首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular inhibitory effects of 6-amino-1,2-benzopyrone (6-ABP), a DNA site-specific ligand of adenosine diphosphoribosyl transferase (ADPRT), were determined in a dexamethasone-sensitive EJ-ras gene construct containing cell line (14C cells). Dexamethasone in vitro transforms these cells to a tumorigenic phenotype and also stimulates cell replication. At a non-toxic concentrations (0.2 mM) 6-ABP treatment of intact cells for 4 days inhibits the dexamethasone-stimulated increment of cellular DNA content, depresses replicative DNA synthesis as assayed by thymidine incorporation to the level of cells that were not exposed to dexamethasone, and in permeabilized cells reduces the dexamethasone-stimulated increase of deoxyribonucleotide incorporation into DNA to the level of untreated cells. In situ pulse labeling of cells pretreated with 6-ABP indicated an inhibition of DNA synthesis at a stage prior to the formation of the 10-kb intermediate species. The drug had no direct effect on cellular DNA polymerases as tested in vitro, and the inhibition of DNA synthesis in permeabilized cells following drug treatment for 4 days was abolished by externally added DNA templates. Neither dexamethasone nor the drug influenced the cellular quantity of ADPRT molecules, tested immunochemically.  相似文献   

2.
The effects of two adenosine diphosphoribose transferase (ADPRT) enzyme inhibitory ligands, 6-amino-1,2-benzopyrone and its 5-iodo-derivative, were determined in AA-2 and MT-2 cell cultures on the replication of HIV-1 IIIb, assayed by an immunochemical test for the HIV protein p24, and syncytium formation, characteristic of HIV-infected cells. Intracellular concentrations of both drugs were sufficient to inhibit poly(ADP-ribose) polymerase activity within the intact cell. Both drugs inhibited HIV replication parallel to their inhibitory potency on ADPRT, but distinct differences were ascertained between the two cell lines. In AA-2 cells both p24 and syncytium formation were depressed simultaneously, whereas in MT-2 cells only syncytium formation was inhibited by the drugs, and the p24 production, which remained unchanged during viral growth, was unaffected. Both drugs only moderately depressed the growth rate of the AA-2 and MT-2 cells and there was no detectable cellular toxicity. Results suggest the feasibility of the development of a new line of ADPRT ligand anti-HIV drugs that fundamentally differ in their mode of action from currently used chemotherapeutics.  相似文献   

3.
A Hakam  J McLick  K Buki  E Kun 《FEBS letters》1987,212(1):73-78
The catalytic activity of highly purified poly(ADP-ribose) polymerase was determined at constant NAD+ concentration and varying concentrations of sDNA or synthetic octadeoxyribonucleotides of differing composition. The coenzymic activities of deoxyribonucleotides were compared in two ways: graphic presentation of the activation of poly(ADP-ribose) polymerase in the presence of a large concentration range of deoxyribonucleotides and by calculating kD values for the deoxyribonucleotides. As determined by method i, auto-mono-ADP-ribosylation of the enzyme protein at 25 nM NAD+ was maximally activated at 1:1 octamer/enzyme molar ratios by the octadeoxyribonucleotide derived from the regulatory region of SV40 DNA (duplex C). At a 0.4:1 sDNA/enzyme ratio, sDNA was the most active coenzyme for mono-ADP-ribosylation. At 200 microM NAD+, resulting in polymer synthesis and with histones as secondary polymer acceptors, duplex C was the most active coenzyme, and the octamer containing the steroid hormone receptor binding consensus sequence of DNA was a close second, whereas sDNA exhibited an anomalous biphasic kinetics. sDNA was effective on mono-ADP-ribosylation at a concentration 150-200 -times lower than on polymer formation. When comparison of deoxyribonucleotides was based on method ii (kD values), by far the most efficiently binding coenzyme for both mono and polymer synthesis was sDNA, followed by duplex C, with (dA-dT)8 exhibiting the weakest binding. The synthetic molecule 6-amino-1,2-benzopyrone (6-aminocoumarin) competitively inhibited the coenzymic function of synthetic octadeoxyribonucleotides at constant concentration of NAD+, identifying a new inhibitory site of poly(ADP-ribose) polymerase.  相似文献   

4.
6-Nitroso- 1,2-benzopyrone, an oxidation product of 6-amino- 1,2-benzopyrone, binds to the DNA-recognizing domain of the ADP-ribose transferase protein and preferentially destabilizes Zn2+ from one of the two zinc finger polypeptide complexes present in the intact enzyme, as determined by the loss of 50% of 65Zn2+ from the 65Zn2+-isolated protein molecule, coincidental with the loss of 99% of enzymatic activity. The 50% zinc-deficient enzyme still binds to a DNA template. consisting of a 17-mer DNA primer annealed to M 13 positive strand, resulting in the blocking of DNA synthesis by the Klenow fragment of Pol I, Auto-poly-ADP-ribosylated ADP-ribose transferase, which is the probable physiological state of this protein in intact cells, does not bind to primer-template DNA and does not block DNA synthesis by the Klenow fragment. On the basis of this in vitro model it is proposed that molecules which inhibit or inactivate ADP-ribose transferase in intact cells can induce significant alteration in DNA structure and replication.  相似文献   

5.
6.
P I Bauer  K G Buki  E Kun 《FEBS letters》1990,273(1-2):6-10
Purified ADPRT protein was inactivated by the histidine specific reagent diethylpyrocarbonate, binding to two histidine residues, or by a relatively histidine selective photoinactivation method. Inactivation with up to 1.3 mM diethylpyrocarbonate was reversible by hydroxylamine. Enzymatic inactivation coincided with the loss of binding capacity of the enzyme protein to benzamide affinity matrix but not to DNA cellulose. Labelled diethylpyrocarbonate was identified exclusively in the 56 kDa carboxyl-terminal polypeptide where 2 out of 13 histidine residues were modified by this reagent. It is proposed that histidine residues in the 56 kDa polypeptide may participate as initiator sites for polyADP-ribosylation.  相似文献   

7.
The interaction of benzamide with the isolated components of calf thymus poly(ADP-ribose) polymerase and with liver nuclei has been investigated. A benzamide-agarose affinity gel matrix was prepared by coupling o-aminobenzoic acid with Affi-Gel 10, followed by amidation. The benzamide-agarose matrix bound the DNA that is coenzymic with poly(ADP-ribose) polymerase; the matrix, however, did not bind the purified poly(ADP-ribose) polymerase protein. A highly radioactive derivative of benzamide, the 125I-labelled adduct of o-aminobenzamide and the Bolton-Hunter reagent, was prepared and its binding to liver nuclear DNA, calf thymus DNA and specific coenzymic DNA of poly(ADP-ribose) polymerase was compared. The binding of labelled benzamide to coenzymic DNA was several-fold higher than its binding to unfractionated calf thymus DNA. A DNA-related enzyme inhibitory site of benzamide was demonstrated in a reconstructed poly(ADP-ribose) polymerase system, made up from purified enzyme protein and varying concentrations of a synthetic octadeoxynucleotide that serves as coenzyme. As a model for benzamide binding to DNA, a crystalline complex of 9-ethyladenine and benzamide was prepared and its X-ray crystallographic structure was determined; this indicated a specific hydrogen bond between an amide hydrogen atom and N-3 of adenine. The benzamide also formed a hydrogen bond to another benzamide molecule. The aromatic ring of benzamide does not intercalate between ethyladenine molecules, but lies nearly perpendicular to the planes of stacking ethyladenine molecules in a manner reminiscent of the binding of ethidium bromide to polynucleotides. Thus we have identified DNA as a site of binding of benzamide; this binding is critically dependent on the nature of the DNA and is high for coenzymic DNA that is isolated with the purified enzyme as a tightly associated species. A possible model for such binding has been suggested from the structural analysis of a benzamide-ethyladenine complex.  相似文献   

8.
The accumulation of DNA strand breaks and activation of ADP-ribosyltransferase (ADPRT) have recently been associated with cellular differentiation. Murine erythroleukemia (MEL) cells undergo erythropoietic differentiation when exposed to dimethyl sulfoxide (Me2SO) and several studies have suggested that DNA strand scission induced by this agent is a prerequisite for expression of the differentiated phenotype. Me2SO induction of MEL cells has also been associated with increases in ADPRT activity in one study, but not in another. We have monitored the effects of Me2SO on DNA strand breaks in preformed and replicating MEL cell DNA. The results clearly demonstrate that DNA fragmentation is not detectable during Me2SO induction of MEL differentiation, even in the presence of 3-aminobenzamide, an inhibitor of ADPRT. Further, these results are consistent with an absence of detectable changes in both endogenous and total potential ADPRT activity during Me2SO-induced MEL differentiation. These findings would argue against Me2SO induction of DNA strand scission and ADPRT in MEL cells undergoing differentiation.  相似文献   

9.
10.
Structural analogues of benzamide (BA) containing a sulfur atom were tested for their ability to inhibit the enzyme poly(ADP-ribose)transferase (ADPRT) in cultured Chinese Hamster Ovary (CHO) cells. These compounds were benzene sulfonamide (BSA), thiobenzamide (TB) and 3-thiophene carboxamide (TCA) and their activity was compared with that of benzamide in a number of experimental systems. Results have shown that substitution of the carboxamide function with a sulfonamide group produces an almost complete loss of the enzyme inhibiting activity. Also inactive was TB which however was found to display inhibition of the DNA damaging effect of hydrogen peroxide, thus suggesting a hydroxyl radical scavenging effect of TB. TCA, an isostere of BA, produced some inhibition of ADPRT, although its activity was markedly lower than that of the parental drug. Therefore, these results indicate that: 1) ADPRT inhibiting activity is inverse function of dipole moments, hydrogen bonding strength and steric hindrance of the amide functional group and 2) substitution of benzene with thiophene results in a substantial reduction of the enzyme inhibiting activity.  相似文献   

11.
Functional comparison of the NAD binding cleft of ADP-ribosylating toxins   总被引:2,自引:0,他引:2  
Dolan KM  Lindenmayer G  Olson JC 《Biochemistry》2000,39(28):8266-8275
Although a common core structure forms the active site of ADP-ribosylating (ADPRT) toxins, the limited-sequence homology within this region suggests that different mechanisms are being used by toxins to perform their shared function. To explain differences in their mechanisms of NAD binding and hydrolysis, the functional interrelationship of residues predicted to perform similar functions in the beta3-strand of the NAD binding cleft of different ADPRT toxins was compared. Replacing Tyr54 in the A-subunit of diphtheria toxin (DTA) with a serine, its functional homologue in cholera toxin (CT), resulted in the loss of catalytic function but not NAD binding. The catalytic role of the aromatic portion of Tyr54 in the ADPRT reaction was confirmed by the ability of a Tyr54-to-phenylalanine DTA mutant to retain ADPRT activity. In reciprocal studies, positioning a tyrosine in the beta3-strand of the A1-subunit of CT (CTA1) caused both loss of function and altered structure. The restricted flexibility of the CTA1 active site relative to function became evident upon the loss of ADPRT activity when a conservative Val60-to-leucine mutation was performed. We conclude from our studies that DT and CT maintain a similar mechanism of NAD binding but differ in their mechanisms of NAD hydrolysis. The aromatic moiety at position 54 in DT is integral to NAD hydrolysis, while NAD hydrolysis in CT appears highly dependent on the precise positioning of specific residues within the beta3-strand of the active-site cleft.  相似文献   

12.
A novel ADP-ribosyltransferase (ADPRT) is reported from sera of both healthy human subjects (n = 25) and patients with colorectal tumors (n = 12) and breast cancer (n = 55). In sera of healthy controls (n = 25) the average ADPRT values were 250 +/- 56 picokatal/liter. ADPRT serum activities in metastatic cancer patients (n = 47) were three times higher (p less than 0.01) than in normal controls. A tumor origin of the serum ADPRT can be inferred from the statistical correlation (R = 0.74) between tumor and serum levels. The radiometric test procedure (CV 20-25%) is critically validated and kinetic properties of serum ADPRT have been studied, showing a competitive inhibition by nicotinamide, benzamide and 3-aminobenzamide. The kinetic parameters of serum ADPRT resemble those reported for nuclear ADPRT, thus indicating that serum ADPRT activity could be due to a nuclear enzyme released from the tumor cells.  相似文献   

13.
Activation of quiescent human peripheral blood lymphocytes or purified T cells by the mitogen, phytohemagglutinin (PHA), involves a rapid rejoining of DNA breaks present in the resting cells as detected by both nucleoid sedimentation analysis and rate of strand unwinding in alkali. Inhibitors of the enzyme ADP-ribosyltransferase (ADPRT) prevent activation of peripheral lymphocytes or T cells by PHA or concanavalin A in a dose-dependent manner, but only if present during the early stages. They do not affect subsequent proliferation if added later, nor do they inhibit the growth of lymphoblastoid cell lines. The inhibitors slow the rejoining of DNA breaks but do not affect the binding of mitogen to the cell surface or the early PHA-stimulated turnover of plasma membrane inositol phospholipids. DNA breaking and rejoining, regulated by ADPRT, may be involved in controlling gene expression during differentiation.  相似文献   

14.
Y N Yu  C Ding  Z N Cai  X R Chen 《Mutation research》1986,174(3):233-239
ADP-ribosyl transferase (ADPRT) is a DNA-dependent chromatin-associated enzyme which covalently attaches ADP-ribose moieties derived from NAD+ to protein acceptors to form poly(ADP-ribose). ADPRT activity is strongly stimulated by breaks in DNA, and it is suggested that its activity is required for efficient DNA excision repair. In this paper, a cell-cycle-dependent fluctuation of basal ADPRT activity was demonstrated by measuring it in permeabilized FL cells. The cell used was subjected to arginine starvation for 48 h before being released from the block by replacement of deficient medium with complete medium and cells in different proliferating stages were traced by [3H]TdR pulse labelling and obtained at different intervals after block release. The peak basal ADPRT activity appeared 4-6 h after the appearance of the peak of DNA synthesis. After treating the cells with MNNG (10(-4) M), MMS (10(-3)-10(-4) M) and 4NQO (10(-5) M) for 90 min just after release of the block, the ADPRT activity was markedly stimulated. It was further demonstrated that the effects of MNNG/4NQO and cell cycle influence on the level of poly(ADP-ribose) synthesis appear to be additive. While concerning MMS, quite a different pattern of ADPRT stimulation in the cell cycle was demonstrated, i.e., the activity of ADPRT stimulation of 10(-3) M MMS was found to be completely dependent on the basal ADPRT activity. In the cells with the highest basal ADPRT activity 12 h after block release, the MMS-induced ADPRT stimulation could not be observed. It was suggested that more than one pathway might be present in ADPRT stimulation induced by DNA-damaging chemicals, and the cells synchronized in late G1 stage might be the most suitable for demonstrating poly(ADP-ribose) synthesis after DNA damage.  相似文献   

15.
The most commonly used DNA transfection method, which employs the calcium phosphate co-precipitation of the donor DNA, involves several discrete steps (1,2). These include the uptake of the donor DNA by the recipient cells, the transport of the DNA to the nucleus, transient expression prior to integration into the host cell genome, concatenation and integration of the transfected DNA into the host cell genome and finally the stable expression of the integrated genes (2,3). Both the concatenation and the integration of the donor DNA into the host genome involve the formation and ligation of DNA strand-breaks. In the present study we demonstrate that the nuclear enzyme, adenosine diphosphoribosyl transferase (ADPRT, E.C. 2.4.2.30), which is dependent on the presence of DNA strand breaks for its activity (4,5) and necessary for the efficient ligation of DNA strand-breaks in eukaryotic cells (4,6), is required for the integration of donor DNA into the host genome. However, ADPRT activity does not influence the uptake of DNA into the cell, its episomal maintenance or replication, nor its expression either before or after integration into the host genome. These observations strongly suggest the involvement of ADPRT activity in eukaryotic DNA recombination events.  相似文献   

16.
Peroxynitrite, a cytotoxic oxidant formed in the reaction of superoxide and nitric oxide is known to cause programmed cell death. However, the mechanisms of peroxynitrite-induced apoptosis are poorly defined. The present study was designed to characterize the molecular mechanisms by which peroxynitrite induces apoptosis in HL-60 cells, with special emphasis on the role of caspases. Peroxynitrite induced the activation of apopain/caspase-3, but not ICE/caspase-1 as measured by the cleavage of fluorogenic peptides. Considering the short half-life of peroxynitrite and the kinetics of caspase-3 activation (starting 3–4 h after peroxynitrite treatment), the enzyme is not likely to become activated directly by the oxidant. Caspase-3 activation proved to be essential for DNA fragmentation, because pretreatment of the cells with the specific tetrapeptide inhibitor DEVD-fmk completely blocked peroxynitrite-induced DNA fragmentation. Peroxynitrite-induced cytotoxicity was also significantly altered by the inhibition of caspase-3, whereas phosphatidylserine exposure was unaffected by DEVD-fmk treatment. Because many of the effects of peroxynitrite are mediated by poly(ADP-ribose) synthetase (PARS) activation, we have also investigated the effect of PARS-inhibition on peroxynitrite-induced apoptosis. We have found that PARS-inhibition modulates peroxynitrite-induced apoptotic DNA fragmentation in the HL-60 cells. The effect of the PARS inhibitors, 3-aminobenzamide and 5-iodo-6-amino-1,2-benzopyrone were dependent on the concentration of peroxynitrite used. While PARS-inhibition resulted in increased DNA-fragmentation at low doses (15 μM) of peroxynitrite, a decreased DNA-fragmentation was found at high doses (60 μM) of peroxynitrite. PARS inhibition negatively affected viability as determined by flow cytometry. These data demonstrate the crucial role of caspase-3 in mediating apoptotic DNA fragmentation in HL-60 cells exposed to peroxynitrite.  相似文献   

17.
1. Relationships between ornithine decarboxylase (ODC) and adenosine diphosphate ribosyl transferase (ADPRT) in human mononuclear leukocytes (HML) were tested by statistical comparisons of their values in a group of 46 people, and by use of inhibitors of ADPRT. 2. ODC was assayed following exposure of HML, for 20 hr, to mitogens [phytohemagglutinin (PHA) and pokeweed mitogen]; ADPRT was measured following exposure of HML to H2O2 (100 microM) for 1 hr (activated ADPRT), and in parallel cultures without H2O2 (constitutive ADPRT). 3. Significant correlations were found between ODC and ADPRT values; the effects of smoking disturbed the correlations. PHA induction of ODC was negatively influenced by age (standardized beta coefficient = -2.95, P = 0.005), while age also influenced ADPRT values negatively in non-smokers (for H2O2 activated ADPRT, standardized beta coefficient = -2.74, P less than 0.008). 4. Inhibitors of ADPRT, nicotinamide, caffeine and benzamide inhibited the induction of ODC by PHA in a concentration-dependent manner, in the range (0.6-10 mM) known to inhibit ADPRT.  相似文献   

18.
The interaction of Glu-P-1 (2-amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole) and Glu-P-2 (2-aminodipyrido[1,2-a:3′,2′-d]imidazole) with DNA were studied. Agarose gel electrophoresis of Closed-circular DNA treated with an excess of DNA-relaxing enzyme in the presence of increasing amounts of Glu-P-1 or Glu-P-2 revealed that Glu-P-1 and Glu-P-2 intercalated into DNA. Correlation with the binding parameters, measured by optical titrations, showed that Glu-P-1 and Glu-P-2 caused about 20° unwinding of the DNA double helix.  相似文献   

19.
A series of group specific modifying reagents were tested for their effects on [3H]spiperone binding to brain D2 dopamine receptors to identify amino acid residues at the binding site of the D2 dopamine receptor that are critical for ligand binding. The dependence of ligand binding to the receptor on the pH of the incubation medium was also examined. N-Acetylimidazole, 5,5'-dithiobis(2-nitrobenzoic acid), 1,2-cyclohexanedione, and acetic anhydride had no specific effect on [3H]spiperone binding, indicating the lack of participation of tyrosine, free sulphydryl, arginine, or primary amino groups in ligand binding to the receptor. N,N'-Dicyclohexylcarbodiimide (DCCD) potently reduced the number of [3H]spiperone binding sites, indicating that a carboxyl group is involved in ligand binding to the receptor. The effects of DCCD could be prevented by prior incubation of the receptor with D2 dopamine receptor selective compounds. The pH-binding profile for [3H]spiperone binding indicated the importance of an ionising group of pKa 5.2 for ligand binding which may be the same carboxyl group. Diethyl pyrocarbonate, the histidine modifying reagent, also inhibited [3H]spiperone binding, reducing the affinity of the receptor for this ligand but the effects were not at the ligand binding site. From the effects of pH changes on ligand binding some evidence was obtained for a second ionising group (pKa 7.0) that specifically affects the binding of substituted benzamide drugs to the receptor. It is concluded that the D2 dopamine receptor binding site contains separate but over-lapping binding regions for antagonists such as spiperone and substituted benzamide drugs. The former region contains an important carboxyl group; the latter region contains another group that may be a second carboxyl group or a histidine.  相似文献   

20.
The unicellular, as well as multicellular stages of Dictyostelium discoideum’s life cycle, make it an excellent model system for cell type determination, differentiation, development, and cell death studies. Our preliminary results show the involvement of poly (ADP-ribose) polymerase-1 (PARP-1) during D. discoideum growth by its constitutive downregulation as well as by its ortholog overexpression. The current study now analyzes and strengthens the role of the PARP-1 ortholog in cellular proliferation of D. discoideum. ADPRT1A was knocked out (KO) from D. discoideum and studied for its effect on cell growth, cell cycle, morphology, and oxidative stress. The present findings show that ADPRT1A KO ( A KO) cells exhibited reduced cellular proliferation, stressed phenotype, and cell cycle arrest in G2-M phase. Under oxidative stress, A KO cells exhibited slower growth and DNA damage. This is the first report where the involvement of ADPRT1A in growth in D. discoideum is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号