首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingosine-1-phosphate (SPP) acts as a first messenger in immortalized human airway epithelial cells (CFNPE9o(-)), possibly interacting with an Edg family receptor. Expression of the SPP receptors Edg-1 and Edg-3, as well as a low level of Edg-5/H218, was detected in these cells, in agreement with their ability to specifically bind SPP. The related lipids, lysophosphatidic acid and sphingosylphosphorylcholine, were unable to displace SPP from its high affinity binding sites, suggesting that the biological responses to these different lysolipids are mediated by distinct receptors. SPP markedly inhibited forskolin-stimulated cAMP accumulation in a dose-dependent manner and caused a remarkable elevation of intracellular calcium, both effects being sensitive to pertussis toxin treatment. Most importantly, SPP stimulated phosphatidic acid formation, which was maximal after 2 min and decreased within 8-10 min. In the presence of butan-1-ol, suppression of SPP-induced phosphatidic acid formation and production of phosphatidylbutanol were found, clearly indicating activation of phospholipase D (PLD). This finding was also confirmed by analysis of the fatty acid composition of phosphatidic acid, showing an increase in the monounsaturated oleic acid only. The decrease of phosphatidic acid level after 8-10 min incubation with SPP was accompanied by a parallel increase of diacylglycerol production, which was abolished in the presence of butan-1-ol. This result indicates that activation of phospholipase D is followed by stimulation of phosphatidate phosphohydrolase activity. Phosphatidic acid formation was insensitive to protein kinase C inhibitors and almost completely inhibited by pertussis toxin treatment, suggesting that SPP activates phospholipase D via a G(i/o) protein-coupled receptor.  相似文献   

2.
Rat liver microsomes contain phosphatidate phosphatases which split phosphatidic acid into inorganic phosphate and diacylglycerol and a system of phospholipases and lipases, which split phosphatidic acid into free fatty acids, glycerol and inorganic phosphate. In the presence of ATP,CoA and [1-14C]palmitate, part of the monoacyl-sn-glycerol 3-phosphate formed by phospholipase action is reesterified, yielding radioactive phosphatidic acid. The sum of di- and triacylglycerols formed from phosphatidic acid in the presence of ATP and CoA exceeded the amount of diacylglycerol formed in their absence. The yield of neutral lipids from sn-glycerol 3-phosphate and monoacyl-sn-glycerol 3-phosphate markedly exceeded that from phosphatidic acid. Comparison of the yields of di- and triacylglcerols from glycerol-labelled and fatty-acid-labelled phosphatidic acid was used to establish the extent of deacylation and reacylation. About 60% of the diacylglycerol was formed by direct dephosphorylation. The triacylglycerols, on the other hand, were formed almost exclusively from recycled phosphatidic acid.  相似文献   

3.
Thrombin, nucleotides, and chelators elicited a phosphatidylinositol 4,5-bisphosphate (PtdIns-P2) phospholipase C activity that was associated with human platelet membranes. Both alpha- and gamma-thrombin enhanced phospholipase C activity, whereas active site-inhibited alpha-thrombin did not stimulate PtdIns-P2 hydrolysis. PtdIns-P2 phospholipase C was also activated by nucleoside triphosphates, citrate, EDTA, and NaF. Magnesium was an inhibitor of PtdIns-P2 hydrolysis stimulated by nucleotides and chelators. Only PtdIns-P2 was degraded by the phospholipase C activated by alpha-thrombin, nucleotides, and chelators. The soluble fraction phospholipase C activity was also stimulated at low protein concentrations by nucleotides; however, soluble fraction phospholipase C activity cleaved both PtdIns-P2 and phosphatidylinositol 4-phosphate and was inhibited by chelators, suggesting the presence of a different enzyme in this compartment. The pH optimum for the membrane-associated phospholipase C in the presence of alpha-thrombin or nucleotides was 6.0, and the PtdIns-P2 phospholipase C was inhibited by neomycin and high detergent concentrations. Guanine nucleotides did not synergistically activate phospholipase C in the presence of alpha-thrombin. The characteristics of the membrane-associated PtdIns-P2 phospholipase C suggest that this enzyme is involved in platelet activation by the low-affinity alpha- or gamma-thrombin-dependent pathway.  相似文献   

4.
The species pattern of phosphatidic acid, diacylglycerol and phosphatidylcholine synthesized from [14C]glycerol 3-phosphate was measured using a newly developed HPLC technique yielding 13 molecular species. A direct comparison of these species patterns presupposes determination of the lipolytic activity of lung microsomes. The lipolytic activity was quantitatively determined by measuring the changes of the endogenous concentration of diacylglycerol, triacylglycerol and free fatty acids. The species pattern of endogenous diacylglycerol measured in the time-course of lipolysis did not show any changes up to an incubation period of 20 min, suggesting that the lipolytic activity showed only a very low selectivity for individual substrate species. Diisopropylfluorophosphate (5 mumol/mg microsomal protein) strongly decreased the lipolytic activities as well as the microsomal phosphatidate phosphohydrolase activity, as measured by means of exogenous phosphatidic acid, and also the generation of phosphatidic acid from [14C]glycerol 3-phosphate. In lung microsomes, labeled phosphatidic acid and diacylglycerols were synthesized from the endogenous free fatty acids and sn-[14C]glycerol 3-phosphate, which had previously been added. By addition of CDPcholine to the prelabeled microsomes the synthesis of phosphatidylcholine was measured. After hydrolysis of phosphatidic acid and phosphatidylcholine with cytoplasmatic phosphatidate phosphohydrolase or phospholipase C, respectively, the de novo synthesized species patterns of these two lipids and of the diacylglycerol were determined. Comparison of the species pattern of de novo synthesized phosphatidic acid with that of diacylglycerol largely showed the same distribution of radioactivity among the individual species, except that the relative proportion of label was higher in the 16:0/16:0 and 16:0/18:0 species of phosphatidic acid and lower in the 16:0/20:4 and 18:0/20:4 species than in the corresponding species of diacylglycerol. The species pattern of de novo-synthesized diacylglycerol showed no differences from that of the phosphatidylcholine synthesized from it. From this result we concluded that the cholinephosphotransferase of lung microsomes is nonselective for individual species of the diacylglycerol substrate. The 16:0/18:1 and 16:0/18:2 species of phosphatidic acid, diacylglycerol and phosphatidylcholine showed a higher synthesis rate than their 18:0 counterparts, whereas the 16:0 or 18:0 analogues of species containing 20:4 and 22:6 fatty acids showed nearly the same synthesis rates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Human erythroleukaemia (HEL) cells were exposed to thrombin and other platelet-activating stimuli, and changes in radiolabelled phospholipid metabolism were measured. Thrombin caused a transient fall in PtdInsP and PtdInsP2 levels, accompanied by a rise in diacylglycerol and phosphatidic acid, indicative of a classical phospholipase C/diacylglycerol kinase pathway. However, the rise in phosphatidic acid preceded that of diacylglycerol, which is inconsistent with phospholipase C/diacylglycerol kinase being the sole source of phosphatidic acid. In the presence of ethanol, thrombin and other agonists (platelet-activating factor, adrenaline and ADP, as well as fetal-calf serum) stimulated the appearance of phosphatidylethanol, an indicator of phospholipase D activity. The Ca2+ ionophore A23187 and the protein kinase C activator phorbol myristate acetate (PMA) also elicited phosphatidylethanol formation, although A23187 was at least 5-fold more effective than PMA. Phosphatidylethanol production stimulated by agonists or A23187 was Ca2(+)-dependent, whereas that with PMA was not. These result suggest that phosphatidic acid is generated in agonist-stimulated HEL cells by two routes: phospholipase C/diacylglycerol kinase and phospholipase D. Activation of the HEL-cell phospholipase D in response to agonists may be mediated by a rise in intracellular Ca2+.  相似文献   

6.
Phosphatidic acid has been proposed to contribute to the mitogenic actions of various growth factors. In32P-labeled neonatal rat cardiac fibroblasts, 100 nM [Sar1]angiotensin II was shown to rapidly induce formation of32P-phosphatidic acid. Levels peaked at 5 min (1.5-fold above control), but were partially sustained over 2 h. Phospholipase D contributed in part to phosphatidic acid formation, as32P- or3H-phosphatidylethanol was produced when cells labeled with [32P]H3PO4 or 1-O-[1,2-3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine were stimulated in the presence of 1% ethanol. [Sar1]angiotensin II-induced phospholipase D activity was transient and mainly mediated through protein kinase C (PKC), since PKC downregulation reduced phosphatidylethanol formation by 68%. Residual activity may have been due to increased intracellular Ca2+, as ionomycin also activated phospholipase D in PKC-depleted cells. Phospholipase D did not fully account for [Sar1]angiotensin II-induced phosphatidic acid: 1) compared to PMA, a potent activator of phospholipase D, [Sar1]angiotensin II produced more phosphatidic acid relative to phosphatidylethanol, and 2) PKC downregulation did not affect [Sar1]angiotensin II-induced phosphatidic acid formation. The diacylglycerol kinase inhibitor R59949 depressed [Sar1]angiotensin II-induced phosphatidic acid formation by only 21%, indicating that activation of a phospholipase C and diacylglycerol kinase also can not account for the bulk of phosphatidic acid. Thus, additional pathways not involving phospholipases C and D, such asde novo synthesis, may contribute to [Sar1]angiotensin II-induced phosphatidic acid in these cells. Finally, as previously shown for [Sar1]angiotensin II, phosphatidic acid stimulated mitogen activated protein (MAP) kinase activity. These results suggest that phosphatidic acid may function as an intracellular second messenger of angiotensin II in cardiac fibroblasts and may contribute to the mitogenic action of this hormone on these cells. (Mol Cell Biochem141: 135–143, 1994)Abbreviations DAG diacylglycerol - DMSO dimethyl sulfoxide - lysoPC 1-O-hexadecyl-2-lyso-sn-glycero-3-phosphocholine - NRCF newborn rat cardiac fibroblasts - PA phosphatidic acid - PAPase phosphatidic acid phosphohydrolase - PC phosphatidylcholine - PEt phosphatidylethanol - PI phosphatidylinositol - PL (labeled) phospholipids - PLC phospholipase C - PLD phospholipase D Drs. G. W. Booz and M. M. Taher contributed equally to the work described here.  相似文献   

7.
Phospholipase D.     
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation.  相似文献   

8.
Hydrolysis of exogenous phosphatidylcholine (PtdCho) to 1,2-diacylglycerol by rat liver plasma membranes was stimulated by oleate concentrations as low as 0.1 mM. In the presence of 75 mM ethanol, the fatty acid also enhanced phosphatidylethanol (PtdEtOH) formation from PtdCho. These effects were also observed with linoleate and arachidonate, but not with saturated fatty acids or detergents, and were minimal in microsomes or mitochondria. Release of [3H]choline from exogenous Ptd[3H]Cho was stimulated by oleate, whereas phosphoryl[3H]choline formation was inhibited. Oleate and other unsaturated, but not saturated, fatty acids also stimulated the conversion of exogenous [14C]phosphatidic acid to [14C]diacylglycerol. These data are consistent with stimulatory effects of these fatty acids on both phospholipase D and phosphatidate phosphohydrolase in liver plasma membranes. The stimulatory effect of guanosine 5'-O-[3-thio]triphosphate) (20 microM) on PtdEtOH and diacylglycerol formation from PtdCho was enhanced by low concentrations of oleate. Phospholipase A2 also stimulated PtdEtOH and diacylglycerol formation from exogenous PtdCho. It is proposed that unsaturated fatty acids may play a physiological role in the regulation of diacylglycerol production through activation of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

9.
Regulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts into, but not through, the membrane bilayer. Phosphatidic acid, one of anionic phospholipids, could dramatically inhibit the ability of RGS4 to accelerate GTPase activity in vitro. Phosphatidic acid is an effective and potent inhibitor of RGS4 in a G alpha(i1)-[gamma-(32)P]GTP single turnover assay with an IC(50) approximately 4 microm and maximum inhibition of over 90%. Furthermore, phosphatidic acid was the only phospholipid tested that inhibited RGS4 activity in a receptor-mediated, steady-state GTP hydrolysis assay. When phosphatidic acid (10 mol %) was incorporated into m1 acetylcholine receptor-G alpha(q) vesicles, RGS4 GAP activity was markedly inhibited by more than 70% and the EC(50) of RGS4 was increased from 1.5 to 7 nm. Phosphatidic acid also induced a conformational change in the RGS domain of RGS4 measured by acrylamide-quenching experiments. Truncation of the N terminus of RGS4 (residues 1-57) resulted in the loss of both phosphatidic acid binding and lipid-mediated functional inhibition. A single point mutation in RGS4 (Lys(20) to Glu) permitted its binding to phosphatidic acid-containing vesicles but prevented lipid-induced conformational changes in the RGS domain and abolished the inhibition of its GAP activity. We speculate that the activation of phospholipase D or diacylglycerol kinase via G protein-mediated signaling cascades will increase the local concentration of phosphatidic acid, which in turn block RGS4 GAP activity in vivo. Thus, RGS4 may represent a novel effector of phosphatidic acid, and this phospholipid may function as a feedback regulator in G protein-mediated signaling pathways.  相似文献   

10.
It is widely accepted that the activation of the NADPH oxidase of phagocytes is linked to the stimulation of protein kinase C by diacylglycerol formed by hydrolysis of phospholipids. The main source would be choline containing phospholipid via phospholipase D and phosphatidate phosphohydrolase. This paper presents a condition where the activation of the respiratory burst by FMLP correlates with the formation of phosphatidic acid, via phospholipase D, and not with that of diacylglycerol. In fact: 1) in neutrophils treated with propranolol, an inhibitor of phosphatidate phosphohydrolase, FMLP plus cytochalasin B induces a respiratory burst associated with a stimulation of phospholipase D, formation of phosphatidic acid and complete inhibition of that of diacylglycerol. 2) The respiratory burst by FMLP plus cytochalasin B lasts a few minutes and may be restimulated by propranolol which induces an accumulation of phosphatidic acid. 3) In neutrophils stimulated by FMLP in the absence of cytochalasin B propranolol causes an accumulation of phosphatidic acid and a marked enhancement of the respiratory burst without formation of diacylglycerol. 4) The inhibition of the formation of phosphatidic acid via phospholipase D by butanol inhibits the respiratory burst by FMLP.  相似文献   

11.
Phosphatidic acid generation through activation of diacylglycerol kinase alpha has been implicated in interleukin-2-dependent T-lymphocyte proliferation. To investigate this lipid signaling in more detail, we characterized the molecular structures of the diradylglycerols and phosphatidic acids in the murine CTLL-2 T-cell line under both basal and stimulated conditions. In resting cells, 1,2-diacylglycerol and 1-O-alkyl-2-acylglycerol subtypes represented 44 and 55% of total diradylglycerol, respectively, and both showed a highly saturated profile containing primarily 16:0 and 18:1 fatty acids. 1-O-Alk-1'-enyl-2-acylglycerol represented 1-2% of total diradylglycerol. Interleukin-2 stimulation did not alter the molecular species profiles, however, it did selectively reduce total 1-O-alkyl-2-acylglycerol by over 50% at 15 min while only causing a 10% drop in 1,2-diacylglycerol. When radiolabeled CTLL-2 cells were challenged with interleukin-2, no change in the cellular content of phosphatidylcholine nor phosphatidylethanolamine was observed thereby ruling out phospholipase C activity as the source of diradylglycerol. In addition, interleukin-2 failed to stimulate de novo synthesis of diradylglycerol. Structural analysis revealed approximately equal amounts of 1,2-diacyl phosphatidic acid and 1-O-alkyl-2-acyl phosphatidic acid under resting conditions, both containing only saturated and monounsaturated fatty acids. After acute (2 and 15 min) interleukin-2 stimulation the total phosphatidic acid mass increased, almost entirely through the formation of 1-O-alkyl-2-acyl species. In vitro assays revealed that both 1,2-diacylglycerol and 1-O-alkyl-2-acylglycerol were substrates for 1,2-diacylglycerol kinase alpha, the major isoform in CTLL-2 cells, and that the lipid kinase activity was almost totally inhibited by R59949. In conclusion, this investigation shows that, in CTLL-2 cells, 1,2-diacylglycerol kinase alpha specifically phosphorylates a pre-existing pool of 1-O-alkyl-2-acylglycerol to form the intracellular messenger 1-O-alkyl-2-acyl phosphatidic acid.  相似文献   

12.
Exposure of skate erythrocytes to hypotonic medium stimulates a rapid increase in levels of 1,2-diacylglycerol. Other treatments which produce cell swelling such as replacement of a portion of medium NaCl with the permeant solutes ethylene glycol or ammonium chloride also stimulate increases in diacylglycerol. Whereas the reduction of medium osmolarity to 460 mosm (from 940) stimulated a persistent diacylglycerol increase, the increase after reduction to 660 mosm was transient, peaking at 2.5 min and then slowly declining. This decline could be prevented by preincubation with the diacylglycerol kinase inhibitor R59022. To investigate the source of the increased diacylglycerol, the rate of incorporation of [32P]PO4 into each major phospholipid was measured. Reduction of osmolarity to 660 mosm stimulated the incorporation of phosphate into phosphatidylcholine markedly, with a smaller increase observed into phosphatidylinositol. To demonstrate phosphatidylcholine hydrolysis, erythrocytes were prelabeled with [32P]PO4. Subsequent exposure to hypotonic (660 mosm) medium stimulated a decrease in radioactivity in phosphatidylcholine and a large increase in radioactivity in phosphatidic acid. When stimulated in the presence of ethanol, 32PO4-labeled phosphatidylethanol was formed, suggesting activation of phospholipase D. In addition, the initial formation of 32PO4-labeled phosphatidic acid was not sensitive to inhibition of diacylglycerol kinase, supporting the role of direct activation of phospholipase D. These results indicate that hypotonicity and the accompanying cell swelling induce cell membrane phospholipid turnover, predominantly phosphatidylcholine, and production of the protein kinase C activator, diacylglycerol, which appears to occur via activation of phospholipase D.  相似文献   

13.
Litosch I 《IUBMB life》2002,54(5):253-260
The receptor-regulated phospholipase C-beta (PLC-beta) signaling pathway is an important component in a network of signaling cascades that regulate cell function. PLC-beta signaling has been implicated in the regulation of cardiovascular function and neuronal plasticity. The Gq family of G proteins mediate receptor stimulation of PLC-beta activity at the plasma membrane. Mitogens stimulate the activity of a nuclear pool of PLC-beta. Stimulation of PLC-beta activity results in the rapid hydrolysis of phosphatidylinositol-4,5-bisphosphate, with production of inositol-1,4,5-trisphosphate and diacylglycerol, intracellular mediators that increase intracellular Ca2+ levels and activate protein kinase C activity, respectively. Diacylglycerol kinase converts diacylglycerol to phosphatidic acid, a newly emerging intracellular mediator of hormone action that targets a number of signaling proteins. Activation of the Gq linked PLC-beta signaling pathway can also generate additional signaling lipids, including phosphatidylinositol-3-phosphate and phosphatidylinositol-3,4,5-trisphosphate, which regulate the activity and/or localization of a number of proteins. Novel feedback mechanisms, directed at the level of Gq and PLC-beta, have been identified. PLC-beta and regulators of G protein signaling (RGS) function as GTPase-activating proteins on Gq to control the amplitude and duration of stimulation. Protein kinases phosphorylate and regulate the activation of specific PLC-beta isoforms. Phosphatidic acid regulates PLC-beta1 activity and stimulation of PLC-beta1 activity by G proteins. These feedback mechanisms coordinate receptor signaling and cell activation. Feedback mechanisms constitute possible targets for pharmacological intervention in the treatment of disease.  相似文献   

14.
Previous studies have demonstrated that [3H]arachidonic acid is released from prelabeled human neutrophil phospholipids when the cells are stimulated by calcium ionophore A23187 or by opsonized zymosan. Neither lysophospholipid generated by phospholipase A2 activity, diacylglycerol nor monoacylglycerol produced via phospholipase C/diacylglycerol lipase action have been identified following neutrophil challenge. The inability to detect any intermediates during the release of arachidonate is due to either rapid reacylation of lysophospholipid or conversion of diacylglycerol (monoacylglycerol) to cellular acylglycerols. The addition of exogenous [14C]fatty acid at the time of challenge was employed to determine the involvement of either phospholipase A2 or phospholipase C activities. Neutrophil stimulation with calcium ionophore A23187 resulted in an incorporation of exogenous [14C]arachidonate into phosphatidylinositol and phosphatidylcholine, those phospholipids which specifically release arachidonate. When the saturated fatty acid, [14C]stearate, replaced [14C]arachidonate, very little [14C]fatty acid was incorporated into any of the phospholipid species. Lipid phosphorus measurements revealed no significant mass change in any phospholipid class following ionophore challenge. Production of [14C]phosphatidic acid was not detected, as would be expected if diacylglycerol kinase and de novo phospholipid metabolism were significantly involved.  相似文献   

15.
The involvement of endogenous diacylglycerol production in the stimulation of phosphatidylcholine synthesis by exogenous phospholipase C was examined using a neuroblastoma (LA-N-2) cell line. Phospholipase C treatment (0.1 unit/ml) of intact cells stimulated CTP:phosphocholine cytidylyltransferase activity significantly more effectively than did maximally effective concentrations of the synthetic diacylglycerol sn-1,2-dioctanoylglycerol (1 mM). When added to cells together with phospholipase C, oleic acid, but not dioctanoylglycerol, further increased cytidylyltransferase activity with respect to phospholipase C treatment alone, indicating that the enzyme was not maximally activated by the lipase. This suggests that the lack of additivity of diacylglycerol and phospholipase C reflects a common mechanism of action. The time course of activation of cytidylyltransferase by phospholipase C paralleled that of [3H]diacylglycerol production in cells prelabeled for 24 h with [3H]oleic acid. Diacylglycerol mass was similarly increased. Significant elevations of [3H]oleic acid and total fatty acids occurred later than did the increases in cytidylyltransferase activity and diacylglycerol levels. No significant reduction in total or [3H]phosphatidylcholine was elicited by this concentration of phospholipase C, but higher concentrations (0.5 unit/ml) significantly reduced phosphatidylcholine content. The stimulation of cytidylyltransferase activity by phospholipase C or dioctanoylglycerol was also associated with enhanced incorporation of [methyl-14C]choline into phosphatidylcholine. Dioctanoylglycerol was more effective than phospholipase C at stimulating the formation of [14C]phosphatidylcholine, and the effects of the two treatments were additive. However, further analysis revealed that dioctanoylglycerol served as a precursor for [14C]dioctanoylphosphatidylcholine as well as an activator of cytidylyltransferase; and when corrections were made for this effect, the apparent additivity disappeared. The results indicate that the generation of diacylglycerol by exogenous phospholipase C (and possibly the subsequent production of fatty acids via diacylglycerol metabolism) activates cytidylyltransferase activity in neuronal cells under conditions in which membrane phosphatidylcholine content is not measurably reduced.  相似文献   

16.
To evaluate the role of the C2 domain in protein kinase Cepsilon (PKCepsilon) localization and activation after stimulation of the IgE receptor in RBL-2H3 cells, we used a series of mutants located in the phospholipid binding region of the enzyme. The results obtained suggest that the interaction of the C2 domain with the phospholipids in the plasma membrane is essential for anchoring the enzyme in this cellular compartment. Furthermore, the use of specific inhibitors of the different pathways that generate both diacylglycerol and phosphatidic acid has shown that the phosphatidic acid generated via phospholipase D (PLD)-dependent pathway, in addition to the diacylglycerol generated via phosphoinosite-phospholipase C (PLC), are involved in the localization of PKCepsilon in the plasma membrane. Direct stimulation of RBL-2H3 cells with very low concentrations of permeable phosphatidic acid and diacylglycerol exerted a synergistic effect on the plasma membrane localization of PKCepsilon. Moreover, the in vitro kinase assays showed that both phosphatidic acid and diacylglycerol are essential for enzyme activation. Together, these results demonstrate that phosphatidic acid is an important and essential activator of PKCepsilon through the C2 domain and locate this isoenzyme in a new scenario where it acts as a downstream target of PLD.  相似文献   

17.
Phosphatidic acid phosphatase (PAP) converts phosphatidic acid to diacylglycerol, thus regulating the de novo synthesis of glycerolipids and also signal transduction mediated by phospholipase D. We initially succeeded in the cDNA cloning of the mouse 35 kDa PAP bound to plasma membranes (type 2 enzyme). This work subsequently led us to the identification of two human PAP isozymes designated 2a and 2b. A third human PAP isozyme (2c) has also been described. The cloned enzymes are, in common, N-glycosylated and possess six transmembrane domains. The transmembrane dispositions of these enzymes are predicted and the catalytic sites are tentatively located in the 2nd and 3rd extracellular loops, thus suggesting that the type 2 PAPs may act as ecto-enzymes dephosphorylating exogenous substrates. Furthermore, the type 2 PAPs have been proposed to belong to a novel phosphatase superfamily consisting of a number of soluble and membrane-bound enzymes. In vitro enzyme assays show that the type 2 PAPs can dephosphorylate lyso-phosphatidate, ceramide-1-phosphate, sphingosine-1-phosphate and diacylglycerol pyrophosphate. Although the physiological implications of such a broad substrate specificity need to be further investigated, the type 2 PAPs appear to metabolize a wide range of lipid mediators derived from both glycero- and sphingolipids.  相似文献   

18.
We describe a relatively simple and sensitive method to measure fentomole amounts of phosphatidic acid in cells. Phosphatidic acid was extracted from cells in the presence of 1-heptadecanoyl-2-heptadecanoyl-sn-glycero-3-phosphate as an internal standard, purified by two-dimensional thin-layer chromatography, and hydrolyzed to its constituent free fatty acids which were then derivatized to the corresponding pentafluorobenzyl esters. Pentafluorobenzyl esters of fatty acids were analyzed by gas chromatography with electron-capture detection. Long-chain fatty acids were resolved with excellent signal-to-noise ratios. Using heptadecanoic acid as an internal standard for quantitation, as little as 1 fmol of pentafluorobenzyl ester of stearic acid was detected with a linear response up to 10 pmol. Linear detector responses were obtained for all major classes of fatty acids. For phosphatidic acid measurement, the detection limit was at least 50 fmol thus achieving a 1000-fold increase in sensitivity compared to the most sensitive of the previously described methods. An example is provided of quantitating phosphatidic acid from minute amounts of biological samples such as islets of Langerhans.  相似文献   

19.
Stimulation of rabbit polymorphonuclear leucocytes with A23187 causes phospholipase C mediated breakdown of polyphosphoinositides, as evidenced by accumulation of [3H]inositol-labelled inositol bisphosphate and inositol trisphosphate. At the same time the polyphosphoinositides and the products of their breakdown, diacylglycerol and phosphatidic acid, label rapidly with radioactive arachidonic acid. Enhancement of polyphosphoinositide labelling is not as great as enhancement of diacylglycerol or phosphatidic acid labelling, suggesting additional early activation of a second independent synthetic pathway to the last named lipids. Experiments using double (3H/14C) labelling, to distinguish pools with different rates of turnover, suggest the major pool of arachidonic acid used for synthesis of lipoxygenase metabolites turns over more slowly than arachidonic acid in diacylglycerol, but at about the same rate as arachidonic acid esterified in phosphatidylcholine or phosphatidylinositol. Further, when cells are prelabelled with [14C]arachidonic acid, then stimulated for 5 min, it is only from phosphatidylcholine, and to a lesser extent phosphatidylinositol, that radiolabel is lost. Release of arachidonic acid is probably via phospholipase A2, since it is blocked by the phospholipase A2 inhibitor manoalide. The absence of accumulated lysophosphatides can be explained by reacylation and, in the case of lysophosphatidylinositol, deacylation. The importance of phospholipase A2 in phosphatidylinositol breakdown contrasts with the major role of phospholipase C in polyphosphoinositide hydrolysis. Measurements of absolute free fatty acid levels, as well as studies showing a correlation between production of radiolabelled hydroxyeicosatetraenoic acids and release of radiolabel from the phospholipid pool, both suggest that hydrolysis of arachidonic acid esterified into phospholipids is the limiting factor regulating formation of lipoxygenase metabolites. By contrast with A23187, fMet-Leu-Phe (a widely used polymorphonuclear leucocyte activator) is a poor stimulant for arachidonic acid release unless a 'second signal' (e.g. cytochalasin B, or a product of A23187-stimulated cells) is also present. In the presence of cytochalasin B, fMet-Leu-Phe, like A23187, stimulates release of radiolabelled arachidonic acid principally from phosphatidylcholine.  相似文献   

20.
Phosphatidic acid phosphatases (PAPs) catalyze the conversion of phosphatidic acid to diacylglycerol and inorganic phosphate and have been postulated to function both in lipid biosynthesis and in cellular signal transduction. In Drosophila melanogaster, the Type 2 phosphatidic acid phosphatase protein encoded by the wunen gene, negatively regulates primordial germ cell migration. We recently described the cloning and characterization of the mouse Ppap2c gene, which encodes the Type 2 phosphatidic acid phosphatase Pap2c (Zhang et al., Genomics 63:142-144). To analyze the in vivo role of the Ppap2c gene we constructed a null mutation by gene targeting. Ppap2c(-/-) homozygous mutant mice were viable, fertile, and exhibited no obvious phenotypic defects. These data demonstrate that the Ppap2c gene is not essential for embryonic development or fertility in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号