首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
IGFBP-5 is known to be involved in various cell phenomena such as proliferation, differentiation, and apoptosis. However, the exact mechanisms by which IGFBP-5 exerts its functions are unclear. In this study, we demonstrate for the first time that IGFBP-5 is a TNFR1-interacting protein. We found that ectopic expression of IGFBP-5 induced TNFR1 gene expression, and that IGFBP-5 interacted with TNFR1 in both an in vivo and an in vitro system. Secreted IGFBP-5 interacted with GST-TNFR1 and this interaction was blocked by TNF-α, demonstrating that IGFBP-5 might be a TNFR1 ligand. Furthermore, conditioned media containing secreted IGFBP-5 inhibited PMA-induced NF-κB activity and IL-6 expression in U-937 cells. Coimmunoprecipitation assays of TNFR1 and IGFBP-5 wild-type and truncation mutants revealed that IGFBP-5 interacts with TNFR1 through its N- and L-domains. However, only the interaction between the L-domain of IGFBP-5 and TNFR1 was blocked by TNF-α in a dose-dependent manner, suggesting that the L-domain of IGFBP-5 can function as a TNFR1 ligand. Competition between the L-domain of IGFBP-5 and TNF-α resulted in inhibition of TNF-α-induced NF-κΒ activity. Taken together, our results suggest that the L-domain of IGFBP-5 is a novel TNFR1 ligand that functions as a competitive TNF-α inhibitor.  相似文献   

4.
5.
Persistent infection with hepatitis C virus causes serious liver diseases, such as chronic hepatitis, hepatic cirrhosis and hepatocellular carcinoma. The male gender is one of the critical factors in progression of hepatic fibrosis due to chronic HCV infection; thus female hormones may play a role in delaying the progression of hepatic fibrosis. It has also been reported that women are more likely than men to clear HCV in the acute phase of infection. These observations lead the present authors to the question: do female hormones inhibit HCV infection? In this study using HCV J6/JFH1 and Huh‐7.5 cells, the possible inhibitory effect(s) of female hormones such as 17β‐estradiol (the most potent physiological estrogen) and progesterone on HCV RNA replication, HCV protein synthesis and production of HCV infectious particles (virions) were analyzed. It was found that E2, but not P4, significantly inhibited production of the HCV virion without inhibiting HCV RNA replication or HCV protein synthesis. E2–mediated inhibition of HCV virion production was abolished by a nuclear estrogen receptor (ER) antagonist ICI182780. Moreover, treatment with the ERα‐selective agonist 4, 4′, 4″‐ (4‐propyl‐[1H]‐pyrazole‐1, 3, 5‐triyl)trisphenol (PPT), but not with the ERβ‐selective agonist 2, 3‐bis (4‐hydroxyphenyl)‐propionitrile (DPN) or the G protein‐coupled receptor 30 (GPR30)‐selective agonist 1‐(4‐[6‐bromobenzo 1, 3 dioxol‐5‐yl]‐3a, 4, 5, 9b‐tetrahydro‐3H‐cyclopenta [c] quinolin‐8‐yl)‐ethanone (G‐1), significantly inhibited HCV virion production. Taken together, the present results suggest that the most potent physiological estrogen, E2, inhibits the production of HCV infectious particles in an ERα–dependent manner.  相似文献   

6.
7.
《Mutation Research Letters》1991,262(2):125-128
In vitro treatment with human interferon-α (HuIFN-α) of hepatitis B virus-infected peripheral lymphocytes from 17 hepatitis B patients induced a decrease in the frequency of sister-chromatid exchanges (SCE). There was a significant difference in mean SCE frequencies between the HuIFN-α-treated patients and the control group, but not between acute and chronic hepatitis B patients treated with HuIFN-α  相似文献   

8.
9.
Yoo HJ  Byun HJ  Kim BR  Lee KH  Park SY  Rho SB 《Cellular signalling》2012,24(7):1471-1477
Recent studies have shown DAPk as a molecular modulator induced by the second messenger, responsible for controlling cell destiny decisions, but the detailed mechanism mediating the role of DAPk1 during cell death is still not fully understood. In this present report, we attempted to characterize the effects of TNF-α and INF-γ on DAPk1 in human ovarian carcinoma cell lines, OVCAR-3. Both TNF-α and INF-γ significantly induce DAPk1 levels in a time-dependent manner. At the same time, they both arrested cell cycle progression in the G(0)-G(1) and G2/M phase, down-regulated cyclin D1, CDK4 and NF-κB expression, while also up-regulating p27 and p16 expression. Subsequently, the efficacy of the combined treatment with DAPk1 was investigated. In the presence of DAPk1, TNF-α or INF-γ-induced apoptosis was additively increased, while TNF-α or INF-γ-induced NF-κB activity was inhibited. Conversely, TNF-α or INF-γ-dependent NF-κB activity was further enhanced by the inhibition of DAPk1 with its specific siRNA. The activity of NF-κB was dependent on the level of DAPk1, indicating the requirement of DAPk1 for the activation of NF-κB. Low levels of DAPk1 expression were frequently observed in different human patient's tissue and cancer cell lines compared to normal samples. In addition, over-expression of DAPk1 from either TNF-α or INF-γ-treatment cells suppressed the anti-apoptosis protein XIAP as well as COX-2 and ICAM-1, more than control. Taken together, our data findings suggest that DAPk1 can mediate the pro-apoptotic activity of TNF-α and INF-γ via the NF-κB signaling pathways.  相似文献   

10.
α-Melanocyte-stimulating hormone (α-MSH), an anti-inflammatory and immunomodulatory neuropeptide, has been shown to be effective in the experimental treatment of autoimmune diseases and allograft rejection. However, its regulatory mechanism is still unclear. Mature dendritic cells (DCs) are pivotal initiators of immune response and inflammation. We hypothesized that the regulatory role of α-MSH in DC maturation would contribute to the effects of α-MSH in immune-response-mediated disease models. It was found that α-MSH inhibited tumor necrosis factor-alpha (TNF-α)-induced maturation of human peripheral-monocyte-derived DCs (MoDCs), both phenotypically and functionally. This occurred through the down-regulation of the expression of co-stimulatory molecules CD83 and CD86, the production of IL-12, the promotion of IL-10 secretion, and the MoDC phagocytic activity, suggesting that the inhibition of DC maturation by α-MSH could contribute to the anti-inflammatory effect of this neuropeptide. Furthermore, increased expression of annexin A1 (ANXA1) was found to be responsible for the α-MSH inhibiting effect on TNF-α-induced MoDC maturation, which could be abolished by the treatment of MoDCs with specific, small interfering RNAs targeting ANXA1 (ANXA1-siRNA), suggesting that α-MSH-induced ANXA1 mediates the inhibition. Therefore, α-MSH inhibits TNF-α-induced maturation of human DCs through α-MSH-up-regulated ANXA1, suggesting that inhibition of the maturation of DCs by α-MSH could mediate the anti-inflammatory effect of the neuropeptide. Furthermore, ANXA1 could be identified as a new therapeutic drug target based on the role of DCs in immune-mediated inflammatory diseases.  相似文献   

11.
12.
13.
14.
15.
Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid with beneficial effects in obesity and insulin resistance. High levels of proinflammatory cytokine tumour necrosis factor-α (TNF-α) in obesity promote lipolysis in adipocytes, leading to the development of insulin resistance. Thus, the aims of the present study were to analyze the potential antilipolytic properties of EPA on cytokine-induced lipolysis and to investigate the possible mechanisms involved. The EPA effects on basal and TNF-α-induced lipolysis were determined in both primary rat and 3T3-L1 adipocytes. Treatment of primary rat adipocytes with EPA (100 and 200 μM) significantly decreased basal glycerol release (P<.01) and prevented cytokine-induced lipolysis in a dose-dependent manner (P<.001). Moreover, EPA decreased TNF-α-induced activation of nuclear factor-κB and extracellular-related kinase 1/2 phosphorylation. In addition, the antilipolytic action of EPA was stimulated by the AMP-kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-b-d-ribofuranoside and blocked by the AMPK-inhibitor compound C. Moreover, we found that EPA stimulated hormone-sensitive lipase (HSL) phosphorylation on serine-565, which further supports the involvement of AMPK in EPA's antilipolytic actions. Eicosapentaenoic acid treatment (24 h), alone and in the presence of TNF-α,? also decreased adipose triglyceride lipase (ATGL) protein content in cultured adipocytes. However, oral supplementation with EPA for 35 days was able to partially reverse the down-regulation of HSL and ATGL messenger RNA observed in retroperitoneal adipose tissue of high-fat-diet-fed rats. These findings suggest that EPA inhibits proinflammatory cytokine-induced lipolysis in adipocytes. This effect might contribute to explain the insulin-sensitizing properties of EPA.  相似文献   

16.

Objective

To suppress TNF-α-induced lipogenesis in sebocytes (associated with acne development) with microRNA-338-3p (miR-338-3p) and to explore the underlying mechanisms.

Results

TNF-α increased lipid droplet formation in sebocytes which were used as in vitro model of inflammation-induced acne. Flow cytometry and TLC assays validated that miR-338-3p could suppress TNF-α-induced lipid droplet formation, down-regulate the expression of PREX2a, and inactivate AKT signaling in sebocytes. In addition, suppression of AKT activity by the PI3 K and AKT inhibitors diminished TNF-α-induced lipogenesis. PREX2a siRNA mimics the effects of miR-338-3p on AKT phosphorylation and lipogenesis. PREX2a overexpression consistently restored lipogenesis and AKT phosphorylation attenuated by miR-338-3p.

Conclusions

MiR-338-3p suppresses the TNF-α-induced lipogenesis in sebocytes by targeting PREX2a and down-regulating PI3K/AKT signaling.
  相似文献   

17.
18.
Nunnari  G.  Fagone  P.  Lazzara  F.  Longo  A.  Cambria  D.  Di Stefano  G.  Palumbo  M.  Malaguarnera  L.  Di Rosa  Michelino 《Molecular and cellular biochemistry》2016,412(1-2):49-57
Molecular and Cellular Biochemistry - 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is known to suppress NF-kB activity by interfering with its pathways. The aim of this study was to investigate the...  相似文献   

19.

Background

Bronchial fibroblasts contribute to airway remodelling, including airway wall fibrosis. Transforming growth factor (TGF)-β1 plays a major role in this process. We previously revealed the importance of the mevalonate cascade in the fibrotic response of human airway smooth muscle cells. We now investigate mevalonate cascade-associated signaling in TGFβ1-induced fibronectin expression by bronchial fibroblasts from non-asthmatic and asthmatic subjects.

Methods

We used simvastatin (1-15 μM) to inhibit 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase which converts HMG-CoA to mevalonate. Selective inhibitors of geranylgeranyl transferase-1 (GGT1; GGTI-286, 10 μM) and farnesyl transferase (FT; FTI-277, 10 μM) were used to determine whether GGT1 and FT contribute to TGFβ1-induced fibronectin expression. In addition, we studied the effects of co-incubation with simvastatin and mevalonate (1 mM), geranylgeranylpyrophosphate (30 μM) or farnesylpyrophosphate (30 μM).

Results

Immunoblotting revealed concentration-dependent simvastatin inhibition of TGFβ1 (2.5 ng/ml, 48 h)-induced fibronectin. This was prevented by exogenous mevalonate, or isoprenoids (geranylgeranylpyrophosphate or farnesylpyrophosphate). The effects of simvastatin were mimicked by GGTI-286, but not FTI-277, suggesting fundamental involvement of GGT1 in TGFβ1-induced signaling. Asthmatic fibroblasts exhibited greater TGFβ1-induced fibronectin expression compared to non-asthmatic cells; this enhanced response was effectively reduced by simvastatin.

Conclusions

We conclude that TGFβ1-induced fibronectin expression in airway fibroblasts relies on activity of GGT1 and availability of isoprenoids. Our results suggest that targeting regulators of isoprenoid-dependent signaling holds promise for treating airway wall fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号