首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixtures of organic osmolytes occur in cells of many organisms, raising the question of whether their actions on protein stability are independent or synergistic. To investigate this question it is desirable to develop a system that permits evaluation of the effect of one osmolyte on the efficacy of another to either force-fold or denature a protein. A means of evaluating the efficacy of an osmolyte is provided by its m-value, an experimental quantity that measures the ability of the osmolyte to force a protein to unfold or fold. An experimental system is presented that enables evaluations of the m-values of osmolytes in the presence and absence of a second osmolyte. The experimental system involves use of a marginally stable protein in 10 mM buffer (pH 7, 200 mM salt, and 34 degrees C) that is at the midpoint of its native to denatured transition. These conditions enable determination of m-values for protecting and denaturing osmolytes in the presence and absence of a second osmolyte, permitting assessment of the extent to which the two osmolytes affect each other's efficacy. The two osmolytes investigated in this work are the denaturing osmolyte, urea, and the protecting osmolyte, sarcosine. Results show unequivocally that neither osmolyte alters the efficacy of the other in forcing the protein to fold or unfold-the osmolytes act independently on the protein despite their combined concentrations being in the multi-molar range. These osmolytes avoid altering one another's efficacy at these high concentrations because the number of osmolyte interaction sites on the protein is large and the binding constants are quite small. Consequently, the site occupancies are low enough in number that the two osmolytes neither compete nor cooperate in interacting with the protein.  相似文献   

2.
Molecular water pumps (MWPs) are characterized as biochemical systems existing at a compartmental boundary of living cells that can actively pump water against its gradient. A role for the observed intercompartmental transport of N-acetyl-L-aspartate (NAA), between neurons and oligodendrocytes in the CNS, as an efflux MWP for the removal of neuronal metabolic water has been proposed. In this review, accumulating evidence in support of such a role for NAA is presented, and the dynamics of the NAA cycle in myelinated neurons are considered. Based on the results of recent investigations, it is calculated that 1 mol of NAA is synthesized for every 40 mol of glucose (Glc) equivalent oxidized in the brain, and each mol of NAA may transport 121 mol of metabolic water out of neurons. In addition, turnover of total brain NAA is very rapid and appears to be only 16.7 h. Thus, the most important characteristic of NAA in the brain may not be its static level, but a dynamic aspect related to its rapid turnover. The relationship of NAA as a potential MWP to Canavan disease (CD), a genetic spongiform leukodystrophy in which the catabolic portion of the NAA cycle is deficient, and in a newly recognized brain disorder, hypoacetylaspartia, where the anabolic portion of the NAA cycle appears to be deficient, are discussed.  相似文献   

3.
Auton M  Bolen DW  Rösgen J 《Proteins》2008,73(4):802-813
Protein stability and solubility depend strongly on the presence of osmolytes, because of the protein preference to be solvated by either water or osmolyte. It has traditionally been assumed that only this relative preference can be measured, and that the individual solvation contributions of water and osmolyte are inaccessible. However, it is possible to determine hydration and osmolyte solvation (osmolation) separately using Kirkwood-Buff theory, and this fact has recently been utilized by several researchers. Here, we provide a thermodynamic assessment of how each surface group on proteins contributes to the overall hydration and osmolation. Our analysis is based on transfer free energy measurements with model-compounds that were previously demonstrated to allow for a very successful prediction of osmolyte-dependent protein stability. When combined with Kirkwood-Buff theory, the Transfer Model provides a space-resolved solvation pattern of the peptide unit, amino acids, and the folding/unfolding equilibrium of proteins in the presence of osmolytes. We find that the major solvation effects on protein side-chains originate from the osmolytes, and that the hydration mostly depends on the size of the side-chain. The peptide backbone unit displays a much more variable hydration in the different osmolyte solutions. Interestingly, the presence of sucrose leads to simultaneous accumulation of both the sugar and water in the vicinity of peptide groups, resulting from a saccharide accumulation that is less than the accumulation of water, a net preferential exclusion. Only the denaturing osmolyte, urea, obeys the classical solvent exchange mechanism in which the preferential interaction with the peptide unit excludes water.  相似文献   

4.
This study examined the post-thaw recovery of Jurkat cells cryopreserved in three combinations of five osmolytes including trehalose, sucrose, glycerol, mannitol, and creatine. Cellular response was characterized using low-temperature Raman spectroscopy, and variation of post-thaw recovery was analyzed using statistical modeling. Combinations of osmolytes displayed distinct trends of post-thaw recovery, and a nonlinear relationship between compositions and post-thaw recovery was observed, suggesting interactions not only between different solutes but also between solutes and cells. The post-thaw recovery for optimized cryoprotectants in different combinations of osmolytes at a cooling rate of 1°C/min was comparable to that measured with 10% dimethyl sulfoxide. Statistical modeling was used to understand the importance of individual osmolytes as well as interactions between osmolytes on post-thaw recovery. Both higher concentrations of glycerol and certain interactions between sugars and glycerol were found to typically increase the post-thaw recovery. Raman images showed the influence of osmolytes and combinations of osmolytes on ice crystal shape, which reflected the interactions between osmolytes and water. Differences in the composition also influenced the presence or absence of intracellular ice formation, which could also be detected by Raman. These studies help us understand the modes of action for cryoprotective agents in these osmolyte solutions.  相似文献   

5.
Osmolytes are small, chemically diverse, organic solutes that function as an essential component of cellular stress response. Protecting osmolytes enhance protein stability via preferential exclusion, and nonprotecting osmolytes, such as urea, destabilize protein structures. Although much is known about osmolyte effects on proteins, less is understood about osmolyte effects on nucleic acids and their counterion atmospheres. Nonprotecting osmolytes destabilize nucleic acid structures, but effects of protecting osmolytes depend on numerous factors including the type of nucleic acid and the complexity of the functional fold. To begin quantifying protecting osmolyte effects on nucleic acid interactions, we used small-angle X-ray scattering (SAXS) techniques to monitor DNA duplexes in the presence of sucrose. This protecting osmolyte is a commonly used contrast matching agent in SAXS studies of protein-nucleic acid complexes; thus, it is important to characterize interaction changes induced by sucrose. Measurements of interactions between duplexes showed no dependence on the presence of up to 30% sucrose, except under high Mg(2+) conditions where stacking interactions were disfavored. The number of excess ions associated with DNA duplexes, reported by anomalous small-angle X-ray scattering (ASAXS) experiments, was sucrose independent. Although protecting osmolytes can destabilize secondary structures, our results suggest that ion atmospheres of individual duplexes remain unperturbed by sucrose.  相似文献   

6.
Intracellular organic osmolytes are present in certain organisms adapted to harsh environments and these osmolytes protect intracellular macromolecules against the denaturing environmental stress. In natural selection of organic osmolytes as protein stabilizers, it appears that the osmolyte property selected for is the unfavorable interaction between the osmolyte and the peptide backbone, a solvophobic thermodynamic force that we call the osmophobic effect. Because the peptide backbone is highly exposed to osmolyte in the denatured state, the osmophobic effect preferentially raises the free energy of the denatured state, shifting the equilibrium in favor of the native state. By focusing the solvophobic force on the denatured state, the native state is left free to function relatively unfettered by the presence of osmolyte. The osmophobic effect is a newly uncovered thermodynamic force in nature that complements the well-recognized hydrophobic interactions, hydrogen bonding, electrostatic and dispersion forces that drive protein folding. In organisms whose survival depends on the intracellular presence of osmolytes that can counteract denaturing stresses, the osmophobic effect is as fundamental to protein folding as these well-recognized forces.  相似文献   

7.
Most theories predict that macromolecular crowding stabilizes globular proteins, but recent studies show that weak attractive interactions can result in crowding-induced destabilization. Osmolytes are ubiquitous in biology and help protect cells against stress. Given that dehydration stress adds to the crowded nature of the cytoplasm, we speculated that cells might use osmolytes to overcome the destabilization caused by the increased weak interactions that accompany desiccation. We used NMR-detected amide proton exchange experiments to measure the stability of the test protein chymotrypsin inhibitor 2 under physiologically relevant crowded conditions in the presence and absence of the osmolyte glycine betaine. The osmolyte overcame the destabilizing effect of the cytosol. This result provides a physiologically relevant explanation for the accumulation of osmolytes by dehydration-stressed cells.  相似文献   

8.
Osmolytes are small molecules that play a central role in cellular homeostasis and the stress response by maintaining protein thermodynamic stability at controlled levels. The underlying physical chemistry that describes how different osmolytes impact folding free energy is well understood, however little is known about their influence on other crucial aspects of protein behavior, such as native‐state conformational changes. Here we investigate this issue with the Hsp90 molecular chaperone, a large dimeric protein that populates a complex conformational equilibrium. Using small angle X‐ray scattering we observe dramatic osmolyte‐dependent structural changes within the native ensemble. The degree to which different osmolytes affect the Hsp90 conformation strongly correlates with thermodynamic metrics of their influence on stability. This observation suggests that the well‐established osmolyte principles that govern stability also apply to large‐scale conformational changes, a proposition that is corroborated by structure‐based fitting of the scattering data, surface area comparisons and m‐value analysis. This approach shows how osmolytes affect a highly cooperative open/closed structural transition between two conformations that differ by a domain‐domain interaction. Hsp90 adopts an additional ligand‐specific conformation in the presence of ATP and we find that osmolytes do not significantly affect this conformational change. Together, these results extend the scope of osmolytes by suggesting that they can maintain protein conformational heterogeneity at controlled levels using similar underlying principles that allow them to maintain protein stability; however the relative impact of osmolytes on different structural states can vary significantly.  相似文献   

9.
The phenomenon of cell volume recovery following a hypo-osmotic stress mediated by intracellular osmolyte regulation is well known. In many, perhaps all, cell types, the osmolytes involved are usually inorganic ions and amino acids. The details of the regulatory mechanisms for the organic-type osmolytes are not well known. We have found that an immediate influx of external Ca2+ occurs coincident with the application of a hypo-osmotic stress into red cells of two invertebrate species. In both, the influx is initiated by the osmotic stress, not the concomitant ionic decrease. Volume recovery in clam red blood cells is blocked by phenothiazines. In addition, the effect of the phenothiazines is to reduce the amino acid efflux; the ionic portion of the volume response is unaffected. In contrast, the phenothiazines potentiate the volume recovery in worm red coelomocytes. A23187 also potentiates the volume recovery of the worm red cells. The results suggest that the Ca2+ influx is involved in the mechanism that alters cell membrane permeability permitting the amino acid efflux by a mechanism that may involve calmodulin.  相似文献   

10.
Protein solvation is the key determinant for isothermal, concentration-dependent effects on protein equilibria, such as folding. The required solvation information can be extracted from experimental thermodynamic data using Kirkwood-Buff theory. Here we derive and discuss general properties of proteins and osmolytes that are pertinent to their biochemical behavior. We find that hydration depends very little on osmolyte concentration and type. Strong dependencies on both osmolyte concentration and type are found for osmolyte self-solvation and protein-osmolyte solvation changes upon unfolding. However, solvation in osmolyte solutions does not involve complex concentration dependencies as found in organic molecules that are not used as osmolytes in nature. It is argued that the simple solvation behavior of naturally occurring osmolytes is a prerequisite for their usefulness in osmotic regulation in vivo.  相似文献   

11.
N-Acetyl-L-aspartate (NAA) and its derivative N-acetylaspartylglutamate (NAAG) are major osmolytes present in the vertebrate brain. Although they are synthesized primarily in neurons, their function in these cells is unclear. In the brain, these substances undergo intercompartmental cycles in which they are released by neurons in a regulated fashion and are then rapidly hydrolyzed by catabolic enzymes associated with glial cells. Recently, the catabolic enzyme for NAA hydrolysis has been found to be expressed only in oligodendrocytes, and the catabolic enzyme for NAAG expressed only in astrocytes. These results indicate an unusual tricellular metabolic sequence for the synthesis and hydrolysis of NAAG wherein it is synthesized in neurons from NAA and L-glutamate, hydrolyzed to NAA and L-glutamate by astrocytes, and further hydrolyzed to L-aspartate and acetate by oligodendrocytes. Since the discovery that the NAA and NAAG anabolic products of neurons are specifically targeted to oligodendrocytes and astrocytes, respectively, this unique metabolic compartmentalization also suggests that these substances may play an important role in cell-specific glial signaling. In this review, it is hypothesized that a key function of NAA and NAAG in the vertebrate brain is in cell signaling and that these substances are important in the regulation of interactions of brain cells and in the establishment and maintenance of the nervous system.  相似文献   

12.
The CNS is particularly vulnerable to reductions in plasma osmolarity, such as occur during hyponatremia, the most commonly encountered electrolyte disorder in clinical practice. In response to a lowered plasma osmolarity, neural cells initially swell but then are able to restore their original volume through the release of osmolytes, both inorganic and organic, and the exit of osmotically obligated water. Given the importance of the maintenance of cell volume within the CNS, mechanisms underlying the release of osmolytes assume major significance. In this context, we review recent evidence obtained from our laboratory and others that indicates that the activation of specific G-protein-coupled receptors can markedly enhance the volume-dependent release of osmolytes from neural cells. Of particular significance is the observation that receptor activation significantly lowers the osmotic threshold at which osmolyte release occurs, thereby facilitating the ability of the cells to respond to small, more physiologically relevant, reductions in osmolarity. The mechanisms underlying G-protein-coupled receptor-mediated osmolyte release and the possibility that this efflux can result in both physiologically beneficial and potentially harmful pathophysiological consequences are discussed.  相似文献   

13.
The fate of exogenously supplied glycine betaine and the dynamics of endogenous osmolytes were investigated throughout the growth cycle of salt-stressed cultures of strains of Sinorhizobium meliloti which differ in their ability to use glycine betaine as a growth substrate, but not as an osmoprotectant. We present (sup13)C nuclear magnetic resonance spectral and radiotracer evidence which demonstrates that glycine betaine is only transiently accumulated as a cytoplasmic osmolyte in young cultures of wild-type strains 102F34 and RCR2011. Specifically, these strains accumulate glycine betaine as a preferred osmolyte which virtually prevents the accumulation of endogenous osmolytes during the lag and early exponential phases of growth. Then, betaine levels in stressed cells decrease abruptly during the second half of the exponential phase. At this stage, the levels of glutamate and the dipeptide N-acetylglutaminylglutamine amide increase sharply so that the two endogenous solutes supplant glycine betaine in the ageing culture, in which it becomes a minor osmolyte because it is progressively catabolized. Ultimately, glycine betaine disappears when stressed cells reach the stationary phase. At this stage, wild-type strains of S. meliloti also accumulate the disaccharide trehalose as a third major endogenous osmolyte. By contrast, glycine betaine is always the dominant osmolyte and strongly suppresses the buildup of endogenous osmolytes at all stages of the growth cycle of a mutant strain, S. meliloti GMI766, which does not catabolize this exogenous osmoprotectant under any growth conditions.  相似文献   

14.
A Wang  D W Bolen 《Biophysical journal》1996,71(4):2117-2122
The k(cat) and K(m) kinetic parameters of the labile enzyme rabbit muscle lactic dehydrogenase were determined as a function of the concentration of proline, a solute (osmolyte) accumulated in the cells of many organisms to protect them against environmental stresses. Proline is believed to protect against the stress(es) without altering the functional activity of cellular macromolecules, a property defining it as a "compatible osmolyte." In the range of 0-2 M proline, K(cat) and K(m) values for both substrates are essentially unchanged, but between 2 M and 4 M proline, k(cat) decreases by a factor of 3 to 4, whereas K(m) values are only modestly changed, if at all. These results are consistent with the proposal that compatible osmolytes do not affect functional activity, that the property of compatibility expressed by such osmolytes is generic without regard to the evolutionary history of the protein, and that the organic osmolyte concentration range over which compatibility is exhibited is extensive. In short, the results are in full accord with the principal hypothesis of "compatible osmolytes" in detail and scope.  相似文献   

15.
Chromosomal dihydrofolate reductase from Escherichia coli catalyzes the reduction of dihydrofolate to tetrahydrofolate using NADPH as a cofactor. The thermodynamics of ligand binding were examined using an isothermal titration calorimetry approach. Using buffers with different heats of ionization, zero to a small, fractional proton release was observed for dihydrofolate binding, while a proton was released upon NADP(+) binding. The role of water in binding was additionally monitored using a number of different osmolytes. Binding of NADP(+) is accompanied by the net release of ~5-24 water molecules, with a dependence on the identity of the osmolyte. In contrast, binding of dihydrofolate is weakened in the presence of osmolytes, consistent with "water uptake". Different effects are observed depending on the identity of the osmolyte. The net uptake of water upon dihydrofolate binding was previously observed in the nonhomologous R67-encoded dihydrofolate reductase (dfrB or type II enzyme) [Chopra, S., et al. (2008) J. Biol. Chem. 283, 4690-4698]. As R67 dihydrofolate reductase possesses a nonhomologous sequence and forms a tetrameric structure with a single active site pore, the observation of weaker DHF binding in the presence of osmolytes in both enzymes implicates cosolvent effects on free dihydrofolate. Consistent with this analysis, stopped flow experiments find betaine mostly affects DHF binding via changes in k(on), while betaine mostly affects NADPH binding via changes in k(off). Finally, nonadditive enthalpy terms when binary and ternary cofactor binding events are compared suggest the presence of long-lived conformational transitions that are not included in a simple thermodynamic cycle.  相似文献   

16.
The halophilic methanogen Methanohalophilus portucalensis synthesizes three distinct zwitterions, (beta)-glutamine, N(sup(epsilon))-acetyl-(beta)-lysine (NA(beta)Lys), and glycine betaine, as osmolytes when it is grown at high concentrations of external NaCl. The selective distribution of these three species was determined by growing cells in the presence of osmolyte biosynthetic precursors. Glycine betaine is formed by the stepwise methylation of glycine. Exogenous glycine (10 mM) and sarcosine (10 mM), although internalized, do not bias the cells to accumulate any more betaine. However, exogenous N,N-dimethylglycine (10 mM) is available to the appropriate methyltransferase and the betaine generated from it suppresses the synthesis of other osmolytes. Precursors of the two zwitterionic (beta)-amino acids ((beta)-glutamate for (beta)-glutamine and (alpha)-lysine and diaminopimelate for NA(beta)Lys) have only small effects on (beta)-amino acid accumulation. The largest effect is provided by L-(alpha)-glutamine, suggesting that nitrogen assimilation is a key factor in osmolyte distribution.  相似文献   

17.
We have previously shown that compatible organic osmolytes, such as betaine, myo-inositol and taurine, are part of the stress response of normal human keratinocytes (NHKs) to ultraviolet B (UVB) radiation. In this regard, we tested human HaCaT keratinocytes as a surrogate cell line for NHK. HaCaT cells osmo-dependently express mRNA specific for transport proteins for betaine (BGT-1), myo-inositol (SMIT) and taurine (TAUT). Compared to normoosmotic (305 mosmol/l) controls, which strongly constitutively expressed BGT-1 mRNA, strong induction of SMIT and TAUT mRNA as well as low induction of BGT-1 mRNA expression was observed between 3 and 9 h after hyperosmotic exposure (405 mosmol/l). This expression correlated with an increased osmolyte uptake. Conversely, hypoosmotic (205 mosmol/l) stimulation led to a significant efflux of osmolytes. Exposure to UVB (290-315 nm) radiation induced cell shrinkage which was followed by an upregulation of osmolyte transporter mRNA levels and osmolyte uptake. These results demonstrate that human HaCaT keratinocytes possess an osmolyte strategy including UVB-induced cell shrinkage and following increased osmolyte uptake. However, several differences in osmolyte transporter expression and uptake were noted between NHK and HaCaT cells, indicating that the use of HaCaT cells as a surrogate cell line for NHK has limitations.  相似文献   

18.
Osmolytes stabilize proteins to thermal and chemical denaturation. We have studied the effects of the osmolytes sarcosine, betaine, trimethylamine-N-oxide, and taurine on the structure and stability of the protein.peptide complex RNase S using x-ray crystallography and titration calorimetry, respectively. The largest degree of stabilization is achieved with 6 m sarcosine, which increases the denaturation temperatures of RNase S and S pro by 24.6 and 17.4 degrees C, respectively, at pH 5 and protects both proteins against tryptic cleavage. Four crystal structures of RNase S in the presence of different osmolytes do not offer any evidence for osmolyte binding to the folded state of the protein or any perturbation in the water structure surrounding the protein. The degree of stabilization in 6 m sarcosine increases with temperature, ranging from -0.52 kcal mol(-1) at 20 degrees C to -5.4 kcal mol(-1) at 60 degrees C. The data support the thesis that osmolytes that stabilize proteins, do so by perturbing unfolded states, which change conformation to a compact, folding competent state in the presence of osmolyte. The increased stabilization thus results from a decrease in conformational entropy of the unfolded state.  相似文献   

19.
In several studies, viscogenic osmolytes have been suggested to decrease the folding rate constant of polypeptides by slowing their motion through the solvent. Here, we show that osmolytes may slow protein folding by prematurely collapsing the coil. At low or moderate concentrations of osmolytes (<30%), folding of the two-state protein CI2 becomes faster with increasing osmolyte concentrations, suggesting that the kinetics are governed by protein stability. However, at higher concentrations of osmolyte, the coil collapses in the dead-time of the refolding experiment, causing a dramatic drop in the folding rate. The collapsed state is non-native and appears to be different for different osmolytes.  相似文献   

20.
Natural osmoregulatory substances (osmolytes) allow a wide variety of organisms to adjust to environments with high salt and/or low water content. In addition to their role in osmoregulation, some osmolytes protect proteins from denaturation and deactivation by, for example, elevated temperature and chaotropic compounds. A ubiquitous protein-stabilizing osmolyte is glycine betaine (N-trimethyl glycine). Its presence has been reported in bacteria, in particular cyanobacteria, in animals and in plants from higher plants to algae. In the present review we describe the experimental evidence related to the ability of glycine betaine to enhance and stabilize the oxygen-evolving activity of the Photosystem II protein complexes of higher plants and cyanobacteria. The osmolyte protects the Photosystem II complex against dissociation of the regulatory extrinsic proteins (the 18 kD, 23 kD and 33 kD proteins of higher plants and the 9 kD protein of cyanobacteria) from the intrinsic components of the Photosystem II complex, and it also stabilizes the coordination of the Mn cluster to the protein cleft. By contrast, glycine betaine has no stabilizing effect on partial photosynthetic processes that do not involve the oxygen-evolving site of the Photosystem II complex. It is suggested that glycine betaine might act, in part, as a solute that is excluded from charged surface domains of proteins and also as a contact solute at hydrophobic surface domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号