首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mink homozygous for the mutation Pro214Leu in lipoprotein lipase (LPL) had only traces of LPL activity but amounts of LPL protein in their tissues similar to those of normal mink. In normal mink, lymph chylomicrons from rats given [3H]retinol (incorporated into retinyl esters, providing a core label) and [14C]oleic acid (incorporated mainly in triglycerides (TG)) were rapidly cleared from the circulation. In the homozygous mink, clearance was much retarded. The ratio of TG to core label in plasma did not decrease and much less [14C]oleic acid appeared in plasma. Still, half of the labeled material disappeared from the circulating blood within 30;-40 min and the calculated total turnover of TG in the hypertriglyceridemic mink was almost as large as in normal mink. The core label was distributed to the same tissues in hypertriglyceridemic mink as in normal mink. Half to two-thirds of the cleared core label was in the liver. The large difference was that in the hypertriglyceridemic mink, TG label (about 40% of the total amount removed) followed the core label to the liver and there was no preferential uptake of TG over core label in adipose or muscle tissue. In normal mink, only small amounts of TG label (<10%) appeared in the liver, while most was in adipose and muscle tissues. Apolipoprotein B-48 dominated in the accumulated TG-rich lipoproteins in blood of hypertriglyceridemic mink, even in fasted animals.  相似文献   

2.
Ding Y  Wang Y  Zhu H  Fan J  Yu L  Liu G  Liu E 《Transgenic research》2011,20(4):867-875
Apolipoprotein CIII (apoCIII) has been implicated in hypertriglyceridemia and plasma apoCIII independently predicts risk for coronary heart disease. While hypertriglyceridemia in patients has been demonstrated to correlate with elevated plasma apoCIII levels and reduced lipoprotein lipase (LPL) activity, apoCIII transgenic mice show elevated LPL activity. In this study, we generated transgenic (Tg) rabbits expressing human apoCIII gene exclusively in liver and investigated the effect of apoCIII overexpression on lipid metabolism of rabbits. In comparison with non-Tg littermates, Tg rabbits had 3- and 3.2-fold increases in fed and fasted plasma triglycerides, respectively. In contrast, no significant differences were observed in plasma total cholesterol and high density lipoprotein cholesterol levels between Tg and non-Tg rabbits. Analysis of lipoprotein fractions revealed that elevated plasma triglyceride levels in Tg rabbits were mainly attributed to an increase in very low density lipoprotein/chylomicron-sized particles. Furthermore, Tg rabbits showed markedly delayed clearance of plasma triglycerides accompanied with significantly reduced LPL activity in post-heparin plasma compared to that in non-Tg controls. In conclusion, these results indicate apoCIII transgenic rabbits develop hypertriglyceridemia with similar mechanism in hypertriglyceridemic patients via delayed clearance of plasma triglycerides, and could be used as a valuable tool for the study of human hyperlipidemia in relation with atherosclerotic disorders.  相似文献   

3.
We previously reported an efficient proteomic approach to identify matrix metalloproteinase (MMP) substrates from complex protein mixture. Using the proteomic approach, apolipoprotein C-II (apoC-II), which is a cofactor of lipoprotein lipase (LPL) and a component of very-low density lipoprotein and chylomicron, has been identified as a putative MMP-14 substrate. Cleavage of apoC-II, with various MMPs, demonstrated that apoC-II is cleaved most efficiently by MMP-14, and also by MMP-7, among the tested MMPs. The 79-amino acid residue apoC-II was cleaved between Asn35 and Leu36 by MMP-14, and between Phe14 and Leu15 and between Asn35 and Leu36 by MMP-7. Cleavage of apoC-II by MMP-14 markedly decreased LPL activity and would thus impair hydrolysis of triglycerides in plasma and transfer of fatty acids to tissues. Our result suggests that cleavage of apoC-II by MMPs would be important for development of pathophysiological situations of apoC-II deficiency such as atherosclerosis.  相似文献   

4.
An in vitro heparin release of lipoprotein lipase (LPL) from whole blood, mainly from monocytes, was demonstrated by (1) the time-course of lipolytic activity with the presence of 10 U/ml heparin at 37 degrees C, (2) the distribution of LPL activity in monocyte and lymphocyte fractions, (3) an immuno-inactivation with anti-LPL immunoglobulin (IgG) and (4) responses to various compounds such as NaCl, protamine sulfate, heparin, and serum activator. The in vitro heparin-releasable LPL activity from blood correlated well with the LPL activity of postheparin plasma obtained from both normolipidemic and hyperlipidemic rabbits. Studies in humans revealed sex- and age-related variations in the in vitro heparin-releasable LPL from monocytes in the blood of 134 normal subjects and 24 hypertriglyceridemic subjects: The mean LPL activity was significantly higher in normal females over the age of 30, than in the corresponding males. In the hypertriglyceridemic group, the LPL activity was also higher in females than in males, but it was not significant. The in vitro heparin-releasable LPL activity from monocytes in blood was comparable to the LPL activity derived from adipose tissue and postheparin plasma, and thus it reflects lipoprotein metabolism.  相似文献   

5.
Patients at increased cardiovascular risk commonly display high levels of plasma triglycerides (TGs), elevated LDL cholesterol, small dense LDL particles and low levels of HDL-cholesterol. Many remain at high risk even after successful statin therapy, presumably because TG levels remain high. Lipoprotein lipase (LPL) maintains TG homeostasis in blood by hydrolysis of TG-rich lipoproteins. Efficient clearance of TGs is accompanied by increased levels of HDL-cholesterol and decreased levels of small dense LDL. Given the central role of LPL in lipid metabolism we sought to find small molecules that could increase LPL activity and serve as starting points for drug development efforts against cardiovascular disease. Using a small molecule screening approach we have identified small molecules that can protect LPL from inactivation by the controller protein angiopoietin-like protein 4 during incubations in vitro. One of the selected compounds, 50F10, was directly shown to preserve the active homodimer structure of LPL, as demonstrated by heparin-Sepharose chromatography. On injection to hypertriglyceridemic apolipoprotein A-V deficient mice the compound ameliorated the postprandial response after an olive oil gavage. This is a potential lead compound for the development of drugs that could reduce the residual risk associated with elevated plasma TGs in dyslipidemia.  相似文献   

6.
Lipoprotein lipase (LPL) releases fatty acids from triglyceride-rich lipoproteins for use in cellular metabolic reactions. How this hydrolysis, which occurs at the vascular endothelium, is regulated is poorly understood. A fatty acid feedback system has been proposed by which accumulation of fatty acids impedes LPL-catalyzed hydrolysis and dissociates the enzyme from its endothelial binding sites. We examined this hypothesis in humans who were subjected to an oral fat tolerance test of a mixed-meal type. Plasma triglycerides, free fatty acids, and LPL activity were measured before and repeatedly during a 12-h period after intake of the fat load. Since soybean oil with a high content of linoleic fatty acid was the source of triglycerides, a distinction could be made between endogenous free fatty acids (FFA) and FFA derived directly from lipolysis of postprandial triglyceride-rich lipoproteins. Mean LPL activity was almost doubled (P less than 0.01) 6 h after intake of the oral fat load. The rise in LPL activity was accompanied by an increase of plasma triglycerides and linoleic free fatty acids (18:2 FFA), but not of total plasma FFA, which instead displayed a heterogeneous pattern with essentially unchanged mean levels. The postprandial response of LPL activity largely paralleled the postprandial responses of 18:2 FFA and triglycerides. The highest degree of parallelism was seen between postprandial 18:2 FFA and LPL activity levels. Furthermore, the integrated response (area under the curve, AUC) for plasma measurements of LPL correlated with the AUC for 18:2 FFA (r = 0.40, P less than 0.05), but not with the AUC for plasma triglycerides (r = 0.21, ns). The high degree of parallelism and significant correlation between postprandial plasma LPL activity and 18:2 FFA support the hypothesis of fatty acid control of endothelial LPL during physiological conditions in humans.  相似文献   

7.
Post-heparin plasma lipolytic activity (PHLA) was measured in 21 patients with acute viral hepatitis. PHLA was significantly reduced in all patients (p less than 0.0005), whose mean activity was only 32% of the control subjects. An inverse correlation (p less than 0.05) was found between PHLA values and serum triglycerides levels. During recovery, the normalization of PHLA was much slower than that of the usual tests of liver function. PHLA measurement may represent a new and sensitive test of liver function.  相似文献   

8.
9.
Apolipoprotein A5 (APOA5) is associated with differences in triglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasma triglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In human APOA5 transgenic mice (hAPOA5tr), catabolism of chylomicrons and very low density lipoprotein (VLDL) was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL). Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by cross-breeding a human LPL transgene with the apoa5 knock-out and the hAPOA5tr to an lpl-deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5-deficient mice; however, overexpression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr high density lipoprotein, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL-mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line. A direct interaction between LPL and apoAV was found by ligand blotting. It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycan-bound LPL for lipolysis.  相似文献   

10.
Hormone-sensitive lipase (HSL) is believed to play an important role in the mobilization of fatty acids from triglycerides (TG), diglycerides, and cholesteryl esters in various tissues. Because HSL-mediated lipolysis of TG in adipose tissue (AT) directly feeds non-esterified fatty acids (NEFA) into the vascular system, the enzyme is expected to affect many metabolic processes including the metabolism of plasma lipids and lipoproteins. In the present study we examined these metabolic changes in induced mutant mouse lines that lack HSL expression (HSL-ko mice). During fasting, when HSL is normally strongly induced in AT, HSL-ko animals exhibited markedly decreased plasma concentrations of NEFA (-40%) and TG (-63%), whereas total cholesterol and HDL cholesterol levels were increased (+34%). Except for the increased HDL cholesterol concentrations, these differences were not observed in fed animals, in which HSL activity is generally low. Decreased plasma TG levels in fasted HSL-ko mice were mainly caused by decreased hepatic very low density lipid lipoprotein (VLDL) synthesis as a result of decreased NEFA transport from the periphery to the liver. Reduced NEFA transport was also indicated by a depletion of hepatic TG stores (-90%) and strongly decreased ketone body concentrations in plasma (-80%). Decreased plasma NEFA and TG levels in fasted HSL-ko mice were associated with increased fractional catabolic rates of VLDL-TG and an induction of the tissue-specific lipoprotein lipase (LPL) activity in cardiac muscle, skeletal muscle, and white AT. In brown AT, LPL activity was decreased. Both increased VLDL fractional catabolic rates and increased LPL activity in muscle were unable to provide the heart with sufficient NEFA, which led to decreased tissue TG levels in cardiac muscle. Our results demonstrate that HSL deficiency markedly affects the metabolism of TG-rich lipoproteins by the coordinate down-regulation of VLDL synthesis and up-regulation of LPL in muscle and white adipose tissue. These changes result in an "anti-atherogenic" lipoprotein profile.  相似文献   

11.
GPIHBP1-deficient mice (Gpihbp1(-/-)) exhibit severe chylomicronemia. GPIHBP1 is located within capillaries of muscle and adipose tissue, and expression of GPIHBP1 in Chinese hamster ovary cells confers upon those cells the ability to bind lipoprotein lipase (LPL). However, there has been absolutely no evidence that GPIHBP1 actually interacts with LPL in vivo. Heparin is known to release LPL from its in vivo binding sites, allowing it to enter the plasma. After an injection of heparin, we reasoned that LPL bound to GPIHBP1 in capillaries would be released very quickly, and we hypothesized that the kinetics of LPL entry into the plasma would differ in Gpihbp1(-/-) and control mice. Indeed, plasma LPL levels peaked very rapidly (within 1 min) after heparin in control mice. In contrast, plasma LPL levels in Gpihbp1(-/-) mice were much lower 1 min after heparin and increased slowly over 15 min. In keeping with that result, plasma triglycerides fell sharply within 10 min after heparin in wild-type mice, but were negligibly altered in the first 15 min after heparin in Gpihbp1(-/-) mice. Also, an injection of Intralipid released LPL into the plasma of wild-type mice but was ineffective in releasing LPL in Gpihbp1(-/-) mice. The observed differences in LPL release cannot be ascribed to different tissue stores of LPL, as LPL mass levels in tissues were similar in Gpihbp1(-/-) and control mice. The differences in LPL release after intravenous heparin and Intralipid strongly suggest that GPIHBP1 represents an important binding site for LPL in vivo.  相似文献   

12.
Tissue-specific regulation of LPL has been widely studied in rats. Previous studies reported that in vivo administration of adrenaline and acute stress cause an increase in plasma LPL activity coinciding with a decrease in white adipose tissue (WAT) LPL activity. We studied the speed of LPL activity changes during 30 min of stress by immobilization (IMMO) in rats. A first experimental approach in permanently cannulated rats permitted sequential blood sampling in the same animal during IMMO and the obtaining of hemodynamic parameters. In a second experimental approach, animals were euthanized at different times after the start of IMMO to determine LPL activity in tissues. Stress was characterized by rises in blood pressure, heart rate, plasma corticosterone, and available circulating energy substrates. Five min after the start of IMMO, LPL activity fell in retroperitoneal WAT and increased in plasma. These data show the quickest LPL activity change ever described in response to a physiological situation. The speed and simultaneity of these changes suggest that the release from endothelium to the bloodstream may constitute a fast nonexplored mechanism of tissue LPL activity regulation, involved in the lipid energy-substrate redistribution between tissues needed to prepare the "fight-or-flight" response.  相似文献   

13.
Acute (after 4 hr) and short-term (after 7 days) effects of ingesting heated and unheated groundnut, coconut and safflower oils on plasma lipids, lipoproteins and postheparin lipopolytic activity (PHLA) were studied in rats. All heated oils were characterized by increases in carbonyl value, peroxide value and free fatty acid (FFA) content, except heated coconut oil which showed a decrease in FFA content. Heating procedure also did not alter to an appreciable extent their fatty acid compositions. Acute and short-term effects of feeding heated and unheated oils showed no significant differences in rat plasma levels of total cholesterol (TC), total triglycerides, total phospholipids, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol + very-low-density lipoprotein cholesterol, TC/HDL-C ratio and PHLA. Inspite of certain changes in some of the indices of thermal alteration of these heated oils, consumption of such heated oils by rats did not have any significant effect on various plasma parameters in these animals.  相似文献   

14.
The release of fatty acids from plasma triglycerides for tissue uptake is critically dependent on the enzyme lipoprotein lipase (LPL). Hydrolysis of plasma triglycerides by LPL can be disrupted by the protein angiopoietin-like 4 (ANGPTL4), and ANGPTL4 has been shown to inactivate LPL in vitro. However, in vivo LPL is often complexed to glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) on the surface of capillary endothelial cells. GPIHBP1 is responsible for trafficking LPL across capillary endothelial cells and anchors LPL to the capillary wall during lipolysis. How ANGPTL4 interacts with LPL in this context is not known. In this study, we investigated the interactions of ANGPTL4 with LPL-GPIHBP1 complexes on the surface of endothelial cells. We show that ANGPTL4 was capable of binding and inactivating LPL complexed to GPIHBP1 on the surface of endothelial cells. Once inactivated, LPL dissociated from GPIHBP1. We also show that ANGPTL4-inactivated LPL was incapable of binding GPIHBP1. ANGPTL4 was capable of binding, but not inactivating, LPL at 4 °C, suggesting that binding alone was not sufficient for ANGPTL4''s inhibitory activity. We observed that although the N-terminal coiled-coil domain of ANGPTL4 by itself and full-length ANGPTL4 both bound with similar affinities to LPL, the N-terminal fragment was more potent in inactivating both free and GPIHBP1-bound LPL. These results led us to conclude that ANGPTL4 can both bind and inactivate LPL complexed to GPIHBP1 and that inactivation of LPL by ANGPTL4 greatly reduces the affinity of LPL for GPIHBP1.  相似文献   

15.
We have developed a sandwich-enzyme immunoassay (EIA) for the quantification of lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) in human postheparin plasma (PHP) using monoclonal antibodies (MAbs) directed against the corresponding enzymes purified from human PHP. The sandwich-EIA for LPL was performed by using the combination of two distinct types of anti-LPL MAbs that recognize different epitopes on the LPL molecule. The immunoreactive mass of LPL was specifically measured using a beta-galactosidase-labeled anti-LPL MAb as an enzyme-linked MAb, an anti-LPL MAb linked with the bacterial cell wall as an insolubilized MAb, and purified human PHP-LPL as a standard. The sandwich-EIA for HTGL was carried out by using two distinct anti-HTGL MAbs that recognize different epitopes on HTGL. The limit of detection was 20 ng/ml for LPL and 60 ng/ml for HTGL. Each method yielded a coefficient of variation of less than 6% in intra- and inter-assays, and a high concentration of triglyceride did not interfere with the assays. The average recovery of purified human PHP-LPL and -HTGL added to human PHP samples was 98.8% and 97.5%, respectively. The immunoreactive masses of LPL and HTGL in PHP samples, obtained at a heparin dose of 30 IU/kg, from 34 normolipidemic and 20 hypertriglyceridemic subjects were quantified by the sandwich-EIA. To assess the reliability of the measured mass values, they were compared with the corresponding enzyme activities measured by selective immunoinactivation assay using rabbit anti-human PHP-LPL and -HTGL polyclonal antisera. Both assay methods yielded a highly significant correlation in either normolipidemic (r = 0.945 for LPL; r = 0.932 for HTGL) or hypertriglyceridemic subjects (r = 0.989 for LPL; r = 0.954 for HTGL). The normal mean (+/- SD) level of lipoprotein lipase mass and activity in postheparin plasma was 223 +/- 66 ng/ml and 10.1 +/- 2.9 mumol/h per ml, and that of hepatic triglyceride lipase mass and activity was 1456 +/- 469 ng/ml and 26.4 +/- 8.7 mumol/h per ml, respectively. The present sandwich-enzyme immunoassay methods make it possible to study the molecular nature of LPL and HTGL in PHP from patients with either primary or secondary hyperlipoproteinemia.  相似文献   

16.
The status of lipoprotein lipase (LPL) has been examined in different cell types (adipose, skeletal muscle, and heart muscle cells) and different tissues (adipose, muscle, and cardiac tissues) from mouse, rat, and human. Cell and secreted activities were compared in cycloheximide-, heparin-treated cells present in culture. A gross underestimation of cell LPL activity was found; excess of LPL over substrate and/or apolipoprotein C-II was excluded as well as inhibition by cell component(s) or detergent molecules used to disrupt membrane structures in the cell lysates. Unmasking of LPL activity occurred upon dilution: the higher the concentration of LPL, the higher were the dilution factor and the concentration of heparin required to reach a plateau of activity. This maximal value was found to be identical to that determined in the secretion medium, indicating that the cell LPL activity can be determined in toto. The unmasking effect of dilution upon LPL activity was extended to adipose, muscle, and cardiac tissues from rat and to adipose tissues from mouse and human. In agreement with previous results (Vannier et al., 1989, J. Biol. 264: 13199-13205), our results are in favor of LPL as being cryptic within the cell. A model is proposed, in which potentially active LPL molecules are present as aggregates in various membrane compartments. It is concluded that the determination of the pool size of catalytically active cell LPL has to be estimated in vitro under the appropriate conditions described herein.  相似文献   

17.
Transgenic rabbits expressing human lipoprotein lipase   总被引:1,自引:0,他引:1  
To study the functions of lipoprotein lipase (LPL) in lipid and lipoprotein metabolism and the relationship between LPL and atherosclerosis, we generated transgenic rabbits expressing the human LPL gene. A total of 4045 Japanese whiterabbit embryos were microinjected with a 3.8-kb SalI/HindIII fragment containing the chicken -actin promoter, human LPL cDNA and rabbit -globin with poly (A) signals, and then transplanted into 116 recipient rabbits. Of the 166 pups born, six pups were transgenic as confirmed by Southern blot analysis. ANorthern blot analysis revealed that human LPL was expressed by a number of tissues including the heart, kidney, adrenal gland and intestine. One transgenic rabbit showed up to 3-foldincreased LPL activity in post-heparin plasma compared to thatin nontransgenic rabbits. Human LPL expression in various tissues of transgenic rabbits was further elucidated by in situ hybridization and immunostaining. Since rabbits are superior to mice as a model of atherosclerosis, this transgenicrabbit model should provide a valuable tool for the study of LPL in lipid metabolism and atherosclerosis.  相似文献   

18.
There is evidence that elevated plasma triglycerides (TG) serve as an independent risk factor for coronary heart disease. Plasma TG levels are determined by the balance between the rate of production of chylomicrons and VLDL in intestine and liver, respectively, and their rate of clearance in peripheral tissues. Lipolytic processing of TG-rich lipoproteins is mediated by the enzyme lipoprotein lipase (LPL), which is tethered to the capillary endothelium via heparin sulphate proteoglycans. In recent years the Angiopoietin-like proteins ANGPTL3 and ANGPTL4 have emerged as novel modulators of LPL activity. Studies in transgenic animals supported by in vitro experiments have demonstrated that ANGPTL3 and ANGPTL4 impair plasma TG clearance by inhibiting LPL activity. In humans, genetic variation within the ANGPTL3 and ANGPTL4 genes contributes to variation in plasma TG and HDL levels, thereby validating the importance of ANGPTLs in the regulation of lipoprotein metabolism in humans. Combined with the discovery of GPIHBP1 as a likely LPL anchor, these findings have led to a readjustment of the mechanism of LPL function. This review provides an overview of our current understanding of the role and regulation of ANGPTL3, ANGPTL4 and GPIHBP1, and places the newly acquired knowledge in the context of the established function and mechanism of LPL-mediated lipolysis.  相似文献   

19.
脂蛋白酯酶与动脉粥样硬化   总被引:3,自引:0,他引:3  
脂蛋白酯酶(1ipopmtein lipase,LPL)是调节脂蛋白代谢的一种关键酶,如具有水解血浆脂蛋白中三酰甘油的作用等.体内LPL减少会导致血三酰甘油升高和高密度脂蛋白胆固醇降低,增加患动脉粥样硬化的危险.通过提高LPL的活性可以抑制动脉粥样硬化的发生发展.已有的研究说明NO-1886促进心肌和脂肪组织LPL mRNA表达,提高心肌、脂肪组织、骨骼肌和血液中LPL活性,因而改善脂蛋白代谢,抑制动脉粥样硬化.  相似文献   

20.
Lipoprotein lipase (LPL) and hepatic lipase (HL) are enzymatic activities involved in lipoprotein metabolism. The purpose of this study was to analyze the physicochemical modifications of plasma lipoproteins produced by LPL activation in two patients with apoC-II deficiency syndrome and by HL activation in two patients with LPL deficiency. LPL activation was achieved by the infusion of normal plasma containing apoC-II and HL was released by the injection of heparin. Lipoproteins were analyzed by ultracentrifugation in a zonal rotor under rate flotation conditions before and after lipase activation. The LPL activation resulted in: a reduction of plasma triglycerides; a reduction of fast-floating very low density lipoprotein (VLDL) concentration; an increase of intermediate density lipoprotein (IDL), which maintained unaltered flotation properties; an increase of low density lipoproteins (LDL) accompanied by modifications of their flotation rates and composition; no significant variations of high density lipoprotein (HDL) levels; and an increase of the HDL flotation rate. The HL activation resulted in: a slight reduction of plasma triglycerides; a reduction of the relative triglyceride content of slow-floating VLDL, IDL, LDL2, and HDL3 accompanied by an increase of phospholipid in VLDL and by an increase of cholesteryl ester in IDL; and a reduction of the HDL flotation rate. These experiments in chylomicronemic patients provide in vivo evidence that LPL and HL are responsible for plasma triglyceride hydrolysis of different lipoproteins, and that LPL is particularly involved in determining the levels and physicochemical properties of LDL. Moreover, in these patients, the LPL activation does not directly change the HDL levels, and LPL or HL does not produce a step-wise conversion of HDL3 to HDL2 (or vice versa) but rather modifies the flotation rates of all the HDL molecules present in plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号