首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Thiobacillus ferrooxidans ATCC 23270 was grown with elemental sulfur as the energy source. Substrate oxidation was measured using a Clark‐type oxygen electrode. Whole cells demonstrated a broad pH optimum for sulfur oxidation between pH 2.0 and 8.0. The V max and Ksfor sulfur oxidation varied depending on pH. Sulfite was oxidized at 227 nmol O2/min/mg protein. Thiosulfate oxidation was slow, and tetrathionate oxidation was not detected. At a concentration of 2 mM, sodium azide completely inhibited sulfur, sulfite, and thiosulfate oxidation. Inhibition by N‐ethylmaleimide, antimycin A, and 2‐heptyl‐4‐hydroxyquinoline N‐oxide varied with substrate.  相似文献   

2.
3.
4.
5.
The kinetics of oxidation of elemental sulfur by Thiobacillus ferrooxidans in a batch reactor was followed by measuring the concentration of adsorbed cells on the sulfur surface, the concentration of free cells in liquid medium, and the amount of sulfur oxidized. As the elemental sulfur was oxidized to sulfate, the liquid-phase concentration of free cells continued to increase with time, whereas the surface concentration of adsorbed cells per unit weight of sulfur approached a limiting value, i.e., the maximum adsorption capacity. During sulfur oxidation, there was a close correlation between the concentrations of adsorbed and free cells, and these data were well correlated with the Langmuir isotherm. The observed rates of batch growth and sulfur oxidation were consistent with a kinetic model, assuming that the growth rate of batch growth and sulfur oxidation were consistent with a kinetic model. Assuming that the growth rate of adsorbed bacteria is proportional to the product of the concentration of adsorbed cells and the fraction of adsorption sites unoccupied by cells. The kinetic and stoichiometric parameters appearing in the model were evaluated using the experimental data and were compared with parameters determined previously for a few metal sulfides. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
7.
8.
9.
An electrolytic cell was designed and constructed for the formentation of T. ferroxidans using Fe2+ as the energy-supplying substrate. The Fe3+ produced by T. ferrooxidans by fermentation is continuously reduced to Fe 2+ in the electrolytic cell. A suitable version of the electrolytic cell permitted the elimination of most inorganic solid matter (precipitate) from the fermentation process. The fermentation of T. ferrooxidans was carried out with and without the electrolytic cell. Fermentation with the cell yielded significant rises both in the maximum obtainable growth rate and the biomass concentration. The experimental of data are discussed and the theoretical substrate consumption coefficient was calculated for Fe2+ as a function of the pH and the coefficient was compared with the experimental results.  相似文献   

10.
11.
Fe(II) oxidation reaction was carried out using an acidophilic microorganism, Thiobacillus ferrooxidans. Four different parameters such as pH, Fe(II), Fe(III) and biomass concentration were studied. The oxida-tion reaction follows a pseudo first order rate equation. Apparent reaction rate constants were calculated. Unified rate equation was developed using the four parameters. Along with oxidation, a part of the iron also was precipitated. The extent of Fe(III) precipitation in each case was calculated. © Rapid Science 1998  相似文献   

12.
T Sugio  S Kudo  T Tano  K Imai 《Journal of bacteriology》1982,150(3):1109-1114
Properties of a heat-labile glucose transport system in Thiobacillus ferrooxidans strain AP-44 were investigated with iron-grown cells. [14C]glucose was incorporated into cell fractions, and the cells metabolized [14C]glucose to 14CO2. Amytal, rotenone, cyanide, azide, 2,4-dinitrophenol, and dicyclohexylcarbodiimide strongly inhibited [14C]glucose uptake activity, suggesting the presence of an energy-dependent glucose transport system in T. ferrooxidans. Heavy metals, such as mercury, silver, uranium, and molybdate, markedly inhibited the transport activity at 1 mM. When grown on mixotrophic medium, the bacteria preferentially utilized ferrous iron as an energy source. When iron was exhausted, the cells used glucose if the concentration of ferrous sulfate in the medium was higher than 3% (wt/vol). However, when ferrous sulfate was lower than 1%, both of the energy sources were consumed simultaneously.  相似文献   

13.
In Thiobacillus ferrooxidans AP19-3, elemental sulfur is oxidized by the cooperation of three enzymes, namely, hydrogen sulfide: ferric ion oxidoreductase (SFORase), sulfite: ferric ion oxidoreductase, and iron oxidase. Sulfite ions are one of the products when elemental sulfur is oxidized by SFORase. Under the conditions in which sulfite ions are accumulated in the cells, use of sulfur as an energy source by this strain was strongly inhibited. So the mechanism of inhibition by sulfite ions in T. ferrooxidans AP19-3 was studied. The activities of SFORase and iron oxidase were completely inhibited by 0.8 mm and 1.5 mm NaHSO3, respectively. 14CO2 uptake into washed intact cells was also completely inhibited by 1mm NaHSO3 when ferrous ion or elemental sulfur was used as an energy source. However, the activities of ribulose-1,5-bisphosphate carboxylase, phosphoribulokinase, and ribosephosphate isomerase measured with a cell-free extract were not inhibited by NaHSO3 at 1 mm, indicating that sulfite ions didn’t inhibit key enzymes of the Calvin cycle. Since the activity of CO2 uptake into washed intact cells was absolutely dependent on Fe2 + - or S0-oxidation, mechanism of inhibition of sulfur use by sulfite ions is proposed as follows: sulfite ions inhibit SFORase and iron oxidase, as a result T. ferrooxidans AP19-3 can not obtain a carbon source for CO2 fixation and stops cell growth on sulfur-salts medium.  相似文献   

14.
15.
16.
A membrane bioreactor has been used to treat an industrially produced waste-water containing aniline, 4-chloroaniline, 2,3-dichloroaniline and 3,4-dichloroaniline. Conventional direct biological treatment of such effluents cannot be implemented without some form of pretreatment or dilution because of the hostile inorganic composition of the waste-water. In order to overcome this problem a membrane separation step selectively removes the organics from the waste-water and subsequent biodegradation takes place in the biological growth compartment of the reactor system. At a waste-water flow rate of 69 ml h–1 (corresponding to a contact time of approximately 1.5 h) over 99% of the organic compounds quoted above were removed and biodegraded. Correspondence to: A. G. Livingston  相似文献   

17.
18.
19.
A simple method for the detoxification of ultrafiltration concentrates of wastewaters for rotavirus assay by the indirect immunofluorescence technique has been developed. Polyacrylamide (Bio-Gel) or dextran (Sephadex G50) beads were mixed with concentrates (0.5 g/10 ml, wt/vol) of wastewaters seeded with simian rotavirus SA11 and allowed to stand for 2 h. The supernatant was decontaminated with antibiotics and then assayed for rotaviruses. Concentrates from raw sewage and treated effluents seeded with SA11 were used to infect MA104 or LLC MK2 cell lines. The concentrates, particularly those from raw sewage and anaerobic waste stabilization ponds, were very toxic to the tissue culture cells. These toxic effects were determined by the detachment and subsequent loss of cells after incubation with concentrates and assay medium for 24 h. They were either completely eliminated or were reduced by greater than 80% after treatment with beads.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号