence of pH, time and the concentration ratio of enzyme:glutaraldehyde on the reaction was evaluated. A first step reaction with 100-fold molar excess of glutaraldehyde to horseradish peroxidase at pH 9.5 for 2 hr at room temperature results in a high yield of conjugated enzyme with well preserved enzymatic activity.  相似文献   

18.
We optimized culture medium and batch-fed fermentation conditions to enhance production of an acetyl esterase from Pseudomonas sp. ECU1011 (PSAE). This enzyme enantioselectively deacetylates α-acetoxyphenylacetic acid. The medium was redesigned by single-factor and statistical optimization. The addition of ZnSO4 enhanced enzyme production by 37%. Yeast extract concentration was directly associated with the enzyme production. The fermentation was scaled up in a 5-l fermenter with the optimized medium, and the correlations between enzyme production and dissolved oxygen, pH, and feeding strategy were investigated. The fermentation process was highly oxygen-demanding, pH sensitive and mandelic acid-inducible. The fermentation pH was controlled at 7.5 by a pH and dissolved oxygen feedback strategy. Feeding mandelic acid as both a pH regulator and an enzyme inducer increased the enzyme production by 23%. The results of the medium redesign experiments were confirmed and explained in fed-batch culture experiments. Mathematical models describing the fermentation processes indicated that the enzyme production was strongly associated with cell growth. The optimized pH and dissolved oxygen stat fed-batch process resulted high volumetric production of PSAE (4166 U/l, 7.2-fold higher than the initial) without enantioselectivity decline. This process has potential applications for industrial production of chiral mandelic acid or its derivatives.  相似文献   

19.
A thermostable D-hydantoinase from Bacillus stearothermophilus SD-1 was previously mass-produced by batch cultivation of the recombinant E. coli harboring the gene encoding the enzyme (Lee et al., 1997). In this work, we attempted to optimize the process for the production of N-carbamoyl-D-p-hydroxyphenylglycine, which is readily hydrolyzed to D-p-hydroxyphenylglycine under acidic conditions, from 5-(4-hydroxyphenyl)hydantoin using the mass-produced D-hydantoinase. In an effort to overcome the low solubility of the substrate, enzyme reaction was carried out in a heterogeneous system consisting of a high substrate concentration up to 300 g/L. In this reaction system, most of substrate is present in suspended particles. Optimal temperature and pH were determined to be 45 degrees C and 8.5, respectively, by taking into account the reaction rate and conversion yield. When the free enzyme was employed as a biocatalyst, enzyme loading higher than 300 unit/g-substrate was required to achieve maximum conversion. Use of whole cell enzyme resulted in maximum conversion even at lower enzyme loadings than the free enzyme, showing 96% conversion yield at 300 g/L substrate. The heterogeneous reaction system used in this work might be applied to the enzymatic production of other valuable compounds from a rarely water-soluble substrate.  相似文献   

20.
A new enzymatic method for the removal of phenols from industrial aqueous effluents has been developed. The method uses the enzyme polyphenol oxidase which oxidizes phenols to the corresponding o-quinones; the latter then undergo a nonenzymatic polymerization to form water-insoluble aggregates. Therefore, the enzyme in effect precipitates phenols from water. Polyphenol oxidase has been found to nearly completely dephenolize solutions of phenol in the concentration range from 0.01 to 1.0 g/L. The enzymatic treatment is effective over a wide range of pH and temperature; a crude preparation of polyphenol oxidase (mushroom extract) is as effective as a purified, commercially obtained version. In addition to phenol itself, polyphenol oxidase is capable of precipitating from water a number of substituted phenols (cresols, chlorophenols, naphthol, etc.). Also, even pollutants which are unreactive towards polyphenol oxidase can be enzymatically coprecipitated with phenol. The polyphenol oxidase treatment has been successfully used to dephenolize two different real industrial waste-water samples, from a plant producing triarylphosphates and from a coke plant. The advantage of the polyphenol oxidase dephenolization over the peroxidase-catalyzed one previously elaborated by the authors is that the former enzyme uses molecular oxygen instead of costly hydrogen peroxide (used by peroxidase) as an oxidant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号